Algebraic groups and all in characteristic p.

0) Reminder F charpfield, Galg. group/F ~oj= Lie(G), U:= Uloy) Last time, we introduced the p(th power) map X I X [p]: of -> of w. following properties: i) - defining property: under identification of ~ Vect (G) G (Vect (G) = DG in Jay's notation), X [p]: = X as map IF[G] -> IF[G]. (i)-functoriality: if $\mathcal{P}: \mathcal{G} \to \mathcal{H}$ is alg group homomorphism & $\varphi:=d, \mathcal{P}: \sigma_{J} \rightarrow \dot{b}$, then $\varphi(x)^{\mathcal{L}pJ}=\varphi(x^{\mathcal{L}pJ})$ Exercise: for G=GL, have XEPT=XP as a matrix. iii) (= ii) & Exercise: for G=GL, X^{Gp]}=X^P as a matrix. iv) -- -- -- : $ad(x^{Lp_1}) = ad(x)^p$ V) easy: $(ax)^{L_{p_{j}}} = a^{p_{x_{p_{j}}}} \neq e \in F$ Fact: in the free algebra I-<x, y7, the element (x+y)P-xP-yP is a Lie polynomial in x, y. Denote it by L(x, y). $Vi) \leftarrow Fact: (x+y)^{[p]} = x^{[p]} + y^{[p]} + L(x,y).$ Definition : A p-Lie algebra over F is a Lie algebra together w. a p-map . [p] satisfying properties (iv) - (vi) Example: An associative algebra A together w. a^{Ep]}: = a^P is 2 p-lie algebra.

1

1) Center & central reductions of Ulog). Consider $C: \sigma \longrightarrow U, C(x) = x^{P} - x^{CPJ}$ filtration deg p deg 1 Exercise: Use (iv) & (vi) to show that: ((x) is central L(x+y) = L(x) + L(y).+ [is semilinear: ((ax) = QP((x). Assume from now on: IF is perfect, Can twist I-multin on of by autom atta of F, so c becomes IF-linear. Resulting space is denoted by of (Frobenius twist) So have F-linear $l: q^{(n)} \longrightarrow center of U$ א S(g^(r)) Exercise (on PBW): C is injective & makes (1 into free S(og (1))-module w. basis X, ... X, w. di E 20, p-13 (here X, X, IS a basis in of). Defin: ((S(og (1))) is called the p-center. Restricted universal enveloping: $\mathcal{U}^{(\sigma_{1})} = \mathcal{U}^{(\sigma_{1})} \otimes \frac{[F = \mathcal{U}^{(\sigma_{1})}]/(x^{P} - x^{\epsilon_{P^{3}}}] \times \epsilon_{\sigma_{1}}}{S(\sigma_{1}^{(n)})}$ basis: $x_{1}^{d_{1}} x_{n}^{d_{n}} d_{i} \in \{0, -p^{-i}\}.$ $S(\sigma_{1}^{(n)}) - module on [F w. \sigma_{1}^{(\sigma_{1})} + f_{1}^{(\sigma_{1})}] = 0$ Universal property: If A is assoc. algebra (hence p-lie algebra), then any p-Lie algebra homom. of -> A uniquely factors 21

through assoc. alg. homomim $\mathcal{U}^{\circ}(\sigma) \rightarrow A$.

Remark *: Full center : GAU -> subalgebra U' < U, which is the center. U^G is called Harish-Chandra center $\mathcal{U}^{G} \xrightarrow{\sim} \mathbb{F}[\mathcal{H}^{*}]^{(W, \cdot)}$ Under modest restrictions on p& on G have Veldkamp's thm: center of $\mathcal{U} \leftarrow \mathcal{U}^{G} \otimes_{S(\sigma_{1}^{(n)})^{G}} S(\sigma_{1}^{(n)})$

2) Distribution algebra. Motivation for why we care: care about ratil rep's of G Have forgetful functor Rate, (G) -> U(og)-mode fin. dim. Vational Veps But over F (alg. closed char p field) this functor is far from Equivalence. It's neither essentially surjective (one can show we land in U (og) - mod fd) nor full: e.g.: $G = G_m$, reprin $V \simeq F$, $t.v = t^P v$, the corresp'q og-module is trivial. Goal: replace Ulog) w. a diff't algebra, Dist(G), w. "forgetful" functor Rated (G) - Dist (G) - moded which is "closer" to being an equivalence. In fact, U(o) > Dist(G) & the functor Rated(G) - Dist(G)-moded lifts Rate, (G) -> U'(oj)-mode).

2.1) Definition of Dist (G). Setting: R commive Noetherian ring, G affine group scheme Over R (i.e. R[G] is fin. genid committee Hopf algebra) $M = \ker \mathcal{E}_{G} = \{f \in R[G] \mid f(i) = 0\}$ VER-Mod ~ V*= Hom, (V,R) (care about R= 72, Q, F). Assume R[G] is free over R. K[G]* is assoc. algebra w.r.t. △*, where △: K[G]→K[G]@K[G]. Definition: 1) For 1120, define Dist (G) as (R[G]/mⁿ)* <PEGJ*, the modules of distributions of order < n.

Note Disten (G) = Distent (G) 2) $Dist(G) := (Dist_{\leq n}(G))$

Claim: Dist(G) is a Hopf algebra. Exercise: Dist(G) C E[G]* is a subelgebra.

Coproduct on Dist(G): multin μ : $R[G] \otimes R[G] \rightarrow R[G] \rightarrow$ μ : $R[G]/m^n \otimes R[G]/m^n \rightarrow R[G]/m^n \rightarrow$ $\mu^*: Dist_{sn}(G) \longrightarrow Dist_{sn}(G) \otimes Dist_{sn}(G)$ $\sim coproduct Dist(G) \rightarrow Dist(G) \otimes Dist(G)$

Exercise: Define antipode on Dist(G) and show it's a Hopf algebra

Exercise: (functoriality) P: G -> H alg. grip homomim $\sim \mathcal{P}^*: \mathbb{R}[H] \to \mathbb{R}[G] \sim \mathcal{P}: Dist(G) \to Dist(H) is a$ Hopf algebra homom'm.

Exercise: (base change) if R' is R-algebra, then Dist (Gr) = K'& Dist (Gr)

Connection between U(of) & Dist(G) U(a) = left invariant differential operators on G SEndre (R[G]) Define a map Uloy) = R[G]*, Q E Uloy) ~ $[\gamma(a)](f) = (a.f)(1), im p \in Dist(G) & \gamma: U(o_j) \rightarrow Dist(G)$ respects filtrations. Moreover, 1/ 15 alg. homomim.

Facts: . if R is char O field, then p: U(q) ~ Dist(G). · if R is char p field, then p factors through Uloy) > Dist (G)

2.2) 1-dimensional examples. • $G = G_a$, R[G] = R[t], $\Delta(t) = t \otimes 1 + 1 \otimes t$, M = (t)For $r > 0 \rightarrow \delta_r \in R[G]^*$: $\delta_r(t^*) = \delta_{r,n}$ so $\delta_r \in Dist_{sr}(G)$ So $\delta_r \delta_{1,...,1} \delta_{r,...}$ form a basis in Dist(G). $\delta_r * \delta_s(t^*) = \delta_r \otimes \delta_s(\Delta(t^*)) = \delta_r \otimes \delta_s(\sum_{i=0}^{n} {n \choose i} t^i \otimes t^{n-i})$ $= \begin{cases} {n \choose r}, if n = r + s \\ 0, else \end{cases}$

So $\chi_* \chi_s = \binom{\gamma+s}{s} \chi_{r+s} \Longrightarrow \chi_s^n = n! \chi_s^n$ $Dist(G_{\pi}) = Span_{\pi}(\frac{\chi_{i}^{i}}{it}|i\pi_{0}) \subset Span_{0}(\chi_{i}^{i}) = Dist(G_{0}).$ infinitely generated. • $G = G_m$, $\kappa[G] = \kappa[t^{\pm i}]$, M = (t-i), $\Delta(t) = t \otimes t$ Define $\mathcal{B} \in \mathcal{E}[\mathcal{G}]^*$ by $\mathcal{B}_r((t-1)^n) = S_{n,r}$ $\mathcal{B}_i, i. 7, 0, form (k-basis) in Dist(\mathcal{G})$ $\mathcal{B}_r(t^n) = \binom{n}{r}$ Exercise: $\forall n \Rightarrow n \cdot \beta_n = \beta_1 (\beta_1 - 1) \dots (\beta_1 - (n - 1))$ so $\beta_n \overset{"="}{=} \overset{"(\beta_1)}{(n)}$ So $Dist(G_{\mathbb{Z}}) = Span_{\mathbb{Z}}\left(\binom{\beta_1}{i}\right) | i = O[\beta_1] = Dist(G_{\mathbb{Q}})$ 2.3) Dist (G) for s/simple G. Assume also Gis simply connected, want Dist (Gy) C $Dist(G_0) = U(\sigma_0).$ Notation: MCP, simple & positive roots N, T, N C , mex. unipotents & max. torus $d \in \mathcal{P}_{+} \hookrightarrow \mathcal{G}_{a}^{t \prec} \longrightarrow \mathcal{N}^{t}, \quad \beta \in \Pi \backsim \mathcal{G}_{m}^{\beta} \hookrightarrow T$ $T = \prod_{B \in \Pi} \mathcal{G}_{m}^{\beta} \text{ as an alg. group, } \mathcal{N}^{t} = \prod_{\alpha \in \mathcal{P}_{+}} \mathcal{G}_{\alpha}^{t \prec} \text{ as a scheme.}$ Open Bruhat cell $\frac{\prod G^{-d} \times \prod G^{\beta} \times \prod G^{\alpha}}{\alpha \in \mathcal{P}} \quad \stackrel{\sim}{\leftarrow} \quad N \times T \times N \subset G$ (*) contains 1. 6

 $G_{a}^{ta} \hookrightarrow G \longrightarrow Dist(G_{a, \pi}) \hookrightarrow Dist(G_{\pi})$

(*) ~ tensor product (over Te) decomp'n of Dist (Gz)~ Theorem: Dist (Gz) ~ U(JQ) has following additive basis: some order $\prod_{\alpha \in \mathcal{P}_{+}} \frac{e_{\alpha}^{R_{\alpha}}}{R_{\alpha}!} \prod_{\beta \in \Pi} \left(\beta \atop m_{\beta} \right) \prod_{\alpha \in \mathcal{P}_{+}} \frac{e_{\alpha}^{n_{\alpha}}}{n_{\alpha}!}$

where Ra, n2, mB E Zzo

Notation: $e_{\alpha}^{(n)} = \frac{e_{\alpha}^{"}}{n!}$ (divided power).

3) Frobenius 3.1) Frobenius homomorphism: IF perfect char p field, A fin. genid commive F-algebra ~ X= Spec (A)

Basic observation: $f \mapsto f^{\rho}: A \to A$, ring endomorphism. Can make it F-linear if we twist F-multin on source by $a \mapsto a^{1/p} (a \in \mathbb{F})$. Denote resulting algebra by $A^{(1)}$. So $f \mapsto f^{p}: A^{(n)} \longrightarrow A$ is an \mathbb{F} -algebra homomorphism. $\iff Fr: X \longrightarrow X^{(n)} (Fr^{*}(f) = f^{p})$ 7

Exercise: if A is defined over IF, then A "> A isom'c as F-algebras.

Suppose A is Hopf algebra. Then ft ft is Hopf algebra homomim. Let G = Spec(A) - alg'c group. Then $Fr: G \rightarrow G^{(0)}$ is an alg. group homomim.

Example: $G = GL_n \Rightarrow G^{(n)} = GL_n; Fr: GL_n \rightarrow GL_n$ $Fr((a_{ij})) = (a_{ij}),$

3.2) Fr vs distribution algebra. $Fr: \mathcal{G} \to \mathcal{G}^{(n)} \to Fr_*: \mathcal{D}ist(\mathcal{G}) \longrightarrow \mathcal{D}ist(\mathcal{G}^{(n)})$

Example 1: $G = G_a(=G^{(1)}), Dist(G_F) = Span_F(\delta_i),$ w. $V_i(t^h) = S_{i,h}$ $\left[F_{r_{*}}(\mathcal{S}_{i})\right](t^{n}) = \mathcal{S}_{i}(F_{r}^{*}(t^{n})) = \mathcal{S}_{i}(t^{n}) \quad so$

 $F_{*}(\delta_{i}) = \begin{cases} \delta_{i/p}, & \text{if } i \text{ divisible by } p \\ 0, & \text{else} \end{cases}$

Example 2: $G = G_m (= G^{(n)}) \operatorname{Dist}(G_F) = \operatorname{Span}_F(B_i) W$

Example 3: Gis semisimple & simply connected

 $\begin{array}{cccc} & & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} Fr & & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\$ Fr $G_{a}^{d(1)} \subset G_{a}^{d(1)} \subset G_{a$ So $Fr_* \left(\prod e^{(K_{d})} \prod {\beta^{v} \choose m_{B}} \prod e^{(n_{d})} \right)$ = $\int \prod e^{(K_{d}/p)} \prod {\beta^{v} \choose m_{B}/p} \prod e^{(n_{d}/p)} if p divides all K_{a}, m_{B}, n_{d}$ = $\int \prod e^{(K_{d}/p)} \prod {\beta^{v} \choose m_{B}/p} \prod e^{(n_{d}/p)} if p divides all K_{a}, m_{B}, n_{d}$ 9