D-modules on flag varieties and localization of g-modules, II.
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1 Reminder of last time.

We recall results of last time that we are going to use here.

Recall that we have the Harish-Chandra isomorphism HC : 3 — C[h*]", where 3 is the center of the universal
enveloping algebra U(g). Then, every central character (= algebra homomorphism from 3 to C) has the form yj,
xXx(z) = HC(z)(X), and x» = x,, if and only if A and p are W-conjugate.

For every A € h*, we have a homogeneous twisted sheaf of differential operators Dy := U°/Jy, where J, is the
two-sided ideal generated by elements of the form & — (A + p)°(€), for € € b°. The morphism ¥ : U(g) — T'(B, D))
factors through Uy := U(g)/ Ker(x)U(g).

Theorem 1.1 (Beilinson-Bernstein) The morphism Wy : Uy — T'(B, D)) is an isomorphism.

Recall that the strategy to prove Theorem is to see that its associated graded coincides with the pullback
v* : CIN] — T'(T* B, Op~g) of the Springer resolution ~y : T* B — N

2 Cohomology of D)-modules.
We have two induced functors. The first functor is the global sections functor:

Mod,.(Dy) — Mod-U(g)
M = T (B,M).

Note that T'(B, M) = Hompe, (O, M). Also, note that Home, (O, M) = Homp, (Dy, M): if M has a Dy-module
structure, then any Og-homomorphism Op — M admits a unique extension to a Dy-linear homomorphism Dy — M.
The next functor is the localization functor:

Mod -U(g) — Modg.(Dx)
M — Dy @y M.

Note that the global sections functor is right adjoint to the localization functor. Our next goal is to study these
functors.

2.1 Abelian Beilinson-Bernstein theorem.

The goal of this subsection is to state and prove two fundamental theorems of Beilinson-Bernstein on the cohomology
of Og-coherent Dy-modules. The first one, Theorem [2.2| concerns the vanishing of the higher cohomology of modules.
The second Theorem tells us when every Og-coherent Dy-module is generated by its global sections. A strategy
to do this is to realize every Og-coherent submodule of such a module as a direct summand in a sheaf without higher
cohomology. To do this, we will use the Borel-Weil-Bott theorem, which tells us that the sheaf £()) is ample whenever
A € P is antidominant and regular.

Assume p € P is antidominant. By the Borel-Weil-Bott theorem (from last time, Theorem 2.5 1)), L(u) is
generated by its global sections. We know that the global sections of £(u) are L™ (i), the simple module with lowest
weight 4. Then, we have p, : O @cL ™ (u) — L(n). Taking the dual of p,, we get a morphism Homo, (L(1), Op) —
Op ®c Home (L™ (1), C). This is injective. Rewriting, we have an injective morphism £(—u) — O @c LT (—u). If we
tensor with the locally free module £(i), we get an injective morphism,



it O = L(n) @c L (~p).

Tensoring with a Og-coherent D) module we get,

Ty M : M= M ®OB'C(:U) ®c L+(_ILL)'

Note that i, ¢ is always injective because 7, locally splits. We want to show that, if X is antidominant, ¢, ¢ splits
as morphism of sheaves of vector spaces. Note that this splitting will be constructed using differential operators, so it
is not a splitting of Og-modules. To do so, we will realize the image of i, o4 as a generalized eigensheaf for the action
of the center 3 of U(g) on M ®o,L(1) @c Lt (—p).

An essential ingredient will be the following construction. Let F' be a finite dimensional g-module. Recall that F
has a filtration by b-submodules 0 = Fy, C F} C --- C F,, = F, where dimF; = i, nF; C F;_; and h acts on the 1-
dimensional quotient F;/F;_; by an integral character v;. The v;’s are just the weights of F. Consider the trivial vector
bundle B xF' — B. Its sheaf of sections is F := Op ®cF. Note that B xF has a filtration 0 = Uy C Uy C --- C U,
where

U, :={(¢gB,v) € BxF :v € g(F)}.

This defines a filtration on F, 0 = Fg C F; C -+ C F,, = F. These are G-equivariant coherent sheaves on
B. Recall that we have an equivalence between the category of G-equivariant coherent sheaves on B and the cate-
gory of representations of the Borel subgroup B. Under this equivalence, F; corresponds to F;. It then follows that

.7:1‘ /.7:1;1 = E(VZ)

It follows that, more generally, for any quasi-coherent Og-module M, M ®c F has a filtration with succesive
quotients being M ®0,L(v;). Now assume M is a Dy-module. Then, M is a g° = Op ®¢ g°-module such that the
subbundle of Borel subalgebras b° acts with character (A4 p)°. Similarly, b° acts with character v on L£(v;). It follows
that M ®0,L(v;) is a g°>-module and the b° acts on it with character (A + v; + p)°. In other words, the action of U°
on M ®e,L(v;) factors through the quotient Dy,,. By Theorem [L.1] the center 3 of U(g) acts on M ®p,L(v;) with
character x1,,. It follows that

[1E =0 (2)
annihilates M ®cF' for every z € 3. Then, the action of § on M ®cF' is locally finite, and M ®cF decomposes into
the direct sum of its generalized j3-eigensheaves.
For a #°-module M and A € b*, denote by My the generalized 3-eigensheaf of M with eigencharacter x. Note
that My = M|, whenever A, u belong to the same W-orbit.

Lemma 2.1 Let A € b* be antidominant. Then, for every Op-quasi-coherent D y-module M, and every antidominant
integral weight i, i, aq splits. In particular, M = [M®@oyzL(1) @c LT (—p)][x-

Proof. 'We know that the eigencharacters of M ®o,L(1) ®c LT (—pu) are of the form xy,4,, where v; is a weight
of LT (—p). Assume Xxyutr;, = xa for some weight v; of LT (—pu). Then, for some w € W, w(X) = A+ p + 4, so
(—p—v;)+w(A)— A =0. But A is antidominant, so w(A) — A is positive, that is, it is a non-negative linear combination
of simple roots. Since LT (—pu) is the irreducible module with highest weight —u, —u — v; is also positive. It follows
that w(A) = X and 4 = —v;. Then, the generalized eigensheaf with eigencharacter x is M ®o,L(1) @0y L(—p) = M.
O

Theorem 2.2 (Beilinson-Bernstein) Let A € b* be antidominant. Then, H'(B, M) = 0 for every quasi-coherent
Dx-module and i > 0. In particular, the global sections functor I'(B,e) : Modg.(Dx) — Mod -U), is exact.

Proof. E| Let W be an Og-coherent submodule of M. By Borel-Weil-Bott (more precisely, Theorem 2.5 2) of last
time) we can find an antidominant weight p such that H*(B, W ®o, L(11)) = 0 for i > 0. Then, H (B, W ®0, L(11) @c
L*(—p)) = 0. Now consider the following commutative diagram:

INote that the argument I gave on the October 18 talk is incorrect: the morphism iy, does not necessarily split.



Hi{(B,W) Hi(B, M)

i |

0= H(BW®0,L(1) @c Lt (—p)) H'(B,M®0,L(1) ®c Lt (~p))

Since the diagram commutes and, by the previous lemma, H*(B, M) — H' (B, M @0, L(11) @c LT (—p)) is injective,
we get that H'(B,W) — H*(B, M) is the zero map. Since M is the direct limit of its Og-coherent submodules and
cohomology commutes with direct limits, we get that H'(B, M) = 0. O

Corollary 2.3 Let X € b be antidominant. Then, for every Ux-module V', the natural map @y of V to T'(B, Op @y (g)V)
is an isomorphism of g-modules.

Proof. By the previous theorem, the global sections functor I' is exact. Then, the functor I'(B, Op ®y(4)®) is right
exact. Now let V € Uy. There exists an exact sequence (Uy)®! — (Uy)®7 — V — 0. Then, we get a commutative
diagram,

(Ux)®! (Ux)®7 14 0

| l |

F(B7 ,D)\)@I —>F(Ba D)\)@J F(B’ OB ®Z/l(9)v) —0.

The first two vertical maps are isomorphisms. Then, the third vertical map is also an isomorphism. [J
Denote by Qmod,.(Dy) the quotient category of Mod,.(Dx) modulo the full subcategory formed by quasi-coherent
D modules without global sections.

Corollary 2.4 Let A € " be antidominant. Then, the localization functor induces an equivalence from Mod -Uy to
Qmod,.(Dy).

Proof.  Let M € Qmod,.(Dy). By adjointness, we have a natural morphism aq : Dy @y, ['(B, M) — M. Let
K’ and K" be the kernel and cokernel of this morphism, respectively. Then, we get an exact sequence 0 — K’ —
Dy @u,I'(B,M) - M — K" — 0. Applying the global sections functor we find that I'(B,K’) = 0, I'(B,K”) = 0. The
result follows. [J

Now we show another result due to Beilinson-Bernstein, that says that when A € h* is antidominant and regular,
every quasi-coherent D) module M is generated by its global sections. The strategy is similar to that of the proof
of Theorem but somewhat easier. Recall that for any integral antidominant weight we p we have a surjective
morphism p, : O ®cL™ (1) - L(p). Note that this morphism locally splits. Then, for every quasi-coherent module
M we get an epimorphism p, a1 M ®@cL™ (1) = M®p,L(1). The following is an analog of Lemma

Lemma 2.5 Assume X is antidominant and regular. Then, for every quasi-coherent Dy module, and every antidom-
inant integral weight p, the epimorphism p, am splits. In fact, the generalized X ,-eigensheaf of M ®cL™(u) is
M ®OB£(/’(’)'

Proof. We argue similarly to Lemma Assume there exists a weight v; of L~ (u) and w € W such that
wA+v;) = A+ p. Then, (w(X) — A) 4+ (w(v;) — p) = 0. Similarly to Lemma it follows that v; = . The result
follows. [

Theorem 2.6 (Beilinson-Bernstein) Let A € ™ be antidominant and reqular. Then, for any quasi-coherent Dy -
module M, the morphism Dy ®y)I'(B, M) — M is surjective. In other words, every quasi-coherent Dy module is
generated by its global sections.

Proof. Since A is antidominant, I'(B,e) is exact. Hence, it suffices to show that T'(B, M) # 0 for M # 0.
We can assume that M is coherent. By Borel-Weil-Bott, we can find a regular antidominant weight v such that
I'(B, M ®0,L(v)) # 0. Since v is regular, Lemma [2.5] implies that L™ (v) ® I'(B, M) # 0. We're done. [

Corollary 2.7 Let A € b* be antidominant and reqular. Then, the global sections functor is an equivalence of categories
Modge(Dy) — Mod -Uy. Its inverse is the localization functor.

Proof. Follows from Corollary 2.4 and Theorem O
As an application of Theorems we show that the homological dimension of U is finite whenever X is
regular. It is known that if this is not the case then the homological dimension of i) is infinite.



Proposition 2.8 Let X € h* be reqular. Then the homological dimension of Ux: is finite.

Proof. Since Uy: = Uyy for any w € W, we can replace X' by A € WX antidominant (and, by hypoth-
esis, regular). Since Dy is a TDO, the homological dimension of each stalk D), is finite, as this is a filtered
algebra whose associated graded algebra has finite homological dimension. Moreover, the homological dimension
hd D), < dimB, so that these homological dimensions are uniformly bounded. It is known that, for any =z € B,
1 € Zso SxtipA M,W), = Extipm (Mg, W,), for an Og-coherent Dy-module M and a quasi-coherent Dy-module W.
Then, Exth, (M, W) =0 for i > dim B.

On the other hand, we have the Grothendieck spectral sequence H? (B, Extf, (M, W)) = Extpptq (M, W). Tt follows
that Exty, (M, W) = 0 for i > 2dim B, M a coherent Dy-module and W a quasi-coherent Djy-module. Since we're

assuming A is antidominant and regular, Exti,A (M, W) = 0 for any finitely generated Ux-module M and any Uy-module
W. Taking direct limits, it follows that hdiy < 2dim B. O

Remark 2.9 If X\ € b* is an integral reqular weight, then actually hdUy = 2 dim B.

2.2 Derived Beilinson-Bernstein Theorem.

Assume )\ € §* is regular. Then, U, has finite homological dimension, so the localization functor has a left derived

L
functor Dy @y, ® : D’(Mod-Uy) — D’(Mod,.(D,)). Note that the global sections functor admits a right derived
functor RT : D¥(Mod,.(Dy)) — D*(Mod -U,).

L
Theorem 2.10 Let A € h* be a regular integral weight. Then, Dy ®y, ® and RI' are quasi-inverse equivalences of
triangulated categories.

Remark 2.11 We remark that Theorem is valid in a greater gemerality for X € §* regular but not necessarily
integral.

Let P be a projective Uy-module. Recall that this means that P is a direct summand of a free module Z/{S\Bm, for
some set I so, in particular, P is flat. Note that, by Theorem the adjunction morphism P — T'(B, Dy ®y, P) is

an isomorphism. By the same Theorem, Dy ®y, P is a direct summand of D?m. Note that Or«p has no higher coho-
mology, this is a consequence of the Grauert-Riemenschneider Theorem applied to T*B — N. Since gr Dy = Or=3, it
follows that Dy is I'-acyclic. Hence, Dy ®, P is '-acyclic.

Now, let V' be a complex in D’(Mod-U,), with A\ € h* a regular weight. By Proposition [2.8] V" is quasi-

L L
isomorphic to a complex P of projective Uy-modules, and Dy Qy, V' = Dy Qu, P It follows that RT'(Dy Qu, V') =
(D) ®u, P) =2 P =2 V'. We have proved the following.

L
Lemma 2.12 Let A\ € h* be a reqular integral weight. Then, RT(Dy &y, ) : D*(Mod Uy) — D’(Mod U,) is
isomorphic to the identity functor.

Note that it follows that RI is a quotient functor of triangulated categories. Then, to prove Theorem [2.10] it
suffices to show that R['(M’) = 0 only when M™ = 0. We will follow a strategy that appears in [2], Section 3]. We will
need the following result, due to Kontsevich (see e.g. [2, Theorem 3.5.1]):

Lemma 2.13 Let X C PZ be a smooth closed subscheme. Then, Ox (i), —n <1i < 0 generate D®(coh X) under shifts,
cones, and direct summands.

Corollary 2.14 There erists a finite set of dominant weights S such that L(u),pn € S, generate D®(coh B) under
shifts, cones, and direct summands.

We will also need a derived version of the splitting method used in the proof of Theorems [2:2] 2:6] Recall that, if
M is a (sheaf of) module(s) on which the center 3 of U(g) acts locally finitely, then by [M]y we denote the generalized
eigenspace (resp. generalized eigensheaf) with generalized eigencharacter x. For integral weights A\, u with p — A
dominant, define the translation functor T%' : Mod-Uy — Mod-U,, by TX' (M) = [LT(u — X) ® M],,, where Lt (1 — )
is the simple finite dimensional module with highest weight p — A.



Now, let M be in D*(Mod,.(D,)). Then, using the notation on the previous paragraph, L*(u — \) ® M’ is a
complex of U°-modules. Moreover, by the construction before Lemma 3 acts locally finitely on LT (u — \) @ M.
So one can talk about T4'[M’]. We have that translation functors commute with R, that is,

TY[RDy M| 2 RT, (T4 M), &

We'll use the following Lemma, that is parallel to Lemmas The proof is also similar. To get the desired
combinatorial relations between the weights, it uses [4, Lemma 7.7].

Lemma 2.15 Assume A, ji are in the same chamber. Then, for M' € D*(Mody.(Dy)), T{(M') = L{(p— ) @0, M.
Finally, Theorem [2.10] follows from the next result.

Lemma 2.16 Let A be an integral and regular weight, and let M' € D*(Mod,.(Dy)) be such that RT(M') = 0. Then,
M =0.

Proof. Let p be a dominant weight such that A\, A + p are in the same chamber. It then follows from Equation
that 0 = T)’\\'H‘ [RTy M'] = RT,(L(p) ®o, M'). By Corollary [2.14] it follows that for A deep in its chamber,
RI(F @ M) =0 for all F* € D?(coh B). Then, M" = 0.

The case for any integral regular weight A follows again from but, to pass from an integral regular weight A
to another (integral and regular) weight deep into the chamber of A, we need to extend the definition of translation
functors to allow the case when the difference y — X is not dominant. Here, define T (M) := [L(p — \) @ M|,
where L(p — ) is a finite dimensional g-module with extremal weight u — A. Again, we can extend this functor to
D*(Mod,.(Dy)), and Equation is valid. Finally, Lemma m.is also valid in this more general setting, with same
proof. It follows that, for A,y in the same chamber and M" € D*(Modgc(D)), T§ (M) = 0 only when M™ = 0. O
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