Representations of Quantrem Curoup at Roots of Unity

Jize Yu
Notraticns

- y: Complex semi-ssmple Lie algebra
- $\left(a_{i j}\right)$: Cartan matrix
- di: coprime iutegers sit. ($\left.d_{i} a_{i j}\right)$ is symmetric

$$
\begin{aligned}
& \cdot q_{i}:=q d i \\
& \cdot \mathcal{A}:=\mathbb{Z}\left[q \cdot q^{-1}\right]
\end{aligned}
$$

- Usd: $:=A$-subadgebra of $U_{g}(y)$ genereated by $\left(E_{i}\right)^{(r)}, F_{i} F^{(r)}$, and $k_{i} I 1$
- $U_{0}^{+}:=d$-subalgelra of $U_{c d}$ generotieal by

$$
\left(E_{i}\right)^{(r)}, i=1,2_{2}, \ldots, n, r \in \mathbb{N}
$$

$$
\cdot W_{\left(F_{i}\right)}^{(r)} \quad \stackrel{H}{\square}
$$

$$
\begin{aligned}
& \text { - Uis: }=\underset{k_{i} \pm 1}{ } \text {, and }\left[\begin{array}{c}
k_{i} ; c \\
r
\end{array}\right]_{q_{i}}, H \\
& \text { - } \left.U_{\epsilon, \mathbb{Z}}: U_{a x} \otimes \mathbb{Z}_{a} \notin \epsilon\right], \in \in \mathbb{C}^{x} \text {, a prim- } \\
& \text { ithe l-th rodt of uncty, } l \text { is } \\
& \text { odd, l>di, } \forall i \text {. } \\
& \text { - } U_{\epsilon}:=U_{c \infty}^{\&}(\mathbb{C} c \in) \\
& \text { - } \epsilon_{i} i=\epsilon^{d i}
\end{aligned}
$$

Referemce

- A Curide to Cmanttem Cleraps Chari \& Prossley
- Repns of Quacrtum Alcebras Arderson, Polo, \& Wen
§. Reps of u_{ϵ}.
Lat V be a reps, of $C b e$.
Ivan's $\operatorname{tack} \Rightarrow$
k_{1}, \cdots, k_{n} alt on V via commuting operators which ane
- Simultaneously diag.
- have eigenvalues in $\left\{ \pm \epsilon^{r}\right\}_{r=0,1, \ldots, t}$.

Tenscring a $1-$ dim repp, allows u_{0} to restrict our attention to reps. on which k_{i}^{l} arts by 1, $\forall i$. Call such reps. of type 1.

Lemma Let V be a finite-dimensiaral $U \in$-nepn. of type 1 . Then
(i) $\left(E_{i}\right)^{(Q)}$ and ($\left.F_{i}\right)^{(l)}$ act milpotenstly an V. cis $\left[k_{i} i_{l}^{0}\right]_{\epsilon_{i}}$ act on V diag al innteger eigenvalues.
Proof Exercise.
Hint:

$$
\begin{aligned}
& \cdot\left[\begin{array}{c}
k_{i ;} c \\
t
\end{array}\right] E_{j}^{(s)}=E_{j}^{(s)}\left[\begin{array}{c}
k_{i} ;{ }_{t}^{c+s a_{i j}} \\
t
\end{array}\right] \\
& \cdot\left[\begin{array}{c}
k_{i} ; c \\
t
\end{array}\right] F_{j}^{n(s)}=F_{j}^{(s)}\left\{\begin{array}{c}
k_{i} ; c-s a_{0 j} \\
t
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(E_{i}\right)^{(r)}\left(F_{j}\right)^{(s)}=\sum_{r, s \geqslant t \geqslant 0}\left(F_{i}\right)^{(s-t)}\left[\begin{array}{c}
k_{i} ; 2 \operatorname{crs}-r \\
t
\end{array}\right]_{E_{i}}\left(E_{i}\right)^{7} \\
& \cdot\left[\begin{array}{l}
k_{1} ; 0 \\
\ell \gamma
\end{array}\right]_{\epsilon}=\frac{1}{\gamma!} \sum_{s<0}^{r-1}\left(\left[\begin{array}{c}
k_{1} ; 0 \\
2
\end{array}\right]_{\epsilon}-S\right) .
\end{aligned}
$$

- Def. Let V be a tempe 1 resin. We define the weight space

$$
V_{\lambda}^{\text {space }}:=\left\{v \in V \mid k_{i} \cdot v=\epsilon_{i}^{\left(\lambda, \alpha_{i}^{v}\right)} v,\left\{\begin{array}{l}
k_{i} ; 0 \\
\ell]_{\epsilon_{i}} \cdot v=\left\{\begin{array}{c}
\left(\lambda, \alpha_{i}^{v}\right) \\
i=1, \ldots, n\}
\end{array}\right]_{\epsilon_{i}} \cdot v,
\end{array}\right.\right.
$$

for $\lambda \in \Lambda$.

If V is finite-dimenstival.

$$
c h(V)=\sum_{\lambda \in \lambda} \operatorname{dim}\left(V_{\lambda}\right) e^{\lambda} .
$$

- Prop. Assume V is a type 1 repp. of U_{E}. Then

$$
V=\bigoplus_{\lambda \in \Lambda} V \lambda .
$$

Prof Exercise. Hint:
Lemma. Let ϵ : primitive l th root of $1, l$ odd, wal. $r, s \in \mathbb{N}$. Assume $r=r_{0}+l r_{1}, s=s_{0}+l s_{1}, 0 \leq r_{0}, s_{0}<l$

$$
\begin{aligned}
& r_{1}, s_{1} \geqslant 0 \Rightarrow \\
& {\left[\begin{array}{l}
r \\
s
\end{array}\right]_{\epsilon}=\left[\begin{array}{l}
r_{0} \\
s_{0}
\end{array}\right]_{\epsilon} \cdot\binom{r_{1}}{s_{1}} .}
\end{aligned}
$$

Def. Let V be a repp. of U_{e} of type 1 . A vector $v \in V$ is called iminitive if $E_{i} \cdot v=E_{i}^{(l)} V=0, \forall i=1 \ldots, n$.

Call V is a highest weight molucle if it is generated by a primitive weight vector $b \lambda$.

Lemma. If V is a highest weight module w. higher weight λ, then $V=\bigoplus v_{k_{\lambda}} V \mu$, and $V_{\lambda} \simeq \mathbb{C} \cdot v_{\lambda}$.

- Def. The Verna module $\Delta q(\lambda)$ is defined to $U_{\text {of }} / U_{q}\left\langle E_{i}, k_{i}-q^{\lambda_{i}}\right| i=(, \ldots, n\rangle$, where $A=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in$ \wedge
$\Delta q(\lambda)$ is a free U_{q}-module generated by V_{λ}, and it has a a unique r rod quotient $L q(X)$ wI highest weight λ.

Let $V(x)$ be the $U\left(s\right.$-submodule of $L_{q}(\lambda)$ generated v_{λ}.

- Def (Weal modules). Let $\lambda \in \Lambda^{+}$, define the Well module $W_{\in}(\lambda):=V_{\Delta(\lambda)} \& \mathbb{Q}$ via the homomanshism $\Delta \rightarrow \mathbb{C}: q \mapsto \epsilon$.
- Prop. For any $\lambda \in \Delta t$.
(i) $\operatorname{dim}\left(W_{\in}(\lambda)\right)<\infty$
(ii) $\mathrm{ch}\left(W_{\in(\lambda)}\right)$ is given by the weyl character formula.

Since $W \in(\lambda$) is a highest weight nodule, it has a unique imed acotrent $L \in(\lambda)$.

Care. For arg $\lambda \in \Lambda^{+}, \operatorname{dim}\left(L_{\in}\left(\lambda_{1}\right)<\infty\right.$.
Bop hat $\lambda \in \Delta t$. If λ ootisfies one of the following conditicus (a, $\left(\lambda+\rho, \alpha^{N}\right)<\ell \forall \alpha \in \Phi^{+}$
(b) $\lambda=(l-1) \rho+l \mu$ for save $\mu t \Lambda^{\dagger}$,
then WECX) is irked and $c h\left(L \in C \lambda_{0}\right)$ is given by the weyl character formula.

- Inn. Every finite-dimensional prod u_{ϵ}-nolucte of type 1 is ismarihic to $L \in(\lambda)$. for sue $\lambda \in \Lambda^{\dagger}$.
prof Similar to the classical care
$V=\underset{\lambda \in \Lambda}{B} V_{\lambda}$. Let λ the mansmal weight. Then $O \neq V_{\lambda} \in V_{\lambda}$ is primitive $\Rightarrow V_{X}$ gevarates V.

Remains to show $\lambda \in \Lambda^{+}$i.e. $\left(\lambda, \alpha_{i}\right) \geqslant 0$.
Exercise . Hint $\cdot\left(F_{i}\right)^{(m)}=\frac{1}{m}\left(\left(F_{i}\right)^{(l)}\right)^{m}$

$$
\text { - }\left[\begin{array}{l}
v \\
s
\end{array}\right]_{\epsilon}=\left[\begin{array}{l}
\dot{r}_{0} \\
s_{0}
\end{array}\right]_{e}\binom{r_{1}}{s_{1}} \text {. }
$$

We can also defore $L_{E}(\lambda)$ as follars:

$$
\Delta_{\epsilon}(\lambda)=u_{\epsilon} / u_{\epsilon}\left\langle k_{i}-\epsilon_{i}^{(\lambda)}\left(Q_{i}^{2}\right),\left[\begin{array}{l}
k_{i}, 0 \\
l
\end{array}\right]_{\epsilon_{i}^{-}}\left[\begin{array}{c}
\left(\lambda, \alpha_{i}^{*}\right) \\
l
\end{array}\right]_{\epsilon_{i}} E_{i}, E_{i}^{(Q)},\right.
$$

Then $\Delta \epsilon(\lambda)$ is a highest weight U_{ϵ}-noil, and $L_{\epsilon}(\lambda):=$ unique wired quotient of $\Delta \epsilon C \lambda$) of highest wit. λ.
§. Tenser Product Theovem
Fer any $a \in \Lambda^{+}, \exists!\lambda_{0}, \lambda_{1} \in \Lambda^{+}$sit.
(i) $\lambda=\lambda_{0}+l \lambda_{1}$
(ii) $0 \leq\left(\lambda_{0}, \alpha_{i}^{l}\right)<l, \forall i=1, \cdots, n$

- Thm .het λ_{1}, λ_{0}, and λ_{1} be as abave. There is an isomopphion of u_{t}-nodules

$$
L_{\in}(\lambda) \simeq L_{\varepsilon}\left(\lambda_{0}\right) \otimes \operatorname{Fr}^{+} L\left(\lambda_{1}\right)
$$

Proof (i) Fin-dim $\hat{U_{0}} \in$ modules α-ñet to irrred u_{ϵ}-modules. Frred whose highert veights ave restricted

$$
\text { (ii) } M:=L \in\left(\lambda_{0}\right) \otimes F_{r}^{*} L\left(\lambda_{1}\right) \text {. }
$$

As veeter spoces, $\operatorname{Fr}^{*} L_{c}\left(\lambda_{1}\right)=\operatorname{Hem}_{u_{\epsilon}}\left(L_{\in}\left(\lambda_{0}\right), M\right)$ (Schar's hamax)

$$
\begin{aligned}
& \left.\operatorname{Hom}_{u_{\epsilon}}\left(L \in \lambda_{0}\right), M\right) \subset \operatorname{Ham}_{\mathbb{C}}\left(L \in\left(\lambda_{0}\right), M\right) \in U_{\epsilon}-\bmod \text {. } \\
& \operatorname{Han}_{u_{e}}\left(L_{\in\left(\lambda_{0}\right)}, M\right)=\operatorname{Hom}_{C}\left(L_{\in}\left(\lambda_{0}\right), M\right)^{u_{t}} \\
& =\left\{f \in \left[\tan q\left(L_{E}\left(\lambda_{0}\right), M\right) \mid z(f)=\varepsilon(z, f\}_{1} \text { (} \varepsilon\right.\right. \text { ù the }
\end{aligned}
$$

covirit map of u_{E}).
$\Rightarrow \mathrm{HCM}_{\epsilon}\left(L_{\in}\left(\lambda_{0}\right), M\right)^{u_{\epsilon}}$ hor the strature of $u_{\epsilon} /\left\{\left.x(z-\varepsilon(z))\right|_{\substack{x \in u_{E} \\ z \in u_{\epsilon}}}\right\}$ $\simeq u(x y)$ - nolule.

Moneaven U_{ϵ}^{\prime} iogenarated by $E_{i}, F_{i}, K_{i}^{* 1} \& E_{i}^{(\ell)}, F_{i}^{(l)}$, aul brackets $\omega 1$ all of them peserve the small quautam graup (Luszty Quantrin grewp at roots of 1)

Heve the $U\left(y_{y}\right)$ - action $F_{r}^{*} L\left(\lambda_{1}\right)$ is the sme as that on $L_{E}\left(\lambda_{0}\right)$.
(iris) Compare the highest verghts.

Notations

- $B:=\mathbb{Z}\{v)_{m}, m:=\langle v \| p\rangle \Delta \mathbb{Z}[v]$ for see odd prone p. We assure pos if (asp) has a congonnent of type G_{2}.
- $B^{\prime}:=\operatorname{Frar}(B)=\mathbb{Q}(\mathbb{C v})$.
- Mk- residue field of $B T_{p}$
- P: a B-algetra
- U Bo: Lusebig's form
- $U_{B}{ }^{+}\left(\right.$neap. $\left.U_{\bar{B}}\right)$: the B-sabalgelra geveroosed $E_{i}^{(r)}$ (resp. $F_{i}^{(r)}$) $r \geqslant 0$.
- Specializations of B.

Let $f: B \rightarrow P$ be a specialization into a fiecel.
(i) $\operatorname{char}(P)=P$

$$
\begin{aligned}
& \mathbb{Z} \text { Iv, - } 1]_{(p, 1-v)} \xrightarrow{f} p \\
& \downarrow \text { or } / \rho f(v)=1
\end{aligned}
$$

(ii) $\operatorname{char}(T)=0$

Determine $f(1)$. It can be - cen element which is transcendental /(Q)

- algetraic / (1). \Rightarrow miminar pdyramial F^{\prime} of $f(1)$ betag $(p, 1-v)$
i.e. $1-V$ dirides F nodp.

In particular, if $f(1)$ is a rootof 1 , then it is a $p^{m}-t h$ root of 1 forsme meIN. (Ace cyclotamice pelyromial ane dovideal my $1-v$ molp).
§. Quantiun Weyl Malule

- Def. (Queutann Weyl Module)

For $\lambda \in \Lambda^{+}$, define the $Q . W M$. to be

$$
W_{B}(\lambda)=u_{B} / u_{B}\left(\begin{array}{l}
E_{i}^{\left(n_{i}\right)} \mid i=1, \ldots, n \\
z, X_{\lambda}(z) \mid z \in U_{B}^{0} \\
F_{i}^{\left(m_{i}\right)} \mid i=1, \cdots, n, n_{i}>\left(\lambda . \alpha_{i}\right)
\end{array}\right)
$$

- hemma (is $W_{B}(\lambda)$ is a highost w.t. nodule $w \mid W_{B}(\lambda)_{\mu} \neq 0 \Rightarrow$ $\mu \leqslant \lambda$.
(ii) $W_{B}(\lambda)$ is integrable k.e, $\forall \omega \in W_{B}(\lambda), \exists r=r(\omega) \in \mathbb{N}$ sit. $E_{i}{ }^{(n)}, w=F_{i}^{(n)} w=0, \forall n 3 r, i^{-}=1 \ldots n . \operatorname{In}$ particular, the set of weights of $W_{B C}(A)$ is finite
(iiv $\omega_{B}(\lambda)$ ii fig. \mathcal{A}.
Proof (i) Ubserve $W_{B}(\lambda)=$ quotinut of $\Delta_{B}(\lambda):=U_{B \in Q_{B^{\circ}}} B_{\lambda}$
(ii) Follows from (i)
(iii) Follaws fram (i) and (ii)
-Prop. (i) The specialization $C_{0 s^{\prime}}=B^{\prime}\left(x_{B} C_{B} U_{B}\right.$ is the usual queautain gray. The wee $\left(\right.$ nodule $W_{B^{\prime}}(\lambda)$ is finite dimensional and irred.
(ii) We know) that $U_{i k}=\operatorname{Dist}\left(\mathcal{G}_{1 k}\right)\left\langle k_{i} \mid i_{i}=1 \cdots n\right\rangle /\left(k_{i}^{2}=1\right)$, and k_{i} 's act by 1 anal $W_{k}(\lambda)$ becomes a Dist (GWK)nodule. In fact $\left.W_{\text {r ac }} \lambda\right)=W^{\prime}(\lambda)$, where $\omega^{\prime}(\lambda)$ in defined in the provieastalk, and its character is given hr the W.C.F.
- Core. $W_{B} C \lambda$) is free over B.
"Remarks (i) The Fey nodule $W_{G, \in}(\lambda)$ has the drained universal prop. when \in is a p^{n}-th root of 1 .
(ii) The method which allows us to go fran Dist (leis) to UB cen pushed further (see APW). Fer example, ore can
- define dual Wegl nodules using coinduticu functor
- prove an analogise of the kaupf's vawiling Tim.
- prose that there are no higher Ext's between Weyl modules curl deal Weyl volutes.

