
INTRODUCTION TO TYPE A CATEGORICAL KAC-MOODY ACTIONS, I.

JOSÉ SIMENTAL

In these notes, we give a brief introduction to the theory of categorical actions of type A Kac-Moody algebras, as
introduced in [CR] (in the case of sl2) and [Rou] (a more general case). Intuitively speaking, these should be data
of an exact category C and a collection of exact endofunctors Ei, Fi of C that descend to an action of a Kac-Moody
algebra g on [C] := K0(C) ⊗ C. This is, however, too general to give an interesting theory. The actual definition is
much subtler and will be given next week.

In Section 1 we give a brief reminder of the definition of a Kac-Moody algebra g(I) associated to a graph I. Before
giving the definition of a categorical g(I)-action this week we will provide, Section 2, an example of one via cyclotomic
Hecke algebras (= Ariki-Koike algebras) that already appeared in Siddharth’s talk. Next week we will give the definiton
of a categorical g(I)-action, explain how to categorify divided powers of the Chevalley generators ei, fi, and how to
categorify the action of a simple reflection in the Weyl group.

1. Kac-Moody algebras.

We (very briefly) recall the definition of a Kac-Moody algebra associated to a simply laced graph I. For a more
detailed account see, for example, [Et, K].

So let I be a simply laced graph. Denote by V (I) the set of vertices of I. The Cartan matrix of I, C(I), is the
|V (I)| × |V (I)| matrix (aij)i,j∈V (I) defined by aii = 2 for all i; aij = −1 if there is an edge i − j in I; and aij = 0 if
there is no edge between i and j in I.

Definition 1.1. Let I be a simply laced graph. The Kac-Moody algebra g(I) is the Lie algebra with generators ei, fi, hi
for i ∈ V (I), known as the Chevalley generators of g(I), and relations

(KM1) [hi, ej ] = aijej. [hi, fj ] = −aijfj.
(KM2) [ei, fj ] = δijhj.

(KM3) If i 6= j, ad(1−aij)
ei ej = 0; ad

(1−aij)
fi

fj = 0.

The relations (KM3) are known as the Serre relations.

In these notes, we will always assume that I is one of the following graphs.

I g(I)
◦ ◦ · · · ◦ sln+1 (n vertices)

◦
ddddddddddddd

VVVVVV
◦ ◦ · · · ◦ ŝln (n vertices)

· · · ◦ ◦ · · · gl∞

2. Cyclotomic Hecke algebras.

2.1. Reminders. Our first example of a categorical action will be given by the representation theory of cyclotomic
Hecke algebras. Here we recall their definition and a few facts from Siddharth’s talk.

Definition 2.1. Let F be a commutative domain, and q ∈ F×. The affine Hecke algebra Haff
F,q(n) is the unital

associative F-algebra generated by elements T1, . . . , Tn−1, X
±
1 , . . . , X

±
n subject to the following relations:

• The subalgebra generated by T1, . . . , Tn−1 is isomorphic to the finite Hecke algebra of type A.
• The subalgebra generated by X±1 , . . . , X

±
n is isomorphic to the algebra F[X±1 , . . . , X

±
n ] of Laurent polynomials

in the variables Xi.
• TiXj = XjTi if i 6= j, j − 1; TiXiTi = qXi+1.

Now choose q1, . . . , qm ∈ F×. The cyclotomic Hecke algebra (or Ariki-Koike algebra) HF,q,q1,...,qm(n) is the quotient
of Haff

F,q(n) by the extra relation:
1



2 JOSÉ SIMENTAL

m∏
j=1

(X1 − qj) = 0.

We remark that to pass from our definition of the cyclotomic Hecke algebra HF,q,q1,...,qm(n) to the one given in
[Ven, Section 3], we just set T0 := π(X1), where π : HF,q(n)→ HF,q,q1,...,qm(n) is the canonical projection. We define
the Jucys-Murphy elements L1, . . . , Ln ∈ HF,q,q1,...,qm(n) by

Li := π(Xi).

Note that an explicit formula for Li is Li = q1−iTi−1 · · ·T1T0T1 · · ·Ti−1. It follows from [Ven, Section 9], that every
symmetric polynomial in the variables L1, . . . , Ln belongs to the center of HF,q,q1,...,qm(n).

Siddharth has also constructed all the irreducible representations of HF,q,q1,...,qm(n) in the case where F is a field and
q, q1, . . . , qm are generic. Let us remark that, here, ’generic’ means that q is not a root of unity and qi/qj 6∈ {qk : k ∈ Z}
for every i, j = 1, . . .m .We do not need an explicit construction of these representations. We just remark that they
are indexed by m-multipartitions of n, say Vλ is the irreducible representation corresponding to λ `m n. Each Vλ has
as a basis {vt}, where t runs over the set of all standard Young tableaux of shape λ. The action of the JM elements
Li on Vλ is given by

(1) Livt = qa−bqjvt,

where the box with the number i appears in t in column a and row b of λ(j).

2.2. Induction and Restriction functors. Note that we have a natural embedding ι : H(n − 1) → H(n), where
we denote H(k) := HF,q,q1,...,qm(k). Recall from [Ven, Section 4] that H(n) is free of rank mnn! over F, with basis
Xn := {Lc11 · · ·Lcnn Tw : w ∈ Sn, 0 ≤ ci ≤ m− 1}. This has the following easy consequence:

Proposition 2.2. The algebra H(n) is free as a left H(n− 1)-module.

Proof. By the definition of Ln and the relations on the affine Hecke algebra, it is clear that Ln commutes with
Tw, w ∈ Sn−1. Thus, we have that

H(n) =
⊕

0≤cm<m

⊕
w∈Sn/Sn−1

H(n− 1)Lcmm Tw,

where w ∈ Sn/Sn−1 runs over the the coset representatives of Sn−1 in Sn of minimal length. �

The inclusion ι : H(n− 1)→ H(n) also allows us to define induction and restriction functors for cyclotomic Hecke
algebras. Namely, we define:

Resn+1
n : H(n+ 1) -mod→ H(n) -mod Indn+1

n : H(n) -mod→ H(n+ 1) -mod .
M 7→ ι∗n(M) M 7→ H(n+ 1)⊗H(n) M

By Proposition 2.2, both Resn+1
n and Indn+1

n are exact functors. Moreover, it is clear that (Indn+1
n ,Resn+1

n ) is an
adjoint pair of functors. We also have the coinduction functor:

CoIndn+1
n : H(n) -mod→ H(n+ 1) -mod
M 7→ HomH(n)(H(n+ 1),M).

This functor is right adjoint to Resn+1
n .

Proposition 2.3. There is an isomorphism of functors Indn+1
n
∼= CoIndn+1

n .

Proof. Let M ∈ H(n) -mod. Since H(n+ 1) is a free left H(n)-module, there is a natural isomorphism Indn+1
n (M) =

HomH(n)(H(n+ 1),M)
∼=−→ HomH(n)(H(n+ 1), H(n))⊗H(n)M . Thus, we only need to show that the H(n+ 1)-H(n)-

bimodule HomH(n)(H(n+ 1), H(n)) is isomorphic (as a bimodule) to H(n+ 1). This follows because H(n+ 1), H(n)
are symmetric algebras. Indeed, we have:

HomH(n)(H(n+ 1), H(n))
∼=−→ HomH(n)(H(n+ 1), H(n)∗)
∼=−→ HomF(H(n)⊗H(n) H(n+ 1),F)
∼=−→ HomF(H(n+ 1),F)
∼=−→ H(n+ 1).

�
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2.3. Action on K0. Since Res and Ind are exact functors, they descend to maps

[Resn+1
n ] : [H(n+ 1) -mod]←→ [H(n) -mod] : [Indn+1

n ].

In the generic case, an explicit formula for the maps [Res] and [Ind] is easy to find. Recall that [H(n) -mod] has basis
{[Vλ] : λ `m n}. By the construction of the representations Vλ, we have that:

(2) [Resnn−1][Vλ] =
∑

x∈rem(λ)

[Vλ−{x}],

where rem(λ) denotes the set of removable boxes of λ. By adjunction and Frobenius reciprocity, we have that

(3) [Indnn−1][Vµ] =
∑

x∈add(µ)}

[Vµ∪{x}],

where add(µ) denotes the set of addable boxes of µ. We would like to have similar formulas for [Ind] and [Res] in the
general case, not just the generic one.

To do this, we introduce a specialization map. Consider F[t](t−1), the localization of F[t] at the ideal (t − 1), and
its completion, S := F[t]∧(t−1). Let K be the fraction field of S. Note that S is a complete discrete valuation ring, with

residue field F. Let q := qtm, and, for i = 1, . . . , n, qi := qit
i−1. We will consider the cyclotomic Hecke algebras

HS := HS,q,...,qm and HK := HK,q,...,qm . We have that HF = HS ⊗S F, and HK = HS ⊗S K.

By our choice of parameters, the algebra HK is semisimple. Indeed, it is clear that q is not a root of unity
and that qi/qj is not a power of q. So we have the simple modules V K

λ . We introduce the specialization map
d : K0(HK -mod) −→ K0(HF -mod) as follows. Let M ∈ HK -mod. Pick an S-latice in M of maximal rank, say L. So
L is a HS-submodule of M with M = L⊗S K. The class [L⊗S F] ∈ K0(HF) depends only on [M ], not on the choice of
representative of this class, nor on the choice of a lattice L. This gives us our specialization map.

We claim that d : [HK -mod] −→ [HF -mod] is surjective. To see this, we check that its dual map d∗ is injective.
This is where we use that we are working with Grothendieck groups with coefficients in a field, rather than just a
domain. Recall that, if A is a finite dimensional F-algebra, then the dual to [A -mod] is [A -proj]: a pairing is given
by (M,P ) 7→ dimF HomA(P,M). So we have to check that d∗ : [HF -proj] −→ [HK -proj] is injective. In other words,
we have to check that any projective HF-module has a unique, up to isomorphism, deformation to a projective HK-
module. Existence of this deformation is an easy consequence of Hensel’s lemma. Uniqueness follows from the fact
that Ext1

HF
(P, P ) = 0 for any projective HF-module. So d is surjective. We define

[Vλ] := d[V K
λ ].

Then, {[Vλ] : λ `m n} generates [HF -mod]. We remark that this is not, in general, a basis. But we can give the
action of [Res], [Ind] on [Vλ]. Indeed, it is an easy consequence of the definitions that the diagrams

[HK(n) -mod]
d //

[Resnn−1]

��

[HF(n) -mod]

[Resnn−1]

��
[HK(n− 1) -mod]

d // [HF(n− 1) -mod]

[HK(n) -mod]
d // [HF(n) -mod]

[HK(n− 1) -mod]

[Indn
n−1]

OO

d // [HF(n− 1) -mod]

[Indn
n−1]

OO

commute. It follows that formulas (2), (3) are valid in general, not just in the generic case.

Remark 2.4. We would like to make some comments about the elements [Vλ] ∈ [H(n) -mod]. The algebra H(n) has the
structure of a cellular algebra, cf. [GL]. This means that there is a basis of H(n) that satisfies some upper triangularity
conditions. This basis is indexed by pairs of standard tableaux of the same shape λ, where λ is an m-multipartition of
n. It follows from the theory of cellular algebras that H(n) comes equipped with a set of representations Cλ, λ `m n,
called cell modules. For each λ, the representation Cλ has a natural bilinear form, ϕλ, whose radical is an H(n)-
submodule. This bilinear form may be zero. The set {Dλ := Cλ/ radϕλ : ϕλ 6= 0} forms a complete list of irreducible
H(n)-modules. Moreover, Dλ is the unique irreducible quotient of Cλ and, if Dµ appears as a composition factor of
Cλ, then µ D λ under the dominance ordering. We have that [Vλ] = [Cλ] and the transition matrix from the basis
{Cλ} to the basis {Dλ} is upper unitriangular. This is another way to see that the specialization map is surjective.
We can also look at cell modules from the point of view of rational Cherednik algebras. Let H be a cyclotomic rational
Cherednik algebra whose category O maps to H(n) -mod under the KZ functor. Then, we have that Cλ = KZ(∆(λ)),
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where ∆(λ) is the Verma module for H, see [CGG]. The upper unitriangularity of the transition matrix also follows
from here.

2.4. i-Induction and i-Restriction. We will need refined versions of the induction and restriction functors. From
now on, we assume that F is an algebraically closed field. Let Ln ∈ HF(n) be the n-th JM element. It is a direct
consequence of the definition that Ln centralizes the subalgebra HF(n − 1). So, for every HF(n)-module M , we can
think of Ln as a HF(n−1)-endomorphism of Resnn−1(M). For a ∈ F, let (Resnn−1)a(M) be the a-generalized eigenspace
for the action of Ln on M . This construction is functorial and we have Resnn−1 =

⊕
a∈F(Resnn−1)a. Clearly, (Resnn−1)a

is an exact functor, so it induces a map on K0. By adjointness, we have a decomposition Indnn−1 =
⊕

a∈F(Indnn−1)a
such that, for each a ∈ F, the functor (Resnn−1)a is left adjoint to (Indnn−1)a.

Proposition 2.5. For every a ∈ F, the functors (Resnn−1)a, (Indnn−1)a are biadjoint.

Proof. For every k, denote Lk = L1 + · · ·+ Lk ∈ H(k). Since this is a symmetric polynomial in the JM elements, it
actually belongs to the center of H(k). So we have a decomposition

H(k) -mod =
⊕
b∈F

(H(k) -mod)b,

where (H(k) -mod)b consists of those modules on which Lk acts with generalized eigenvalue b. Now, let M ∈
(H(n) -mod)b. Then, since Ln = Ln−1 + Ln, we have that (Resnn−1)a(M) is the projection of the H(n − 1)-
module Resnn−1(M) to (H(n − 1) -mod)b−a. Since ((Resnn−1)a, (Indnn−1)a) is an adjoint pair, it follows that for
N ∈ (H(n − 1) -mod)b, (Indnn−1)a(N) is the projection of Indnn−1(M) to (H(n) -mod)b+a. The result now follows
since Resnn−1, Indnn−1 are biadjoint. �

We can give the action of (Resnn−1)a, (Indnn−1)a in the generic case. This follows from (1). To express this, we

introduce some notation. Let λ `m n be an m-multipartition. Assume that the box � is column a, row b of λ(i). We
define the content of � to be:

cont(�) := qa−bqi

Then, we have the following identity:

(4) (Resnn−1)a(Vλ) =
⊕

x∈rem(λ)
cont(x)=a

Vλ−{x}.

And, by Frobenius reciprocity, we get

(Indnn−1)a(Vµ) =
⊕

x∈add(µ)
cont(x)=a

Vµ∪{x}.

In the general case, we can only get similar formulas at the level of the Grothendieck group. We again use specialization
maps. Recall the notation S,K,q,q1, . . . ,qm from Subsection 2.3. We remark that all eigenvalues of Ln on an HK(n)-
module are, actually, in S. This follows from semisimplicity of HK(n) and (1). For an element a ∈ S, we denote by a
its projection to F.

Proposition 2.6. The following diagram commutes:

(5) [HK(n) -mod]

∑
a7→a[Resnn−1]a

��

d // [HF(n)] -mod

[Resnn−1]a

��
[HK(n− 1) -mod]

d // [HF(n− 1) -mod]

Proof. It is enough to show that, for a multipartition λ `m n, d
(∑

a7→a[Resnn−1]a[V K
λ ]
)

= [Resnn−1]a[Vλ]. Recall that

V K
λ has a K-basis {vt : t is a standard tableau of shape λ}. Then, as an S-latice L we can take the HS(n)-module

generated by {vt}. From here, the result follows. �

For the rest of this section, we will make the following assumption on parameters:

(†) There exists ` ∈ Z>0 such that q =
√̀

1 is a primitive `-root of 1, and for every i = 1, . . . , r, qi = qki

for some ki ∈ Z/`Z.
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It follows from (4) and commutativity of the diagram (5) that, under the assumption (†), the functors (Resnn−1)a
vanish unless a = qi for some i = 0, . . . , `− 1. In this setting, we define the i-restriction and i-induction functors:

i- Resnn−1 := (Resnn−1)qi , i- Indnn−1 := (Indnn−1)qi ,

so that Resnn−1 =
⊕`−1

i=0 i- Resnn−1, Indnn−1 =
⊕`−1

i=0 i- Indnn−1. Using (4) and (5) again, it is easy to see the action
of i- Ind and i- Res at the level of the (complexified) Grothendieck groups. For a box � of the Young diagram of a
multipartition λ `m n, we define the `-content of � to be:

cont`(�) = a− b+ ki mod `,

where the box � is on column a and row b of λ(i). Then, we have

(6) [i- Resnn−1][Vλ] =
∑

x∈rem(λ)
cont`(x)=i

[Vλ−{x}], [i- Indnn−1][Vµ] =
∑

x∈add(µ)
cont`(x)=i

[Vµ∪(x)].

2.5. Categorification functors. We denote H(n) := HF(n), and throughout this Subsection we assume (†).

Now let C :=
⊕

n≥0H(n) -mod, where, by definition, H(0) -mod is just the category of F-vector spaces. Let

E :=
⊕

Resn+1
n (we define Res0

−1 to be just the zero functor) and F :=
⊕

Indn+1
n be endofunctors of the category C.

We have seen that:

• The endofunctors E and F are biadjoint.
• There exists an endomorphism L :=

⊕
Ln of E that yields a decomposition E =

⊕
i∈Z/`ZEi into generalized

eigenfunctors. By adjointness, this induces a decomposition F =
⊕

i∈Z/`Z Fi such that each pair Ei, Fi consists

of biadjoint endofunctors, cf. Proposition 2.5.
• Let fi := [Fi] : [C]→ [C], ei := [Ei] : [C]→ [C] be the induced maps in the complexified Grothendieck group of

C. Using (6) we can see that ei, fi, i = 1, . . . , ` induce an action of the affine Kac-Moody algebra ŝl` on [C].
Indeed, [C] is a quotient of the level m Fock space of ŝl` that has as a basis the set of all m-multipartitions.

Note that we do not have categorical analogues of the Chevalley generators hi, i ∈ I. However, there is a decompo-
sition of C lifting the decomposition of [C] into weight spaces. This is induced by the action of the center of the algebra
Haff
q (n) on H(n)-modules. Recall that the center of Haff

q (n) is Zn, the space of symmetric Laurent polynomials on

x1, . . . , xn. Since H(n) is a quotient of Haff
q (n), this induces a decomposition by central characters:

H(n) -mod =
⊕
χ

(H(n) -mod)χ.

Identifying central characters of Haff
q (n) with points in (F×)n/Sn we have, by (†), that (H(n) -mod)χ = 0 unless

χ ∈ In/Sn, where I = {q, q2, . . . , q`−1}. For such χ, let

wt(χ) =

`−1∑
i=0

miαi,

where αi is the simple root of ŝl` corresponding to the Chevalley generators ei, fi, hi; and mi is the multiplicity of
qi on χ. Note that χ is uniquely determined by wt(χ). Let $ :=

∑m
i=1 ωki , where ω0, . . . , ω`−1 are the fundamental

weights of ŝl`.

Proposition 2.7. For χ ∈ In/Sn, ŝl` acts on [H(n) -mod]χ with weight $ + wt(χ).

There is an extra piece of structure we have not seen yet. Namely, consider the endofunctor E2 : C → C, that sends
M ∈ H(n) -mod to Resn−1

n−2 Resnn−1(M) = Resnn−2(M). Note that the element Tn−1 ∈ H(n) centralizes the subalgebra
H(n − 2), so we can consider it as an endomorphism of Resnn−2(M). Then, similarly to above, we can consider an
endomorphism T of E2, given by T =

⊕
Tn−1. We remark that the endomorphism T satisfies the relations

(7) (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) ∈ End(E3),

(8) (T + 1E)(T − q1E) = 0 ∈ End(E2),

Let us explain the notation. For M ∈ C, (1ET ) ◦ (T1E) ◦ (1ET )M : E3M −→ E3M is the endomorphism given by
E(TM ) ◦ TEM ◦ E(TM ), where TM : E2M −→ E2M and TEM : E2EM −→ E2EM . The other notation is similar.
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Then, (7) is nothing more than the braid relation Tn−1Tn−2Tn−1 = Tn−2Tn−1Tn−2, while (8) is nothing else but
the Hecke relation (Tn−1 + 1)(Tn−1 − q) = 0. We also have a relation between the endomorphisms L ∈ End(E),
T ∈ End(E2),

(9) T ◦ (L1E) ◦ T = q1EL ∈ End(E2),

which is just different way to say that Tn−1Ln−1Tn−1 = qLn.

Remark 2.8. Throughout this subsection we assumed the condition (†) on the parameters. Similar results are obtained
if we assume that qi = qki for some ki ∈ Z, and q ∈ F× is not a root of unity. In this case, we obtain an action of
gl∞ on [C]. More generally, let S = {q1, . . . , qm}. We have an equivalence relation on S: qi ∼ qj if qi/qj ∈ qZ. This

yields a partition S =
⊔j
k=1 Sk. Then, we obtain an action of ŝl`

j
(if q is a primitive `-root of unity) or of glj∞ (if q

is not a root of unity) on C. This follows from, for example, [Ari, Theorem 13.30].
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