\mathcal{D} -modules on flag varieties and localization of \mathfrak{g} -modules, II.

José Simental.

October 18, 2013

1 Reminder of last time.

We recall results of last time that we are going to use here.

Recall that we have the Harish-Chandra isomorphism $HC: \mathfrak{z} \to \mathbb{C}[\mathfrak{h}^*]^W$, where \mathfrak{z} is the center of the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$. Then, every central character (= algebra homomorphism from \mathfrak{z} to \mathbb{C}) has the form χ_{λ} , $\chi_{\lambda}(z) = HC(z)(\lambda)$, and $\chi_{\lambda} = \chi_{\mu}$ if and only if λ and μ are W-conjugate.

For every $\lambda \in \mathfrak{h}^*$, we have a homogeneous twisted sheaf of differential operators $\mathcal{D}_{\lambda} := \mathcal{U}^{\circ}/\mathcal{J}_{\lambda}$, where \mathcal{J}_{λ} is the two-sided ideal generated by elements of the form $\xi - (\lambda + \rho)^{\circ}(\xi)$, for $\xi \in \mathfrak{b}^{\circ}$. The morphism $\Psi_{\lambda} : \mathcal{U}(\mathfrak{g}) \to \Gamma(\mathcal{B}, \mathcal{D}_{\lambda})$ factors through $\mathcal{U}_{\lambda} := \mathcal{U}(\mathfrak{g})/\operatorname{Ker}(\chi_{\lambda})\mathcal{U}(\mathfrak{g})$.

Theorem 1.1 (Beilinson-Bernstein) The morphism $\Psi_{\lambda}: \mathcal{U}_{\lambda} \to \Gamma(\mathcal{B}, \mathcal{D}_{\lambda})$ is an isomorphism.

Recall that the strategy to prove Theorem 1.1 is to see that its associated graded coincides with the pullback $\gamma^* : \mathbb{C}[\mathcal{N}] \to \Gamma(T^*\mathcal{B}, \mathcal{O}_{T^*\mathcal{B}})$ of the Springer resolution $\gamma : T^*\mathcal{B} \to \mathcal{N}$.

2 Cohomology of \mathcal{D}_{λ} -modules.

We have two induced functors. The first functor is the *global sections functor*:

$$\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda}) \to \operatorname{Mod} \mathcal{U}(\mathfrak{g})$$
$$\mathcal{M} \mapsto \Gamma(\mathcal{B}, \mathcal{M}).$$

Note that $\Gamma(\mathcal{B}, \mathcal{M}) = \operatorname{Hom}_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{\mathcal{B}}, \mathcal{M})$. Also, note that $\operatorname{Hom}_{\mathcal{O}_{\mathcal{B}}}(\mathcal{O}_{\mathcal{B}}, \mathcal{M}) = \operatorname{Hom}_{\mathcal{D}_{\lambda}}(\mathcal{D}_{\lambda}, \mathcal{M})$: if \mathcal{M} has a \mathcal{D}_{λ} -module structure, then any $\mathcal{O}_{\mathcal{B}}$ -homomorphism $\mathcal{O}_{\mathcal{B}} \to \mathcal{M}$ admits a unique extension to a \mathcal{D}_{λ} -linear homomorphism $\mathcal{D}_{\lambda} \to \mathcal{M}$. The next functor is the *localization functor*:

$$\operatorname{Mod-}\mathcal{U}(\mathfrak{g}) \to \operatorname{Mod}_{qc}(\mathcal{D}_{\lambda})$$
$$M \mapsto \mathcal{D}_{\lambda} \otimes_{\mathcal{U}(\mathfrak{g})} M.$$

Note that the global sections functor is right adjoint to the localization functor. Our next goal is to study these functors.

2.1 Abelian Beilinson-Bernstein theorem.

The goal of this subsection is to state and prove two fundamental theorems of Beilinson-Bernstein on the cohomology of $\mathcal{O}_{\mathcal{B}}$ -coherent \mathcal{D}_{λ} -modules. The first one, Theorem 2.2, concerns the vanishing of the higher cohomology of modules. The second Theorem 2.6, tells us when every $\mathcal{O}_{\mathcal{B}}$ -coherent \mathcal{D}_{λ} -module is generated by its global sections. A strategy to do this is to realize every $\mathcal{O}_{\mathcal{B}}$ -coherent submodule of such a module as a direct summand in a sheaf without higher cohomology. To do this, we will use the Borel-Weil-Bott theorem, which tells us that the sheaf $\mathcal{L}(\lambda)$ is ample whenever $\lambda \in P$ is antidominant and regular.

Assume $\mu \in P$ is antidominant. By the Borel-Weil-Bott theorem (from last time, Theorem 2.5 1)), $\mathcal{L}(\mu)$ is generated by its global sections. We know that the global sections of $\mathcal{L}(\mu)$ are $L^-(\mu)$, the simple module with lowest weight μ . Then, we have $p_{\mu} : \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} L^-(\mu) \twoheadrightarrow \mathcal{L}(\mu)$. Taking the dual of p_{μ} , we get a morphism $\mathcal{H}om_{\mathcal{O}_{\mathcal{B}}}(\mathcal{L}(\mu), \mathcal{O}_{\mathcal{B}}) \rightarrow \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} Hom_{\mathbb{C}}(L^-(\mu), \mathbb{C})$. This is injective. Rewriting, we have an injective morphism $\mathcal{L}(-\mu) \rightarrow \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} L^+(-\mu)$. If we tensor with the locally free module $\mathcal{L}(\mu)$, we get an injective morphism,

$$i_{\mu}: \mathcal{O}_{\mathcal{B}} \to \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^{+}(-\mu).$$

Tensoring with a $\mathcal{O}_{\mathcal{B}}$ -coherent \mathcal{D}_{λ} module we get,

$$i_{\mu,\mathcal{M}}: \mathcal{M} \to \mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^{+}(-\mu).$$

Note that $i_{\mu,\mathcal{M}}$ is always injective because i_{μ} locally splits. We want to show that, if λ is antidominant, $i_{\mu,\mathcal{M}}$ splits as morphism of sheaves of vector spaces. Note that this splitting will be constructed using differential operators, so it is not a splitting of $\mathcal{O}_{\mathcal{B}}$ -modules. To do so, we will realize the image of $i_{\mu,\mathcal{M}}$ as a generalized eigensheaf for the action of the center \mathfrak{z} of $\mathcal{U}(\mathfrak{g})$ on $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu)$.

An essential ingredient will be the following construction. Let F be a finite dimensional \mathfrak{g} -module. Recall that F has a filtration by \mathfrak{b} -submodules $0 = F_0 \subset F_1 \subset \cdots \subset F_m = F$, where $\dim F_i = i$, $\mathfrak{n} F_i \subseteq F_{i-1}$ and \mathfrak{h} acts on the 1-dimensional quotient F_i/F_{i-1} by an integral character ν_i . The ν_i 's are just the weights of F. Consider the trivial vector bundle $\mathcal{B} \times F \twoheadrightarrow \mathcal{B}$. Its sheaf of sections is $\mathcal{F} := \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} F$. Note that $\mathcal{B} \times F$ has a filtration $0 = U_0 \subset U_1 \subset \cdots \subset U_m$, where

$$U_i := \{ (gB, v) \in \mathcal{B} \times F : v \in g(F_i) \}.$$

This defines a filtration on \mathcal{F} , $0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_m = \mathcal{F}$. These are G-equivariant coherent sheaves on \mathcal{B} . Recall that we have an equivalence between the category of G-equivariant coherent sheaves on \mathcal{B} and the category of representations of the Borel subgroup B. Under this equivalence, \mathcal{F}_i corresponds to F_i . It then follows that $\mathcal{F}_i/\mathcal{F}_{i-1} = \mathcal{L}(\nu_i)$.

It follows that, more generally, for any quasi-coherent $\mathcal{O}_{\mathcal{B}}$ -module \mathcal{M} , $\mathcal{M} \otimes_{\mathbb{C}} F$ has a filtration with succesive quotients being $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\nu_i)$. Now assume \mathcal{M} is a \mathcal{D}_{λ} -module. Then, \mathcal{M} is a $\mathfrak{g}^{\circ} = \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} \mathfrak{g}^{\circ}$ -module such that the subbundle of Borel subalgebras \mathfrak{b}° acts with character $(\lambda + \rho)^{\circ}$. Similarly, \mathfrak{b}° acts with character ν_i° on $\mathcal{L}(\nu_i)$. It follows that $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\nu_i)$ is a \mathfrak{g}° -module and the \mathfrak{b}° acts on it with character $(\lambda + \nu_i + \rho)^{\circ}$. In other words, the action of \mathcal{U}° on $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\nu_i)$ factors through the quotient $\mathcal{D}_{\lambda + \nu_i}$. By Theorem 1.1, the center \mathfrak{z} of $\mathcal{U}(\mathfrak{g})$ acts on $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\nu_i)$ with character $\chi_{\lambda + \nu_i}$. It follows that

$$\prod_{i}(z-\chi_{\lambda+\nu_i}(z))$$

annihilates $\mathcal{M} \otimes_{\mathbb{C}} F$ for every $z \in \mathfrak{z}$. Then, the action of \mathfrak{z} on $\mathcal{M} \otimes_{\mathbb{C}} F$ is locally finite, and $\mathcal{M} \otimes_{\mathbb{C}} F$ decomposes into the direct sum of its generalized \mathfrak{z} -eigensheaves.

For a \mathcal{U}° -module \mathcal{M} and $\lambda \in \mathfrak{h}^{*}$, denote by $\mathcal{M}_{[\lambda]}$ the generalized \mathfrak{z} -eigensheaf of \mathcal{M} with eigencharacter χ_{λ} . Note that $\mathcal{M}_{[\lambda]} = \mathcal{M}_{[\mu]}$ whenever λ, μ belong to the same W-orbit.

Lemma 2.1 Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then, for every $\mathcal{O}_{\mathcal{B}}$ -quasi-coherent \mathcal{D}_{λ} -module \mathcal{M} , and every antidominant integral weight μ , $i_{\mu,\mathcal{M}}$ splits. In particular, $\mathcal{M} \cong [\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu)]_{[\lambda]}$.

Proof. We know that the eigencharacters of $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu)$ are of the form $\chi_{\lambda+\mu+\nu_i}$ where ν_i is a weight of $L^+(-\mu)$. Assume $\chi_{\lambda+\mu+\nu_i} = \chi_{\lambda}$ for some weight ν_i of $L^+(-\mu)$. Then, for some $w \in W$, $w(\lambda) = \lambda + \mu + \nu_i$, so $(-\mu-\nu_i)+w(\lambda)-\lambda=0$. But λ is antidominant, so $w(\lambda)-\lambda$ is positive, that is, it is a non-negative linear combination of simple roots. Since $L^+(-\mu)$ is the irreducible module with highest weight $-\mu$, $-\mu-\nu_i$ is also positive. It follows that $w(\lambda)=\lambda$ and $\mu=-\nu_i$. Then, the generalized eigensheaf with eigencharacter χ_{λ} is $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(-\mu)=\mathcal{M}$. \square

Theorem 2.2 (Beilinson-Bernstein) Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then, $H^i(\mathcal{B}, \mathcal{M}) = 0$ for every quasi-coherent \mathcal{D}_{λ} -module and i > 0. In particular, the global sections functor $\Gamma(\mathcal{B}, \bullet)$: $\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda}) \to \operatorname{Mod}_{qc}(\mathcal{U}_{\lambda})$ is exact.

Proof. ¹ Let \mathcal{W} be an $\mathcal{O}_{\mathcal{B}}$ -coherent submodule of \mathcal{M} . By Borel-Weil-Bott (more precisely, Theorem 2.5 2) of last time) we can find an antidominant weight μ such that $H^i(\mathcal{B}, \mathcal{W} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu)) = 0$ for i > 0. Then, $H^i(\mathcal{B}, \mathcal{W} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} \mathcal{L}^+(-\mu)) = 0$. Now consider the following commutative diagram:

¹Note that the argument I gave on the October 18 talk is incorrect: the morphism $i_{\mu,\mathcal{W}}$ does not necessarily split.

$$\begin{split} H^i(\mathcal{B},\mathcal{W}) & \longrightarrow H^i(\mathcal{B},\mathcal{M}) \\ \downarrow & \qquad \qquad \downarrow \\ 0 &= H^i(\mathcal{B},\mathcal{W} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu)) & \longrightarrow H^i(\mathcal{B},\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu)) \end{split}$$

Since the diagram commutes and, by the previous lemma, $H^i(\mathcal{B}, \mathcal{M}) \to H^i(\mathcal{B}, \mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu) \otimes_{\mathbb{C}} L^+(-\mu))$ is injective, we get that $H^i(\mathcal{B}, \mathcal{W}) \to H^i(\mathcal{B}, \mathcal{M})$ is the zero map. Since \mathcal{M} is the direct limit of its $\mathcal{O}_{\mathcal{B}}$ -coherent submodules and cohomology commutes with direct limits, we get that $H^i(\mathcal{B}, \mathcal{M}) = 0$. \square

Corollary 2.3 Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then, for every \mathcal{U}_{λ} -module V, the natural map φ_V of V to $\Gamma(\mathcal{B}, \mathcal{O}_{\mathcal{B}} \otimes_{\mathcal{U}(\mathfrak{g})} V)$ is an isomorphism of \mathfrak{g} -modules.

Proof. By the previous theorem, the global sections functor Γ is exact. Then, the functor $\Gamma(\mathcal{B}, \mathcal{O}_{\mathcal{B}} \otimes_{\mathcal{U}(\mathfrak{g})} \bullet)$ is right exact. Now let $V \in \mathcal{U}_{\lambda}$. There exists an exact sequence $(\mathcal{U}_{\lambda})^{\oplus I} \to (\mathcal{U}_{\lambda})^{\oplus J} \to V \to 0$. Then, we get a commutative diagram,

$$(\mathcal{U}_{\lambda})^{\oplus I} \longrightarrow (\mathcal{U}_{\lambda})^{\oplus J} \longrightarrow V \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Gamma(\mathcal{B}, \mathcal{D}_{\lambda})^{\oplus I} \longrightarrow \Gamma(\mathcal{B}, \mathcal{D}_{\lambda})^{\oplus J} \longrightarrow \Gamma(\mathcal{B}, \mathcal{O}_{\mathcal{B}} \otimes_{\mathcal{U}(\mathfrak{g})} V) \longrightarrow 0.$$

The first two vertical maps are isomorphisms. Then, the third vertical map is also an isomorphism. \square Denote by $\operatorname{Qmod}_{qc}(\mathcal{D}_{\lambda})$ the quotient category of $\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda})$ modulo the full subcategory formed by quasi-coherent \mathcal{D}_{λ} modules without global sections.

Corollary 2.4 Let $\lambda \in \mathfrak{h}^*$ be antidominant. Then, the localization functor induces an equivalence from $\operatorname{Mod} \mathcal{U}_{\lambda}$ to $\operatorname{Qmod}_{ac}(\mathcal{D}_{\lambda})$.

Proof. Let $\mathcal{M} \in \operatorname{Qmod}_{qc}(\mathcal{D}_{\lambda})$. By adjointness, we have a natural morphism $\psi_{\mathcal{M}}: \mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} \Gamma(\mathcal{B}, \mathcal{M}) \to \mathcal{M}$. Let \mathcal{K}' and \mathcal{K}'' be the kernel and cokernel of this morphism, respectively. Then, we get an exact sequence $0 \to \mathcal{K}' \to \mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} \Gamma(\mathcal{B}, \mathcal{M}) \to \mathcal{M} \to \mathcal{K}'' \to 0$. Applying the global sections functor we find that $\Gamma(\mathcal{B}, \mathcal{K}') = 0$, $\Gamma(\mathcal{B}, \mathcal{K}'') = 0$. The result follows. \square

Now we show another result due to Beilinson-Bernstein, that says that when $\lambda \in \mathfrak{h}^*$ is antidominant and regular, every quasi-coherent \mathcal{D}_{λ} module \mathcal{M} is generated by its global sections. The strategy is similar to that of the proof of Theorem 2.2 but somewhat easier. Recall that for any integral antidominant weight we μ we have a surjective morphism $p_{\mu}: \mathcal{O}_{\mathcal{B}} \otimes_{\mathbb{C}} L^{-}(\mu) \twoheadrightarrow \mathcal{L}(\mu)$. Note that this morphism locally splits. Then, for every quasi-coherent module \mathcal{M} we get an epimorphism $p_{\mu,\mathcal{M}}: \mathcal{M} \otimes_{\mathbb{C}} L^{-}(\mu) \to \mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu)$. The following is an analog of Lemma 2.1.

Lemma 2.5 Assume λ is antidominant and regular. Then, for every quasi-coherent \mathcal{D}_{λ} module, and every antidominant integral weight μ , the epimorphism $p_{\mu,\mathcal{M}}$ splits. In fact, the generalized $\chi_{\lambda+\mu}$ -eigensheaf of $\mathcal{M} \otimes_{\mathbb{C}} L^{-}(\mu)$ is $\mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\mu)$.

Proof. We argue similarly to Lemma 2.1. Assume there exists a weight ν_i of $L^-(\mu)$ and $w \in W$ such that $w(\lambda + \nu_i) = \lambda + \mu$. Then, $(w(\lambda) - \lambda) + (w(\nu_i) - \mu) = 0$. Similarly to Lemma 2.1, it follows that $\nu_i = \mu$. The result follows. \square

Theorem 2.6 (Beilinson-Bernstein) Let $\lambda \in \mathfrak{h}^*$ be antidominant and regular. Then, for any quasi-coherent \mathcal{D}_{λ} -module \mathcal{M} , the morphism $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}(\mathfrak{g})} \Gamma(\mathcal{B}, \mathcal{M}) \to \mathcal{M}$ is surjective. In other words, every quasi-coherent \mathcal{D}_{λ} module is generated by its global sections.

Proof. Since λ is antidominant, $\Gamma(\mathcal{B}, \bullet)$ is exact. Hence, it suffices to show that $\Gamma(\mathcal{B}, \mathcal{M}) \neq 0$ for $\mathcal{M} \neq 0$. We can assume that \mathcal{M} is coherent. By Borel-Weil-Bott, we can find a regular antidominant weight ν such that $\Gamma(\mathcal{B}, \mathcal{M} \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{L}(\nu)) \neq 0$. Since ν is regular, Lemma 2.5 implies that $L^{-}(\nu) \otimes \Gamma(\mathcal{B}, \mathcal{M}) \neq 0$. We're done. \square

Corollary 2.7 Let $\lambda \in \mathfrak{h}^*$ be antidominant and regular. Then, the global sections functor is an equivalence of categories $\operatorname{Mod}_{ac}(\mathcal{D}_{\lambda}) \to \operatorname{Mod} \mathcal{U}_{\lambda}$. Its inverse is the localization functor.

Proof. Follows from Corollary 2.4 and Theorem 2.6. \square

As an application of Theorems 2.2, 2.6, we show that the homological dimension of \mathcal{U}_{λ} is finite whenever λ is regular. It is known that if this is not the case then the homological dimension of \mathcal{U}_{λ} is infinite.

Proposition 2.8 Let $\lambda' \in \mathfrak{h}^*$ be regular. Then the homological dimension of $\mathcal{U}_{\lambda'}$ is finite.

Proof. Since $\mathcal{U}_{\lambda'} = \mathcal{U}_{w\lambda}$ for any $w \in W$, we can replace λ' by $\lambda \in W\lambda'$ antidominant (and, by hypothesis, regular). Since \mathcal{D}_{λ} is a TDO, the homological dimension of each stalk $\mathcal{D}_{\lambda,x}$ is finite, as this is a filtered algebra whose associated graded algebra has finite homological dimension. Moreover, the homological dimension $\operatorname{hd} \mathcal{D}_{\lambda,x} \leq \dim \mathcal{B}$, so that these homological dimensions are uniformly bounded. It is known that, for any $x \in \mathcal{B}$, $i \in \mathbb{Z}_{>0} \operatorname{\mathcal{E}} xt^i_{\mathcal{D}_{\lambda}}(\mathcal{M}, \mathcal{W})_x = \operatorname{Ext}^i_{\mathcal{D}_{\lambda,x}}(\mathcal{M}_x, \mathcal{W}_x)$, for an $\mathcal{O}_{\mathcal{B}}$ -coherent \mathcal{D}_{λ} -module \mathcal{M} and a quasi-coherent \mathcal{D}_{λ} -module \mathcal{W} . Then, $\operatorname{\mathcal{E}} xt^i_{\mathcal{D}_{\lambda}}(\mathcal{M}, \mathcal{W}) = 0$ for $i > \dim \mathcal{B}$.

On the other hand, we have the Grothendieck spectral sequence $H^p(\mathcal{B}, \mathcal{E}xt^q_{\mathcal{D}_{\lambda}}(\mathcal{M}, \mathcal{W})) \Rightarrow \operatorname{Ext}^{p+q}_{\mathcal{D}_{\lambda}}(\mathcal{M}, \mathcal{W})$. It follows that $\operatorname{Ext}^i_{\mathcal{D}_{\lambda}}(\mathcal{M}, \mathcal{W}) = 0$ for $i > 2\dim \mathcal{B}$, \mathcal{M} a coherent \mathcal{D}_{λ} -module and \mathcal{W} a quasi-coherent \mathcal{D}_{λ} -module. Since we're assuming λ is antidominant and regular, $\operatorname{Ext}^i_{\mathcal{U}_{\lambda}}(M, \mathcal{W}) = 0$ for any finitely generated \mathcal{U}_{λ} -module M and any \mathcal{U}_{λ} -module \mathcal{W} . Taking direct limits, it follows that $\operatorname{hd} \mathcal{U}_{\lambda} \leq 2\dim \mathcal{B}$. \square

Remark 2.9 If $\lambda \in \mathfrak{h}^*$ is an integral regular weight, then actually $\operatorname{hd} \mathcal{U}_{\lambda} = 2 \dim \mathcal{B}$.

2.2 Derived Beilinson-Bernstein Theorem.

Assume $\lambda \in \mathfrak{h}^*$ is regular. Then, \mathcal{U}_{λ} has finite homological dimension, so the localization functor has a left derived functor $\mathcal{D}_{\lambda} \overset{L}{\otimes}_{\mathcal{U}_{\lambda}} \bullet : D^b(\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda})) \to D^b(\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda}))$. Note that the global sections functor admits a right derived functor $R\Gamma : D^b(\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda})) \to D^b(\operatorname{Mod}_{\mathcal{U}_{\lambda}})$.

Theorem 2.10 Let $\lambda \in \mathfrak{h}^*$ be a regular integral weight. Then, $\mathcal{D}_{\lambda} \overset{L}{\otimes}_{\mathcal{U}_{\lambda}} \bullet$ and $R\Gamma$ are quasi-inverse equivalences of triangulated categories.

Remark 2.11 We remark that Theorem 2.10 is valid in a greater generality for $\lambda \in \mathfrak{h}^*$ regular but not necessarily integral.

Let P be a projective \mathcal{U}_{λ} -module. Recall that this means that P is a direct summand of a free module $\mathcal{U}_{\lambda}^{\oplus |I|}$, for some set I so, in particular, P is flat. Note that, by Theorem 1.1, the adjunction morphism $P \to \Gamma(\mathcal{B}, \mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} P)$ is an isomorphism. By the same Theorem, $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} P$ is a direct summand of $\mathcal{D}_{\lambda}^{\oplus |I|}$. Note that $\mathcal{O}_{T^*\mathcal{B}}$ has no higher cohomology, this is a consequence of the Grauert-Riemenschneider Theorem applied to $T^*\mathcal{B} \to \mathcal{N}$. Since $\operatorname{gr} \mathcal{D}_{\lambda} = \mathcal{O}_{T^*\mathcal{B}}$, it follows that \mathcal{D}_{λ} is Γ -acyclic. Hence, $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} P$ is Γ -acyclic.

Now, let V be a complex in $D^b(\text{Mod-}\mathcal{U}_{\lambda})$, with $\lambda \in \mathfrak{h}^*$ a regular weight. By Proposition 2.8, V is quasi-isomorphic to a complex P of projective \mathcal{U}_{λ} -modules, and $\mathcal{D}_{\lambda} \overset{L}{\otimes}_{\mathcal{U}_{\lambda}} V = \mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} P$. It follows that $R\Gamma(\mathcal{D}_{\lambda} \overset{L}{\otimes}_{\mathcal{U}_{\lambda}} V) = \Gamma(\mathcal{D}_{\lambda} \otimes_{\mathcal{U}_{\lambda}} P) \cong P \cong V$. We have proved the following.

Lemma 2.12 Let $\lambda \in \mathfrak{h}^*$ be a regular integral weight. Then, $R\Gamma(\mathcal{D}_{\lambda} \overset{L}{\otimes}_{\mathcal{U}_{\lambda}} \bullet) : D^b(\operatorname{Mod} \mathcal{U}_{\lambda}) \to D^b(\operatorname{Mod} \mathcal{U}_{\lambda})$ is isomorphic to the identity functor.

Note that it follows that $R\Gamma$ is a quotient functor of triangulated categories. Then, to prove Theorem 2.10, it suffices to show that $R\Gamma(\mathcal{M}) = 0$ only when $\mathcal{M} = 0$. We will follow a strategy that appears in [2, Section 3]. We will need the following result, due to Kontsevich (see e.g. [2, Theorem 3.5.1]):

Lemma 2.13 Let $X \subseteq \mathbb{P}^n_{\mathbb{C}}$ be a smooth closed subscheme. Then, $\mathcal{O}_X(i)$, $-n \leq i \leq 0$ generate $D^b(\operatorname{coh} X)$ under shifts, cones, and direct summands.

Corollary 2.14 There exists a finite set of dominant weights S such that $\mathcal{L}(\mu), \mu \in S$, generate $D^b(\cosh \mathcal{B})$ under shifts, cones, and direct summands.

We will also need a derived version of the splitting method used in the proof of Theorems 2.2, 2.6. Recall that, if M is a (sheaf of) module(s) on which the center $\mathfrak z$ of $\mathcal U(\mathfrak g)$ acts locally finitely, then by $[M]_{\lambda}$ we denote the generalized eigenspace (resp. generalized eigensheaf) with generalized eigencharacter χ_{λ} . For integral weights λ, μ with $\mu - \lambda$ dominant, define the translation functor $T_{\lambda}^{\mu} : \text{Mod-}\mathcal{U}_{\lambda} \to \text{Mod-}\mathcal{U}_{\mu}$ by $T_{\lambda}^{\mu}(M) = [L^{+}(\mu - \lambda) \otimes M]_{\mu}$, where $L^{+}(\mu - \lambda)$ is the simple finite dimensional module with highest weight $\mu - \lambda$.

Now, let \mathcal{M} be in $D^b(\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda}))$. Then, using the notation on the previous paragraph, $L^+(\mu - \lambda) \otimes \mathcal{M}$ is a complex of \mathcal{U}° -modules. Moreover, by the construction before Lemma 2.1, \mathfrak{z} acts locally finitely on $L^+(\mu - \lambda) \otimes \mathcal{M}$. So one can talk about $T^{\mu}_{\lambda}[\mathcal{M}]$. We have that translation functors commute with $R\Gamma$, that is,

$$T^{\mu}_{\lambda}[R\Gamma_{\lambda}\mathcal{M}^{\cdot}] \cong R\Gamma_{\mu}([T^{\mu}_{\lambda}\mathcal{M}^{\cdot}]). \tag{1}$$

We'll use the following Lemma, that is parallel to Lemmas 2.1, 2.5. The proof is also similar. To get the desired combinatorial relations between the weights, it uses [4, Lemma 7.7].

Lemma 2.15 Assume λ , μ are in the same chamber. Then, for $\mathcal{M} \in D^b(\mathrm{Mod}_{qc}(\mathcal{D}_{\lambda}))$, $T^{\mu}_{\lambda}(\mathcal{M}) = \mathcal{L}(\mu - \lambda) \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{M}$.

Finally, Theorem 2.10 follows from the next result.

Lemma 2.16 Let λ be an integral and regular weight, and let $\mathcal{M} \in D^b(\operatorname{Mod}_{qc}(\mathcal{D}_{\lambda}))$ be such that $R\Gamma(\mathcal{M}) = 0$. Then, $\mathcal{M} = 0$.

Proof. Let μ be a dominant weight such that λ , $\lambda + \mu$ are in the same chamber. It then follows from Equation (1) that $0 = T_{\lambda}^{\lambda+\mu}[R\Gamma_{\lambda} \mathcal{M}] = R\Gamma_{\mu}(\mathcal{L}(\mu) \otimes_{\mathcal{O}_{\mathcal{B}}} \mathcal{M})$. By Corollary 2.14, it follows that for λ deep in its chamber, $R\Gamma(\mathcal{F} \otimes \mathcal{M}) = 0$ for all $\mathcal{F} \in D^b(\operatorname{coh} \mathcal{B})$. Then, $\mathcal{M} = 0$.

The case for any integral regular weight λ follows again from (1) but, to pass from an integral regular weight λ to another (integral and regular) weight deep into the chamber of λ , we need to extend the definition of translation functors to allow the case when the difference $\mu - \lambda$ is not dominant. Here, define $T^{\mu}_{\lambda}(M) := [L(\mu - \lambda) \otimes M]_{\mu}$, where $L(\mu - \lambda)$ is a finite dimensional \mathfrak{g} -module with extremal weight $\mu - \lambda$. Again, we can extend this functor to $D^b(\mathrm{Mod}_{qc}(\mathcal{D}_{\lambda}))$, and Equation (1) is valid. Finally, Lemma 2.15 is also valid in this more general setting, with same proof. It follows that, for λ, μ in the same chamber and $\mathcal{M} \in D^b(\mathrm{Mod}_{qc}(\mathcal{D}_{\lambda}))$, $T^{\mu}_{\lambda}(\mathcal{M}) = 0$ only when $\mathcal{M} = 0$. \square

References

- [1] A. Beilinson, J. Bernstein, Localisation de g-modules. C. R. Acad. Sci. Paris Ser. I Math. 292 (1981) no.1, 15-18
- [2] R. Bezrukavnikov, I. Mirković, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic. arXiv:math/0205144v5
- [3] R. Hotta, K. Takeuchi, T. Tanisaki, *D-modules, Perverse Sheaves and Representation Theory*. Birkhäuser Progress in Mathematics 236.
- [4] J. Jantzen, Representations of algebraic groups. Pure and Applied Math. 131, Academic Press.
- [5] D. Miličić, Localization and Representation Theory of Reductive Lie Groups.