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1 Reminder of last time.

We recall results of last time that we are going to use here.

Recall that we have the Harish-Chandra isomorphism HC : z → C[h∗]W , where z is the center of the universal
enveloping algebra U(g). Then, every central character (= algebra homomorphism from z to C) has the form χλ,
χλ(z) = HC(z)(λ), and χλ = χµ if and only if λ and µ are W -conjugate.

For every λ ∈ h∗, we have a homogeneous twisted sheaf of differential operators Dλ := U◦/Jλ, where Jλ is the
two-sided ideal generated by elements of the form ξ − (λ + ρ)◦(ξ), for ξ ∈ b◦. The morphism Ψλ : U(g) → Γ(B,Dλ)
factors through Uλ := U(g)/Ker(χλ)U(g).

Theorem 1.1 (Beilinson-Bernstein) The morphism Ψλ : Uλ → Γ(B,Dλ) is an isomorphism.

Recall that the strategy to prove Theorem 1.1 is to see that its associated graded coincides with the pullback
γ∗ : C[N ]→ Γ(T ∗ B,OT∗B) of the Springer resolution γ : T ∗ B → N .

2 Cohomology of Dλ-modules.

We have two induced functors. The first functor is the global sections functor:

Modqc(Dλ)→ Mod -U(g)
M 7→ Γ(B,M).

Note that Γ(B,M) = HomOB(OB,M). Also, note that HomOB(OB,M) = HomDλ(Dλ,M): if M has a Dλ-module
structure, then any OB-homomorphism OB →M admits a unique extension to a Dλ-linear homomorphism Dλ →M.
The next functor is the localization functor:

Mod -U(g)→ Modqc(Dλ)
M 7→ Dλ⊗U(g)M .

Note that the global sections functor is right adjoint to the localization functor. Our next goal is to study these
functors.

2.1 Abelian Beilinson-Bernstein theorem.

The goal of this subsection is to state and prove two fundamental theorems of Beilinson-Bernstein on the cohomology
of OB-coherent Dλ-modules. The first one, Theorem 2.2, concerns the vanishing of the higher cohomology of modules.
The second Theorem 2.6, tells us when every OB-coherent Dλ-module is generated by its global sections. A strategy
to do this is to realize every OB-coherent submodule of such a module as a direct summand in a sheaf without higher
cohomology. To do this, we will use the Borel-Weil-Bott theorem, which tells us that the sheaf L(λ) is ample whenever
λ ∈ P is antidominant and regular.

Assume µ ∈ P is antidominant. By the Borel-Weil-Bott theorem (from last time, Theorem 2.5 1)), L(µ) is
generated by its global sections. We know that the global sections of L(µ) are L−(µ), the simple module with lowest
weight µ. Then, we have pµ : OB ⊗CL

−(µ) � L(µ). Taking the dual of pµ, we get a morphism HomOB(L(µ),OB)→
OB ⊗C HomC(L−(µ),C). This is injective. Rewriting, we have an injective morphism L(−µ)→ OB ⊗CL

+(−µ). If we
tensor with the locally free module L(µ), we get an injective morphism,
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iµ : OB → L(µ)⊗C L
+(−µ).

Tensoring with a OB-coherent Dλ module we get,

iµ,M :M→M⊗OBL(µ)⊗C L
+(−µ).

Note that iµ,M is always injective because iµ locally splits. We want to show that, if λ is antidominant, iµ,M splits
as morphism of sheaves of vector spaces. Note that this splitting will be constructed using differential operators, so it
is not a splitting of OB-modules. To do so, we will realize the image of iµ,M as a generalized eigensheaf for the action
of the center z of U(g) on M⊗OBL(µ)⊗C L

+(−µ).

An essential ingredient will be the following construction. Let F be a finite dimensional g-module. Recall that F
has a filtration by b-submodules 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F , where dimFi = i, nFi ⊆ Fi−1 and h acts on the 1-
dimensional quotient Fi/Fi−1 by an integral character νi. The νi’s are just the weights of F . Consider the trivial vector
bundle B×F � B. Its sheaf of sections is F := OB ⊗CF . Note that B×F has a filtration 0 = U0 ⊂ U1 ⊂ · · · ⊂ Um,
where

Ui := {(gB, v) ∈ B×F : v ∈ g(Fi)}.

This defines a filtration on F , 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F . These are G-equivariant coherent sheaves on
B. Recall that we have an equivalence between the category of G-equivariant coherent sheaves on B and the cate-
gory of representations of the Borel subgroup B. Under this equivalence, F i corresponds to Fi. It then follows that
F i /F i−1 = L(νi).

It follows that, more generally, for any quasi-coherent OB-module M, M⊗C F has a filtration with succesive
quotients being M⊗OBL(νi). Now assume M is a Dλ-module. Then, M is a g◦ = OB ⊗C g◦-module such that the
subbundle of Borel subalgebras b◦ acts with character (λ+ρ)◦. Similarly, b◦ acts with character ν◦i on L(νi). It follows
that M⊗OBL(νi) is a g◦-module and the b◦ acts on it with character (λ+ νi + ρ)◦. In other words, the action of U◦
on M⊗OBL(νi) factors through the quotient Dλ+νi . By Theorem 1.1, the center z of U(g) acts on M⊗OBL(νi) with
character χλ+νi . It follows that ∏

i

(z − χλ+νi(z))

annihilates M⊗CF for every z ∈ z. Then, the action of z on M⊗CF is locally finite, and M⊗CF decomposes into
the direct sum of its generalized z-eigensheaves.

For a U◦-module M and λ ∈ h∗, denote by M[λ] the generalized z-eigensheaf of M with eigencharacter χλ. Note
that M[λ] =M[µ] whenever λ, µ belong to the same W -orbit.

Lemma 2.1 Let λ ∈ h∗ be antidominant. Then, for every OB-quasi-coherent Dλ-module M, and every antidominant
integral weight µ, iµ,M splits. In particular, M∼= [M⊗OBL(µ)⊗C L

+(−µ)][λ].

Proof. We know that the eigencharacters of M⊗OBL(µ) ⊗C L
+(−µ) are of the form χλ+µ+νi where νi is a weight

of L+(−µ). Assume χλ+µ+νi = χλ for some weight νi of L+(−µ). Then, for some w ∈ W , w(λ) = λ + µ + νi, so
(−µ−νi)+w(λ)−λ = 0. But λ is antidominant, so w(λ)−λ is positive, that is, it is a non-negative linear combination
of simple roots. Since L+(−µ) is the irreducible module with highest weight −µ, −µ − νi is also positive. It follows
that w(λ) = λ and µ = −νi. Then, the generalized eigensheaf with eigencharacter χλ isM⊗OBL(µ)⊗OB L(−µ) =M.
�

Theorem 2.2 (Beilinson-Bernstein) Let λ ∈ h∗ be antidominant. Then, Hi(B,M) = 0 for every quasi-coherent
Dλ-module and i > 0. In particular, the global sections functor Γ(B, •) : Modqc(Dλ)→ Mod -Uλ is exact.

Proof. 1 Let W be an OB-coherent submodule of M. By Borel-Weil-Bott (more precisely, Theorem 2.5 2) of last
time) we can find an antidominant weight µ such that Hi(B,W⊗OB L(µ)) = 0 for i > 0. Then, Hi(B,W⊗OB L(µ)⊗C
L+(−µ)) = 0. Now consider the following commutative diagram:

1Note that the argument I gave on the October 18 talk is incorrect: the morphism iµ,W does not necessarily split.
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Hi(B,W)

��

// Hi(B,M)

��
0 = Hi(B,W⊗OBL(µ)⊗C L

+(−µ)) // Hi(B,M⊗OBL(µ)⊗C L
+(−µ))

.

Since the diagram commutes and, by the previous lemma, Hi(B,M)→ Hi(B,M⊗OBL(µ)⊗CL
+(−µ)) is injective,

we get that Hi(B,W) → Hi(B,M) is the zero map. Since M is the direct limit of its OB-coherent submodules and
cohomology commutes with direct limits, we get that Hi(B,M) = 0. �

Corollary 2.3 Let λ ∈ h∗ be antidominant. Then, for every Uλ-module V , the natural map ϕV of V to Γ(B,OB ⊗U(g)V )
is an isomorphism of g-modules.

Proof. By the previous theorem, the global sections functor Γ is exact. Then, the functor Γ(B,OB ⊗U(g)•) is right
exact. Now let V ∈ Uλ. There exists an exact sequence (Uλ)⊕I → (Uλ)⊕J → V → 0. Then, we get a commutative
diagram,

(Uλ)⊕I //

��

(Uλ)⊕J //

��

V //

��

0

Γ(B,Dλ)⊕I // Γ(B,Dλ)⊕J // Γ(B,OB ⊗U(g)V ) // 0.

The first two vertical maps are isomorphisms. Then, the third vertical map is also an isomorphism. �
Denote by Qmodqc(Dλ) the quotient category of Modqc(Dλ) modulo the full subcategory formed by quasi-coherent

Dλ modules without global sections.

Corollary 2.4 Let λ ∈ h∗ be antidominant. Then, the localization functor induces an equivalence from Mod -Uλ to
Qmodqc(Dλ).

Proof. Let M ∈ Qmodqc(Dλ). By adjointness, we have a natural morphism ψM : Dλ⊗UλΓ(B,M) → M. Let
K′ and K′′ be the kernel and cokernel of this morphism, respectively. Then, we get an exact sequence 0 → K′ →
Dλ⊗UλΓ(B,M)→M→ K′′ → 0. Applying the global sections functor we find that Γ(B,K′) = 0, Γ(B,K′′) = 0. The
result follows. �

Now we show another result due to Beilinson-Bernstein, that says that when λ ∈ h∗ is antidominant and regular,
every quasi-coherent Dλ module M is generated by its global sections. The strategy is similar to that of the proof
of Theorem 2.2 but somewhat easier. Recall that for any integral antidominant weight we µ we have a surjective
morphism pµ : OB ⊗CL

−(µ) � L(µ). Note that this morphism locally splits. Then, for every quasi-coherent module
M we get an epimorphism pµ,M :M⊗CL

−(µ)→M⊗OBL(µ). The following is an analog of Lemma 2.1.

Lemma 2.5 Assume λ is antidominant and regular. Then, for every quasi-coherent Dλ module, and every antidom-
inant integral weight µ, the epimorphism pµ,M splits. In fact, the generalized χλ+µ-eigensheaf of M⊗CL

−(µ) is
M⊗OBL(µ).

Proof. We argue similarly to Lemma 2.1. Assume there exists a weight νi of L−(µ) and w ∈ W such that
w(λ + νi) = λ + µ. Then, (w(λ) − λ) + (w(νi) − µ) = 0. Similarly to Lemma 2.1, it follows that νi = µ. The result
follows. �

Theorem 2.6 (Beilinson-Bernstein) Let λ ∈ h∗ be antidominant and regular. Then, for any quasi-coherent Dλ-
module M, the morphism Dλ⊗U(g)Γ(B,M) → M is surjective. In other words, every quasi-coherent Dλ module is
generated by its global sections.

Proof. Since λ is antidominant, Γ(B, •) is exact. Hence, it suffices to show that Γ(B,M) 6= 0 for M 6= 0.
We can assume that M is coherent. By Borel-Weil-Bott, we can find a regular antidominant weight ν such that
Γ(B,M⊗OBL(ν)) 6= 0. Since ν is regular, Lemma 2.5 implies that L−(ν)⊗ Γ(B,M) 6= 0. We’re done. �

Corollary 2.7 Let λ ∈ h∗ be antidominant and regular. Then, the global sections functor is an equivalence of categories
Modqc(Dλ)→ Mod -Uλ. Its inverse is the localization functor.

Proof. Follows from Corollary 2.4 and Theorem 2.6. �
As an application of Theorems 2.2, 2.6, we show that the homological dimension of Uλ is finite whenever λ is

regular. It is known that if this is not the case then the homological dimension of Uλ is infinite.
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Proposition 2.8 Let λ′ ∈ h∗ be regular. Then the homological dimension of Uλ′ is finite.

Proof. Since Uλ′ = Uwλ for any w ∈ W , we can replace λ′ by λ ∈ Wλ′ antidominant (and, by hypoth-
esis, regular). Since Dλ is a TDO, the homological dimension of each stalk Dλ,x is finite, as this is a filtered
algebra whose associated graded algebra has finite homological dimension. Moreover, the homological dimension
hdDλ,x ≤ dimB, so that these homological dimensions are uniformly bounded. It is known that, for any x ∈ B,
i ∈ Z>0 ExtiDλ(M,W)x = ExtiDλ,x(Mx,Wx), for an OB-coherent Dλ-moduleM and a quasi-coherent Dλ-module W.

Then, ExtiDλ(M,W) = 0 for i > dimB.

On the other hand, we have the Grothendieck spectral sequence Hp(B, ExtqDλ(M,W))⇒ Extp+qDλ (M,W). It follows

that ExtiDλ(M,W) = 0 for i > 2 dimB, M a coherent Dλ-module and W a quasi-coherent Dλ-module. Since we’re

assuming λ is antidominant and regular, ExtiUλ(M,W ) = 0 for any finitely generated Uλ-module M and any Uλ-module
W . Taking direct limits, it follows that hdUλ ≤ 2 dimB. �

Remark 2.9 If λ ∈ h∗ is an integral regular weight, then actually hdUλ = 2 dimB.

2.2 Derived Beilinson-Bernstein Theorem.

Assume λ ∈ h∗ is regular. Then, Uλ has finite homological dimension, so the localization functor has a left derived

functor Dλ
L
⊗Uλ • : Db(Mod -Uλ) → Db(Modqc(Dλ)). Note that the global sections functor admits a right derived

functor RΓ : Db(Modqc(Dλ))→ Db(Mod -Uλ).

Theorem 2.10 Let λ ∈ h∗ be a regular integral weight. Then, Dλ
L
⊗Uλ • and RΓ are quasi-inverse equivalences of

triangulated categories.

Remark 2.11 We remark that Theorem 2.10 is valid in a greater generality for λ ∈ h∗ regular but not necessarily
integral.

Let P be a projective Uλ-module. Recall that this means that P is a direct summand of a free module U⊕|I|λ , for
some set I so, in particular, P is flat. Note that, by Theorem 1.1, the adjunction morphism P → Γ(B,Dλ⊗UλP ) is

an isomorphism. By the same Theorem, Dλ⊗UλP is a direct summand of D⊕|I|λ . Note that OT∗B has no higher coho-
mology, this is a consequence of the Grauert-Riemenschneider Theorem applied to T ∗B → N . Since grDλ = OT∗B, it
follows that Dλ is Γ-acyclic. Hence, Dλ⊗UλP is Γ-acyclic.

Now, let V · be a complex in Db(Mod -Uλ), with λ ∈ h∗ a regular weight. By Proposition 2.8, V · is quasi-

isomorphic to a complex P · of projective Uλ-modules, and Dλ
L
⊗Uλ V · = Dλ⊗UλP ·. It follows that RΓ(Dλ

L
⊗Uλ V ·) =

Γ(Dλ⊗UλP ·) ∼= P · ∼= V ·. We have proved the following.

Lemma 2.12 Let λ ∈ h∗ be a regular integral weight. Then, RΓ(Dλ
L
⊗Uλ •) : Db(Mod -Uλ) → Db(Mod -Uλ) is

isomorphic to the identity functor.

Note that it follows that RΓ is a quotient functor of triangulated categories. Then, to prove Theorem 2.10, it
suffices to show that RΓ(M·) = 0 only whenM· = 0. We will follow a strategy that appears in [2, Section 3]. We will
need the following result, due to Kontsevich (see e.g. [2, Theorem 3.5.1]):

Lemma 2.13 Let X ⊆ PnC be a smooth closed subscheme. Then, OX(i), −n ≤ i ≤ 0 generate Db(cohX) under shifts,
cones, and direct summands.

Corollary 2.14 There exists a finite set of dominant weights S such that L(µ), µ ∈ S, generate Db(cohB) under
shifts, cones, and direct summands.

We will also need a derived version of the splitting method used in the proof of Theorems 2.2, 2.6. Recall that, if
M is a (sheaf of) module(s) on which the center z of U(g) acts locally finitely, then by [M ]λ we denote the generalized
eigenspace (resp. generalized eigensheaf) with generalized eigencharacter χλ. For integral weights λ, µ with µ − λ
dominant, define the translation functor Tµλ : Mod -Uλ → Mod -Uµ by Tµλ (M) = [L+(µ− λ)⊗M ]µ, where L+(µ− λ)
is the simple finite dimensional module with highest weight µ− λ.
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Now, let M· be in Db(Modqc(Dλ)). Then, using the notation on the previous paragraph, L+(µ − λ) ⊗M· is a
complex of U◦-modules. Moreover, by the construction before Lemma 2.1, z acts locally finitely on L+(µ− λ)⊗M·.
So one can talk about Tµλ [M·]. We have that translation functors commute with RΓ, that is,

Tµλ [RΓλM·] ∼= RΓµ([Tµλ M
·]). (1)

We’ll use the following Lemma, that is parallel to Lemmas 2.1, 2.5. The proof is also similar. To get the desired
combinatorial relations between the weights, it uses [4, Lemma 7.7].

Lemma 2.15 Assume λ, µ are in the same chamber. Then, for M· ∈ Db(Modqc(Dλ)), Tµλ (M·) = L(µ−λ)⊗OBM
·.

Finally, Theorem 2.10 follows from the next result.

Lemma 2.16 Let λ be an integral and regular weight, and let M· ∈ Db(Modqc(Dλ)) be such that RΓ(M·) = 0. Then,
M· = 0.

Proof. Let µ be a dominant weight such that λ, λ + µ are in the same chamber. It then follows from Equation
(1) that 0 = Tλ+µλ [RΓλM·] = RΓµ(L(µ) ⊗OB M

·). By Corollary 2.14, it follows that for λ deep in its chamber,
RΓ(F · ⊗M·) = 0 for all F · ∈ Db(cohB). Then, M· = 0.

The case for any integral regular weight λ follows again from (1) but, to pass from an integral regular weight λ
to another (integral and regular) weight deep into the chamber of λ, we need to extend the definition of translation
functors to allow the case when the difference µ − λ is not dominant. Here, define Tµλ (M) := [L(µ − λ) ⊗ M ]µ,
where L(µ − λ) is a finite dimensional g-module with extremal weight µ − λ. Again, we can extend this functor to
Db(Modqc(Dλ)), and Equation (1) is valid. Finally, Lemma 2.15 is also valid in this more general setting, with same
proof. It follows that, for λ, µ in the same chamber and M· ∈ Db(Modqc(Dλ)), Tµλ (M·) = 0 only when M· = 0. �
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