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1 (Twisted) Differential operators and D-modules.

1.1 Differential Operators.

Let X be an algebraic variety, and R a sheaf of rings on X. For R-modules F and G, define the sheaf HomR(F ,G) as
follows. For any open set U ⊂ X, the sections of HomR(F ,G) on U are HomR|U (F|U ,G|U ). For any algebraic variety
X, let CX be the locally constant sheaf of functions to the complex numbers C.

Now assume X is a smooth algebraic variety. Let OX be its sheaf of regular functions and VX be its sheaf of vector
fields, that is, VX := DerC(OX) := {θ ∈ EndCX (OX) : θ(fg) = fθ(g) + θ(f)g, f, g ∈ OX}. The sheaf of differential
operators in X, DX is, by definition, the subsheaf (of associative rings) of EndCX (OX) generated by OX and VX .

Theorem 1.1 In the setup of the previous paragraph, if dimX = n, then for every point p ∈ X there exists an affine
open neighborhood U of p, x1, . . . , xn ∈ OX(U) and ∂1, . . . , ∂n ∈ VX(U) such that [∂i, ∂j ] = 0, ∂i(xj) = δij and VX(U)
is free over OX(U) with basis ∂1, . . . , ∂n. Such a set {xi, ∂i} is said to be a local coordinate system.

Proof. Let mp be the maximal ideal of OX,p. Since X is smooth of dimension n, there exist functions x1, . . . , xn
generating mp. Then, dx1, . . . , dxn is a basis of ΩX,p, where ΩX is the cotangent sheaf of X. Take ∂1, . . . , ∂n ∈ VX to
be a dual basis. �

Remark 1.2 A local coordinate system does not give an isomorphism from U to an affine subvariety of Cn. We only
have an étale morphism U → Cn.

Theorem 1.3 Let U be an affine open subset of X and {xi, ∂i} a local coordinate system on U . Then, any differential
operator of order ≤ k on U can be uniquely written in the form∑

k1+···+kn≤k

fk1,...,kn∂
k1
1 · · · ∂knn .

Where fk1,...,kn ∈ OX(U).

Note that DX can be described by generators and relations as follows: it is generated by OX and VX with relations:
•f1 · f2 = f1f2,
•f · ξ = fξ,
•ξ · f = ξ(f) + fξ,
•ξ1 · ξ2 − ξ2 · ξ1 = [ξ1, ξ2].

Where f, f1, f2 ∈ OX and ξ, ξ1, ξ2 ∈ VX .

1.2 A filtration on DX.

Let A be a commutative ring and let M,N be A-modules. Define A-modules Diff≤nA (M,N) ⊆ HomZ(M,N) induc-
tively by:

1. Diff≤0
A (M,N) := HomA(M,N).

2. Diff≤n+1
A := {θ ∈ HomZ(M,N) : [f, θ] ∈ Diff≤nA (M,N) for everyf ∈ A}.

Set DiffA(M,N) =
⋃
nDiff

≤n
A (M,N).

Remark 1.4 If, moreover, A is a k-algebra, then we take the differential morphisms Diff≤nA (M,N) inside Homk(M,N).
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Definition 1.5 Let M,N be OX modules. Define DX(M,N ) by gluing DiffOX (M,N ) on affine open subsets, that
is, for any affine open subset U ⊆ X,

Γ(U,DX(M,N )) := DiffO(U)(M(U),N (U)).

Note that DX = DX(OX ,OX). It follows that DX is a filtered sheaf. In local coordinates (U, {xi, ∂i}), FiDX(U) =∑
OU∂α1

1 ∂α2
2 . . . ∂αnn ,

∑
αj ≤ i, that is, FiDX(U) is given by differential operators of order≤ i. Note that if P ∈ FlDX ,

Q ∈ FmDX , then [P,Q] ∈ Fl+m−1DX . Then, grDX is a sheaf of commutative algebras. Let us look closer at grDX .
Take a local coordinate system (U, {xi, ∂i}). Set ξi = ∂̄i ∈ F1DX(U)/F0DX(U). Then, grDX(U) = OU [ξ1, ξ2, . . . , ξn].
Let π : T ∗X → X be the projection. Regard ξ1, . . . , ξn as the local coordinate system of the cotangent space

⊕
Cdxi.

Then, OU [ξ1, . . . , ξn] is identified with π∗OT∗X(U). These identifications are natural and they can be glued together,
so that we have an isomorphism,

grDX ∼= π∗OT∗X .

A natural isomorphism can be constructed as follows. First of all, note that F0DX = OX . This follows easily by
the description of DX in local coordinates. Alternatively, we have a monomorphism OX ↪→ F0DX . An inverse map
is given by F0DX 3 P 7→ P (1). Now we see that F1DX = OX ⊕ VX . Note that, if P ∈ F1DX , then f 7→ [P, f ] is a
derivation on OX . Then, we get a morphism F1DX → OX ⊕ VX , P 7→ (P (1), [P, •]). This is an isomorphism.

So we have isomorphisms OX = gr0DX , VX = gr1DX . These give rise to a map π∗OT∗X → grDX . By the above
considerations in local coordinates, this is an isomorphism.

1.3 Twisted differential operators.

Definition 1.6 Let D be a sheaf of rings on X that admits an inclusion ι : OX ↪→ D. We say that D is a sheaf

of twisted differential operators (TDO) if the embedding OX
ι
↪→ D is locally isomorphic to the standard embedding

OX
ιX
↪→ DX .

For any line bundle L on X, DLX = DX(L,L) is a TDO, as L is locally isomorphic to OX .

One can also get a sheaf of TDO from a closed 1-cocycle α ∈ Ω1
cl as follows. Consider an open cover X =

⋃
Ui and

a 1-cocycle α = (αij) ∈ Ω1
cl. Then, D(Ui) := DX(Ui), and the transition function from Uj to Ui maps a vector field ξ

to ξ + 〈ξ, αij〉. In fact, by this procedure we can get all TDO.

Proposition 1.7 Let ϕ : DX → DX be an endomorphism such that ϕ|OX = id. Then, there exists ω ∈ Ω1
cl such that

ϕ(θ) = θ − ω(θ) for any vector field θ ∈ VX . Moreover, ϕ is completely determined by ω and it is an automorphism
of DX .

Proof. Let f ∈ OX , θ ∈ VX . Then, [ϕ(θ), f ] = ϕ([θ, f ]) = ϕ(θ(f)) = θ(f). Then,[ϕ(θ), f ](1) = θ(f)(1),
so ϕ(θ)(f) = θ(f) + fϕ(θ)(1). Set ω(θ) = −ϕ(θ)(1). This is a 1-form. Note that ω([θ, η]) = −ϕ([θ, η])(1) =
−[ϕ(θ), ϕ(η)](1) = ϕ(θ)(ω(η))−ϕ(η)(ω(θ)) = θ(ω(η))− η(ω(θ)). It follows that ω is closed. The last statement of the
Proposition is clear. �

The following is then an exercise in Čech cohomology.

Proposition 1.8 TDO on a smooth variety X are classified by the first cohomology H1
Zar(X,Ω

1
cl).

To prove Proposition 1.8, one uses a covering Ui of X by open affine subsets such that the sheaf D is locally
isomorphic to DX in each Ui, and the transition morphisms in each intersection Ui ∩ Uj .

Remark 1.9 If L is a line bundle, then we know that DLX is a TDO. The Picard group is naturally isomorphic to
H1(X,O∗X), where O∗X is the subsheaf of invertible elements in OX . There exists a homomorphism O∗X → Ω1

cl given
by taking the logarithmic derivative, f 7→ dlog(f) = f−1df , which induces morphisms Hp(dlog) : Hp(X,O∗X) →
Hp(X,Ω1

cl). It is an exercise to show that the 1-cocycle corresponding to DLX is H1(dlog)(L).

Note that it follows that any TDO D is filtered, and moreover, grD = π∗OT∗X .
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1.4 Homogeneous TDO.

In this subsection, we assume X is a homogeneous G-variety, where G is a semisimple algebraic group. Later, we will
specialize the results of this subsection to the case X = G/B, where B is a Borel subgroup of G. Let g := Lie(G).
Recall that the universal enveloping algebra of g is U(g) = T g /(u⊗ v − v ⊗ u− [u, v], u, v ∈ g).

Differentiating the action of G on OX , we get a G-equivariant Lie algebra homomorphism τ : g→ Γ(X,VX), that
can be extented to a G-equivariant algebra homomorphism τ : U(g)→ Γ(X,DX). More generally, let D be a TDO on
X with an algebraic action γ of G on D and a G-equivariant algebra homomorphism α : U(g) → Γ(X,D) satisfying
the following conditions:

1. The multiplication in D is G-equivariant.

2. For ξ ∈ g, we have an equality ξX = [α(ξ), •], where ξX is the the derivation induced by differentiating the
G-action on D.

In this case, we say that α is a quantum comoment map and we call (D, γ, α) a homogeneous sheaf of twisted
differential operators (HTDO). For example, (DX , γX , τ) is an HTDO, where γX is the natural action of G on DX .

Our next goal is to classify HTDO. To do this, we study (DX , γX , τ) more closely.

Consider the trivial bundle g×X � X, and its sheaf of sections g◦ := OX ⊗C g. We can define a bracket on g◦ by

[f ⊗ ξ, g ⊗ η] := fτ(ξ)g ⊗ η − gτ(η)f ⊗ ξ + fg ⊗ [ξ, η].

This makes g◦ a sheaf of Lie algebras. It is also an OX -bimodule. Note, however, that the Lie bracket is not
OX -bilinear. We can extend τ : g → Γ(X,VX) to τ◦ : g◦ → VX by τ◦(f ⊗ ξ) = fτ(ξ). Note that this satisfies the
following identity:

[f ⊗ ξ, h(g ⊗ η)] = τ◦(f ⊗ ξ)(h)(g ⊗ η) + h[f ⊗ ξ, g ⊗ η]. (1)

where f, g, h ∈ OX , ξ, η ∈ g.

Let U◦ be the sheaf of algebras generated by g◦ and OX subject to the following relations. Denote by ι both maps
g◦ → U◦, OX → U◦ taking a section to the corresponding generator.

(a) ι(fg) = ι(f) · ι(g).

(b) ι([a, b]) = ι(a) · ι(b)− ι(b) · ι(a).

(c) ι(fa) = ι(f) · ι(a).

(d) ι(a) · ι(f)− ι(f) · ι(a) = ι(τ◦(a)(f)).

Where f, g ∈ OX , a, b ∈ g◦.

Remark 1.10 In the formalism of Lie algebroids, g◦ is a Lie algebroid with τ◦ : g◦ → VX the anchor map (this
follows from Equation (1)), and U◦ is the universal enveloping algebra of g◦.

Note that τ◦ induces a map τ◦ : U◦ := U(g◦)→ DX . This map is an epimorphism. This follows from the fact that
DX is generated by VX and OX , and the following Proposition.

Proposition 1.11 The morphism τ◦ : g◦ → VX is an epimorphism.

Proof. Since g◦ and VX are locally free, it suffices to show that the induced map on the geometric fibers of g◦ and
VX is surjective. But this is clear. �

So DX = U◦/Ker(τ◦). We will see that any HTDO admits a similar description. To do that, we find Ker(τ◦). Of
course, first we need an explicit characterization of U◦.

Proposition 1.12 As a sheaf, U◦ = OX ⊗C U(g). The product is given by

(f ⊗ ξ)(g ⊗ η) = fτ(ξ)g ⊗ η + fg ⊗ ξη.

Where f, g ∈ OX , ξ ∈ g, η ∈ U(g).
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Proof. Follows from the relations defining U◦. �
Note that it also follows that U◦ is a filtered algebra, by setting FpU◦ := OX ⊗C FpU(g), where FpU(g) is the

standard filtration on U(g). Note that τ◦ is a filtered morphism, that F0U◦ = OX , F1U◦ = OX ⊕ g◦ and that U◦ is
generated by F1U◦ as a sheaf of algebras.

Let b◦ = Ker(τ◦ : g◦ → VX), so that b◦ consists of those sections
∑
fi ⊗ ξi such that

∑
fiτ(ξi) = 0 ∈ VX .

Note that J0 := b◦ U◦ is a sheaf of two-sided ideals in U◦: it is easy to see that, if
∑
fi ⊗ ξiin b◦ and η ∈ g, then

[1⊗ η,
∑
fi ⊗ ξi] ∈ b◦. Similarly, if g ∈ OX , then[∑

fi ⊗ ξi, g ⊗ 1
]

=
∑

fiτ(ξi)g ⊗ 1 = 0.

Alternatively, one can see that J0 is a sheaf of two-sided ideals from the following Proposition.

Proposition 1.13 Ker(τ◦ : U◦ → DX) = J0.

Proof. It is clear that J0 is contained in Ker(τ). Moreover, for any x ∈ X, the geometric fiber Tx(J0) = b◦x U(g) is
the kernel of the induced map from the geometric fiber Tx(U◦) = U(g) to the geometric fiber of DX at x. The result
follows. �

Then, we have that DX = U◦/J0.

Now we show that any HTDO admits a similar description. Let (D, γ, α) be an HTDO. Then, for every ξ ∈ g and
f ∈ OX, [α(ξ), f ] = τ(ξ)f . It follows that α : g→ F1D. Note that we can also extend α to an algebra homomorphism
α◦ : U◦ → D, f ⊗ ξ 7→ fα(ξ). Moreover, α◦ is filtered and grα◦ = gr τ◦, so α◦(b◦) ⊆ F0D = OX. Then, an HTDO
determines a G-equivariant morphism from the G-homogeneous OX-module b◦ to OX.

Fix a point x0 ∈ X. Let B0 = StabX(x0), and let b0 be the fiber of b◦ at x0. Then, B0 acts on b∗0. Let I(b∗0)
be the space of B0-invariants. There is a natural linear isomorphism between I(b∗0) and the space of G-equivariant
morphisms σ of b◦ to OX. Then, for each λ ∈ I(b∗0), let σλ be the associated G-equivariant morphism σλ : b◦ → OX.
Let ϕλ : b◦ → U◦ be given by ϕλ(s) = s−σλ(s). Let Jλ be the sheaf of two-sided ideals of U◦ generated by the image
of ϕλ. Finally, set DX,λ := U◦/Jλ.

Theorem 1.14 DX,λ is an HTDO. Moreover, the map λ 7→ DX,λ is an isomorphism between I(b∗0) and the set of
isoclasses of HTDO on X.

For a proof of Theorem 1.14 see, for example, [3, Section 1.2].

1.5 D-modules.

By D-module, we mean a left module over the sheaf DX of differential operators. Clearly, every D-module is also an
OX -module. On the other hand, given an OX -module M, giving a D-module structure to M is equivalent to giving
a C-linear morphism ∇ : VX → EndC(M), θ 7→ ∇θ satisfying the following conditions:

1. ∇fθ(s) = f∇θ(s).

2. ∇θ(fs) = θ(f)s+ f∇θ(s).

3. ∇[θ1,θ2](s) = [∇θ1 ,∇θ2 ](s).

For f ∈ OX , s ∈M, θ, θ1, θ2 ∈ VX .

Note that if V is a vector bundle, then ∇ defines a connection on V, and condition 3. amounts to saying that this
connection is flat.

A D-module is called quasi-coherent if it is quasi-coherent as an OX -module. Denote by Modqc(DX) the category
of quasi-coherent D-modules.

An algebraic variety X is said to be D-affine if the global sections functor Γ : Modqc(DX) → Mod(Γ(X,DX)),
M 7→ Γ(X,M) is exact and if every module in Modqc(DX) is generated by its global sections. Clearly, every affine
algebraic variety is D-affine. We’ll see later that, for a semisimple algebraic group G and a Borel subgroup B, the
corresponding flag variety G/B is D-affine.
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2 D-modules on G/B.

2.1 Universal enveloping algebras and the Harish-Chandra isomorphism.

Let g be a semisimple Lie algebra, and let h ⊆ g be a Cartan subalgebra. Let Φ be the root system of g relative to h, and
Φ+ a choice of positive roots. Also, let {α1, . . . , αl} ⊆ Φ+ be a choice of simple roots. For each i = 1, . . . , l, let α∨i ∈ h
be the coroot of αi, and let πi ∈ h∗ be the fundamental weight corresponding to αi, that is 〈πi, α∨j 〉 = δij . Denote by

Q = ZΦ the root lattice, Q+ its positive part, and P =
∑

Zπi the weight lattice. Finally, let ρ = 1
2

∑
α∈Φ+ α =

∑l
i=1 πi

be the Weyl vector.

In this subsection, we want to study the center z = Z(U(g)) of the universal enveloping algebra of g. Since, in
particular, z commutes with h, any element z ∈ z acts as a scalar on any highest weight module M = U(g)vλ with
highest weight λ ∈ h∗. Since every such module is a quotient of the Verma module ∆λ, this scalar only depends on λ.
Then, for any z ∈ z, we get a function Ξz : h∗ → C.

We show that Ξz is polynomial. Indeed, it follows by the PBW theorem that U(g) = U(h)
⊕

(n− U(g) + U(g) n+).
Since h is abelian, U(h) = S h, the symmetric algebra. Consider then the projection pr : U(g) → U(h). It follows
that, for any highest weight module M = U(g)vλ, and any u ∈ U(g), uvλ = pr(u)(λ)vλ+ terms of lower weight. Then,
Ξz(λ) = pr(z)(λ), so Ξz is indeed polynomial. We get a map Ξ : z → U(h) = C[h∗], which is clearly an algebra
morphism.

Remark 2.1 Even though the restriction of pr : U(g)→ U(h) to z is an algebra homomorphism, the map pr is not.

Now consider the automorphism t−ρ of C[h∗], t−ρ : f(λ) 7→ f(λ−ρ), and let HC : z→ S(h) be HC = t−ρΞ, so that
any z ∈ z acts on any highest weight representation with highest weight λ by HC(z)(λ+ ρ). The reason for twisting
the morphism Ξ is that HC has its image in S(h)W . Indeed, it is known that, for any integral dominant weight λ and
any w ∈W , there exists a nonzero morphism ∆w∗λ → ∆λ, where w ∗ λ = w(λ+ ρ)− ρ is called the ρ-shifted action of
W on h. It follows that Ξz(λ) = Ξz(w ∗λ), or, equivalently, that HC(z)(λ) = HC(z)(wλ). Since the lattice of integral
dominant weights is dense in Zariski topology, it follows that HC(z) ∈ S(h)W .

Theorem 2.2 The morphism HC : z→ S(h)W is an isomorphism. It is called the Harish-Chandra isomorphism.

A strategy to prove Theorem 2.2 is to compare HC with the Chevalley isomorphism. Recall that this is an
isomorphism res : S(g)G → S(h)W that is given by restriction of a polynomial map in g∗ to h∗. On the other hand,
we have an isomorphism of g-modules sym : S(g)→ U(g), given by

sym : x1 . . . xn 7→
1

n!

∑
s∈Sn

xs(1)xs(2) . . . xs(n).

This map induces an isomorphism of vector spaces sym : S(g)G → z whenever G is connected simply-connected.
We have the following diagram,

S(g)G

sym

~~||
||

||
||

|
res

$$IIIIIIIII

z HC // S(h)W .

This diagram is not commutative. However, it is commutative ‘up to lower degree terms’, as follows. Recall that each
of the vector spaces z, S(g)G and S(h)W are filtered. Then, we have that, for any p ∈ (Sn(g))G, HC(sym(p)) ≡ res(p)
mod Sn−1(h)W . Note that it suffices to show that pr(sym(p)) ≡ res(p) mod Sn−1(h)W . In fact, a more general
statement holds.

Lemma 2.3 For any p ∈ Sn(g), pr(sym(p)) ≡ res(p) mod Sn−1(h).

Proof. Let p = (
∏
α∈Φ+ fkαα )(

∏
i h

ni
i )(

∏
α∈Φ+ emαα ) ∈ S(g)n. Then,

pr(sym(p)) ≡

{∏
i h

ni
i , if mα, kα = 0.

0 otherwise
≡ res(p) mod Sn−1(h).

The result follows. �
An algebra homomorphism z→ C is called a central character. For any λ ∈ h∗, define a central character χλ : z→ C

by defining χλ(z) = HC(z)(λ). Theorem 2.2 has the following easy consequence.
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Corollary 2.4 Any central character coincides with χλ for some λ ∈ h∗. Moreover, χλ = χµ if and only if λ and µ
lie in the same W -orbit.

2.2 Equivariant vector bundles on the flag variety.

Let T ⊆ B be a maximal torus with Lie(T ) = h, and N be the unipotent radical of B so that B = NT . Note that the
fiber at B ∈ B of any G-equivariant vector bundle is a representation of B. Conversely, given a representation U of B,
consider the trivial vector bundle U×G on G. This descends to a G-equivariant vector bundle on B whose fiber at B is
precisely U . In other words, G-equivariant vector bundles of B are in one-to-one correspondence with representations of
B. In particular, G-equivariant line bundles on B are in one-to-one correspondence with 1-dimensional representations
of B. These, in turn, are in one-to-one correspondence with characters of T , as N acts trivially on any 1-dimensional
representation of B. Then, for any character λ ∈ P = Hom(T,C×) ⊆ h∗, we get a G-equivariant line bundle L(λ).

Note that, since L(λ) is G-equivariant, the sheaf of differential operators DL(λ)
OB is an HTDO.

Theorem 2.5 (Borel-Weil-Bott) Let λ ∈ P . Then, we have,

1. If λ is antidominant, then the line bundle L(λ) is generated by its global sections.

2. The line bundle L(λ) is ample if and only if λ is antidominant and regular.

3. If λ− ρ is not regular, then Hi(B,L(λ)) = 0 for i ≥ 0.

4. If λ− ρ is regular, then there exists w ∈W such that w · λ := w(λ− ρ) + ρ is antidominant, and

Hi(X,L(λ)) =

{
L−(w · λ) if i = l(w),

0 otherwise.

Where L−(w · λ) is the irreducible module with lowest weight w · λ.

Note that it follows that if λ is antidominant, then Γ(X,L(λ)) = L−(λ), and Hi(X,L(λ)) = 0 for i > 0.

2.3 HTDO on the flag variety.

Let G be a semisimple algebraic group with Lie algebra g, and let B be a Borel subgroup, with B = G/B the corre-
sponding flag variety. Then, B is an homogeneous G-variety, so we can apply the results of Subsection 1.4 to B.

Recall the sheaf g◦ = OB⊗C g, which is the sheaf of sections of the trivial bundle B× g. Inside this bundle, we have
the homogeneous bundle of Borel subalgebras, F , whose fiber at a point x ∈ B is the Borel subalgebra bx corresponding
to x. Let b◦ be the sheaf of sections of this bundle. Also, we have the homogeneous bundle whose fiber at each point
x is [bx, bx]. Let n◦ be the sheaf of sections of this bundle. Clearly, we have n◦ ↪→ b◦ ↪→ g◦.

Recall the epimorphism τ◦ : g◦ → VB. Its kernel is precisely b◦. Pick as a basepoint x0 = B ∈ B. Then, we have
b0 = b. An element λ ∈ h∗ determines a B-invariant function b→ C, and therefore a G-equivariant map λ◦ : b◦ → OB.
Let Jλ be the ideal in U◦ generated by elements of the form ξ − (λ + ρ)◦(ξ) for ξ ∈ b◦, and let Dλ := U◦/Jλ. The
following is then a consequence of Theorem 1.14.

Proposition 2.6 Dλ is an HTDO.

We remark that D−ρ = DB, and that for an integral weight λ, Dλ is the sheaf of differential operators on the line
bundle L(λ+ ρ).

By definition of an HTDO, we have a G-equivariant algebra homomorphism Ψλ : U(g) → Γ(B,Dλ). Recall the
central character χλ : z→ C. Let Jλ be the ideal of U(g) generated by Ker(χλ) ⊆ z. Let Uλ := U(g)/Jλ.

Lemma 2.7 For any λ ∈ h∗, the morphism Ψλ : U(g)→ Γ(B,Dλ) factors through Uλ.

Proof. Since the map Ψλ : U(g) → Γ(B,Dλ) is G-equivariant, it is enough to show that the induced map on fibers
maps Ker(χλ) to 0. Note that the fibers of Dλ have the form U(g)/

∑
x∈b(x− 〈λ+ ρ, x〉)U(g). Then, for z ∈ z, by the

PBW theorem, z ∈ nU(g) + f for a unique f ∈ U(h), so that χλ(z) = f(λ + ρ). It follows that if f(λ + ρ) = 0, then
z ∈

∑
x∈b(x− 〈λ+ ρ, x〉)U(g). �

Abusing notation, we denote by Ψλ the induced morphism Ψλ : Uλ → Γ(B,Dλ).
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Theorem 2.8 (Beilinson-Bernstein) For any λ ∈ h∗, the morphism Ψλ : Uλ → Γ(B,Dλ) is an isomorphism.

The key step to prove Theorem 2.8 is to prove its quasiclassical version, that is, to prove that its associated graded
morphism is an isomorphism. In fact, we are going to relate this isomorphism to the Springer resolution.

By the PBW theorem, we know that grU(g) = S(g). We canonically identify g ∼= g∗ via the Killing form, so
grU(g) ∼= C[g]. The next Lemma characterizes the ideal of the nilpotent cone N in S(g).

Lemma 2.9 The ideal in S(g) defining N is generated by S(g)G+ = S(g)G
⋂

(
⊕

p>0 S(g)p).

Proof. Recall the Chevalley isomorphism, res : S(g)G → S(h)W . This maps the ideal S(g)G+ to S(h)W+ , which is the

ideal of 0 in h /W . Then, the ideal generated by S(g)G+ defines the elements x ∈ g∗ such that Gx ∩ h = 0, that is,
elements whose Jordan decomposition doesn’t have a semisimple part. This is precisely N . By results of Kostant, N
is a normal variety and a complete intersection in g. The result now follows. �

Note that, by lifting elements of S(g)G+ to U(g), it follows that we have an epimorphism C[N ] � grUλ. We then
have the following commutative diagram.

S(g) //

##FFFFFFFF
gr Γ(B,Dλ)

grUλ

99rrrrrrrrrr

C[N ]

OOOO

Recall the Springer resolution γ : T ∗ B → N , and its pullback γ∗ : C[N ]→ Γ(T ∗ B,OT*B). Since γ is a resolution
of singularities and N is normal, γ∗ is actually an isomorphism. Moreover, the following diagram commutes.

S(g) //

""FFFFFFFF
gr Γ(B,Dλ)

��
grUλ

88qqqqqqqqqqq
Γ(B, grDλ)

C[N ]

OOOO

γ∗// Γ(T ∗ B,OT*B)

Since gr Γ(B,Dλ)→ Γ(B, grDλ) is injective, it follows that C[N ] � grUλ, grUλ → gr Γ(B,Dλ) and gr Γ(B,Dλ)→
Γ(B, grDλ) are all isomorphisms. Then, gr Ψλ is an isomorphism. Since all the algebras we’re working with are
positively graded, it follows that Ψλ is an isomorphism.
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