INTRODUCTION TO GEOMETRIC INVARIANT THEORY

JOSE SIMENTAL

ABSTRACT. These are the expanded notes for a talk at the MIT/NEU Graduate Student Seminar on Moduli
of sheaves on K3 surfaces. We give a brief introduction to GIT, following mostly [N].

1. REDUCTIVE ALGEBRAIC GROUPS.

We are interested in studying orbit spaces for the action of an algebraic group G on a projective or affine
algebraic variety X. If we want the orbit space to be an algebraic variety, we have to impose some conditions
on the action. For example, if X is affine then it is reasonable to require that the ring of invariants C[X]%
is finitely generated. Here we introduce some conditions on the group G that ensure that this is always the
case.

Definition 1.1. An algebraic group G is said to be linearly reductive if whenever we have rational represen-
tations V,W of G and an epimorphism ¢ : V. — W, the induced morphism on invariants o : VG — W& is
also an epimorphism.

We remark that, over C (and more generally over any algebraically closed field of zero characteristic) the
notion of linear reductivity coincides with the classical notion of reductivity, that is, the radical (= maximal
connected normal solvable subgroup) is a torus. In view of this, we will refer to linearly reductive groups
simply as reductive. In particular finite groups, GL(n), tori and the classical groups O(n),Sp(2n) are all
linearly reductive. This stems from the following result.

Lemma 1.2. Let G be an algebraic group over the field C. The following are equivalent.

(a) G is linearly reductive.

(b) Ewvery rational representation of G is completely reducible.

(¢c) For every epimorphism ¢ : V. — W of finite dimensional representations of G, the induced map on
nvariants is an epimorphism.

(d) For every finite dimensional representation V and every surjective and G-invariant map ¢ : V — C
there exists w € V& such that p(w) # 0.

(e) For every finite dimensional representation V. and every nonzero G-invariant vector v € V& there
exists a nonzero G-invariant map ¢ : V. — C with ¢(v) # 0.

Proof. (b) = (a) is obvious. For (a) = (b), let V' be a representation of G and let W C V be a subrepre-
sentation. We have an epimorphism Homg(V, W) — Homc (W, W) that by (a) restricts to an epimorphism
Homg(V, W) — Homg (W, W). So the inclusion W — V splits and we are done.

Now, (a) < (c) is clear since we are dealing with rational representations of G, and (d) < (e) by duality.
It is clear that (c) = (d). Let us do (e) = (c). So let V, W be as in the statement of (c) and pick a
nonzero w € W, By assumption, we can find a G-invariant map W — C with ¢(w) # 0. In particular, ¢
is surjective and so is g : V' — C, the composition of ¢ with the projection V' — W. Recalling that (d), (e)
are equivalent, we may find v € V¢ with @(v) = ¢(w). So w — v € ker ¢. If this element is 0, we are done.
If not, by induction on dim W we may find v; € V& with o7 = w — 7, and the result follows. O

We remark that over a field of characteristic p > 0 the notion of linear reductivity is strictly stronger than
that of reductivity. We will comment more about this at the end of this section.

Example 1.3. The additive group G, is not linearly reductive. Indeed, the Gq-representation on C? given

by t — < (1) i ) 1s not completely reducible.

The next result, due to Hilbert, justifies the importance of reductive groups in geometric invariant theory.
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Theorem 1.4. Let G be a reductive group acting on an affine algebraic variety X. Then, the algebra of
invariants C[X]% is finitely generated.

Proof. First we reduce to the case when X = V, a representation of G. Let f1,..., fr be generators of the
algebra of regular functions C[X]. Let V* C C[X] be a finite dimensional G-stable vector space containing
these generators. This defines a G-equivariant surjection C[V] — C[X] that, thanks to the linear reductivity
of G restricts to a surjection C[V]% — C[X]%. So we only need to show that C[V]% is finitely generated.
We remark that the action of G on V commutes with the action of C* by dilations. This implies, in
particular, that the invariant ring is graded, C[V]% = @,~,C[V]$. Let C[V]{ := D,-,C[V]S and let
J = (C[V](C[V]f. By the Hilbert basis theorem, there exist gq,...,gx € C[V]f that generate J as an ideal of
C[V]. We may assume the g;’s are homogeneous. We claim that g1, ..., gy are generators of C[V]%.

Let h € C[V]% be homogeneous. We show by induction on the degree of h that it belongs to Clgy, ..., gxl.
If deg h = 0 there is nothing to do. If degh > 0 then h € J. Note that J is G-stable and so it makes sense
to say that h € J. The fact that gi,..., g generate J as an ideal of C[V] means that the G-equivariant
map

CVI®*F = J
k
(h17 o 7hk‘) = Zz’:l hzgl
is surjective. Since G is linearly reductive, the induced map on invariants is surjective as well. So there exist

hi,...,h € C[V]Y such that h = Zle hig;. Now the h;’s are sums of homogeneous elements of degree
< deg h. We are done. g

Let us now mention an important property of reductive groups. It is known that every reductive group
contains a (unique up to conjugation) maximal compact Lie subgroup K.. For example, if G = GL(n), then
K = U(n), the group of unitary transformations with respect to some invariant scalar product on C". If
K’ is another compact subgroup, then C" admits the structure of a unitary representation of K’, so with
respect to some basis of C" we have K’ C U(n). Moreover, if T' is a maximal torus inside G then we have
G = KTK, this is known as the Cartan decomposition of G. This is easy to see in the case of GL(n), where
T is the group of diagonal nonsingular matrices with respect to some basis of C™.

We finish this section with some comments on what happens over an algebraically closed field K of
characteristic p > 0. As we have pointed out before, here the notion of linear reductivity is strictly stronger
than that of reductivity. However, reductive groups satisfy a weaker condition, which is a straightforward
generalization of Condition (e) in Lemma

Definition 1.5. An algebraic group G is said to be geometrically reductive if, for every representation V
of G and every nonzero v € VY, there exists a G-invariant homogeneous polynomial f € C[V]kG with k > 0

and f(v) # 0.

We remark that, in characteristic 0, the notions of linear and geometric reductivity are equivalent (and
they are equivalent to the usual notion of reductivity.) In positive characteristic we have: G is linearly
reductive = G is geometrically reductive < G is reductive. The last part is a theorem of Haboush, see e.g.
IMFK|, Appendix to Chapter 1]. It follows that classical groups are geometrically reductive. It turns out
that geometric reductivity is enough to show many of the results in geometric invariant theory, in particular
Theorem see e.g. loc. cit. We will not go into this.

2. SEMISTABILITY

2.1. Categorical quotients. From now on we will always assume that G is a reductive algebraic group.
We have seen that if G acts on an affine variety X, then the algebra of invariants C[X]“ is finitely generated.
So it defines an algebraic variety.

Definition 2.1. The variety X//G := Spec C[X]% is called the categorical quotient of X by G.

We have a natural map = : X — X//G, which is clearly constant on orbits. We remark, however, that this
map does not separate orbits. Indeed, the map is continuous, so it sends the closure of an orbit to a single
point, and orbits are not necessarily closed. However, the next best thing happens.
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Lemma 2.2. Let 01,09 C X be G-orbits. The following are equivalent.
(a) 01 N0y = 0.
(b) There exists f € C[X]® with flo, =1, flo, = 0.

Proof. (b)= (a) is clear. We show (a) = (b). Let mj, my be the ideals of functions vanishing on Oy, Os,
respectively. Since the closures O, 0, are G-stable, so are the ideals mi, my. By our assumption, the map
m; @ mg = C[X], (f1, f2) — f1 + fo2 is surjective. Since G is linearly reductive, it follows that we can find
f1€ m? =m; NCIX], fo € mg = my N C[X]“ with f; + fo = 1. The function f, satisfies the requirement

of (b). O
Corollary 2.3. Let G be a linearly reductive group acting on the affine algebraic variety X. Then, the

closure of every orbit Q contains a unique closed orbit. Moreover, this is the orbit of minimal dimension
inside Q.

Example 2.4. Let us see that Lemma may fail if G is not linearly reductive, even if the algebra C[X]% is
finitely generated. Take the additive group G, acting on C? as in Example that is, t.(z,y) = (z,y + tx).
Note that every orbit is closed. Indeed, these are the lines x = ¢ for ¢ # 0 and every point of the form (0,y)
is a single orbit. However, the invariant ring is Clx] C Clz,y|, which fails to separate closed orbits of the

form (0,y).

Let us mention an important result that will be useful later. Right now, we are in a position to prove one
direction in a very easy way. The other direction is considerably harder.

Lemma 2.5 (Matsushima’s Criterion). Let G be an algebraic group and let H C G be a closed subgroup.
Then, G/H is affine if and only if H is reductive.

Proof. We only prove the ‘if’ part. Consider the action of H on G by right multiplication, so that the
cosets in G/H are precisely orbits for this action. Since H is closed and reductive, Lemma implies that
G/H = Spec(C[G]"), so it is indeed an affine variety. O

The following results give us a few more properties of the map 7.
Proposition 2.6. The map 7 is surjective.

Proof. Let y € X//G. Let m, C C[X]“ be the maximal ideal of the point y, and let fi,..., fm € m, be
generators. It is easy to see from Definition [1.1f that n := ) " | C[X]f; is a proper ideal in C[X]. So any
point defined by a maximal ideal lying above n maps to y under the map m. We are done. (|

Proposition 2.7. Let Z C X be a G-invariant closed subset of X. Then n(Z) C X//G is closed.
Proof. Let m be the ideal of functions vanishing on Z. Since Z is G-invariant, G’ acts on m and so it acts
on the quotient ring C[X]/m = C[Z]. Since G is reductive, the surjection C[X] — C[X]/m induces an

isomorphism C[r(Z)] = C[X]%/m® 5 (C[X]/m)¢ = C[Z//G]. Geometrically, we have that the following
diagram commutes:

A z Z)/G

m(Z)
The map 7z is a surjection thanks to Proposition 2.6l The result follows. O
Remark 2.8. Note that from the proof of the previous proposition it also follows that w(Z) = Z//G.

To conclude, we have proved the following properties of .

Theorem 2.9. Let X be an affine variety and G a linearly reductive group acting on X. Let m: X — X//G
be the quotient map. The following is true.

(a) 7 is surjective.

(b) Ewvery fiber of ™ contains a unique closed orbit.
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(c) If Z C X is a closed, G-stable subvariety then w(Z) C X//G is closed and w(Z) = Z//G.
Let us turn those properties of 7 into a definition.

Definition 2.10. Assume that an algebraic group G acts on a (not necessarily affine) variety X. A good
quotient of X by G consists of a pair (Y,m : X — Y) where Y is a variety and 7 is an affine morphism
satisfying:

(1) 7 is G-invariant.

(2) 7 is surjective.

(3) For every open affine U CY, n* : C[U] — C[x—Y(U)] is an isomorphism of C[U] onto C[x~1(U)]%.

(4) For every closed invariant subset V. C X, we have that w(V') is closed in'Y.

(5) If V1, Vi are closed, disjoint and G-invariant then w(V1) Nw(Va) = 0.

2.2. Stable points: the affine case. In this subsection we still assume that X is an affine algebraic
variety on which the linearly reductive group G acts. As we have seen, the variety X//G parametrizes closed
G-orbits. Then, we introduce the following notion.

Definition 2.11. A point xz € X is said to be stable for the G-action if the following two conditions are
satisfied.

(i) The orbit Gx C X is closed.
(ii) The stabilizer group G, C G is finite.
We denote the set of stable points by X°.

Proposition 2.12. Let Z := {z € X : dim G, > 0}. Then, X* = X \ m (7 (2)).

Proof. Let x € X. Suppose first that 7(x) € w(Z). We show that ¢ X*. If x € Z then Condition (ii) in
Definition is not satisfied, so we may assume that z & Z. Since Z is G-stable, it follows that 7! (7(x))
contains at least two orbits. But this is precisely {y € X : z € Gy}. Thus, if the orbit of z is closed we may
find y € 77 1(w(x)) such that G.z C G.y is the unique closed orbit. In particular, dim Gz < dim Gy < dim G,
so Condition (ii) is not satisfied. In any case, we get = ¢ X°*.

On the other hand, assume = ¢ X*. Then one of the conditions (i) or (ii) in Definition is not satisfied.
If Condition (ii) is not satisfied then = € Z and we are done. So assume that Condition (i) is not satisfied.
Let O C G.x be the unique closed orbit inside G.z. Then dim O < dimG.x < dim G. It follows that y € Z
for any y € Q. But 7(y) = 7(x), so z € 7 }(7(Z)). We are done. O

We remark that, using the notation of the previous proposition, Z is a closed set. Indeed, it is easy to
see that for every i = 0,...,dimG, X; := {zr € X : dim G, < i} is open, and Z = X \ Xy. Since Z is also
G-invariant, it follows that X* is open. Moreover, from Proposition [2.12| we have that 7(X*) = X//G\ 7 (Z),
so from Proposition it follows that 7(X*) C X//G is also open. Moreover, X* = 7~ !(7(X?)).

Now assume that x € X is stable. Let ¥y € X be such that Gz N Gy # (. Since Gz is closed, this is
equivalent to saying that Gz C Gy. So Gz is the unique closed orbit inside Gy and therefore its dimension
is minimal among the dimensions of the orbits contained in Gy. But, since z is stable, dim Gz = dim G. It
follows that Gx = Gy. Thus, we get the following result.

Proposition 2.13. The map 7 : X°* — 7(X?) gives a bijection between w(X?®) and the set of G-orbits in
X,

Definition 2.14. Let X be a (not necessarily affine) variety acted on by the algebraic group G. A geometric
quotient of X by G is a good quotient which is also an orbit space, that is, the map w in the definition of a
good quotient separates orbits.

So we see that the map 7|xs is a geometric quotient. There are a few problems, though. Stable points
may not exist, even in the simplest example.

Example 2.15. Consider the action of G = C* on X = C" by t.x = t 'x. Clearly, C[X]% = C, so
X//G = pt, and X* = (.
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2.3. Linear actions: the projective case. From now on, we will assume that X is a projective algebraic
variety. Let us assume that the reductive group G acts on X, and let us fix a closed embedding X — P".

Definition 2.16. A linearization of the G-action on X is a linear action of G on C"*1! inducing the original
action on X. A linear action of G on X is an action together with a chosen linearization.

We remark that, if we do not fix the embedding X < P”, then a linear action of G on X amounts to
choosing a G-equivariant very ample line bundle # on X. A linear action of G on X clearly induces an
action of G on Clzg,1,...,z,]. Here, zg,...,r, are the standard coordinate functions in C"*!. Now let

X C C"*! be the affine cone that 6 maps to X under the projection (GLEEN {0} — P". By definition, X is
stable under the G-action. Since X is a cone, there is a natural C*- action on X and it is clear that the G-
and C*-actions on X commute. In more algebraic terms: the algebra C[X X] is graded, with Clx X]o = C, and
the action of G on C[X ] preserves the degree of an element. In particular, the algebra C[X 1€ is a finitely

generated graded algebra. So it makes sense to consider Y := PrOJ((C[X ]¢). This is a projective variety that
we call the GIT quotient of X by G.

Of course, the variety Y depends on the choice of a linearization 6 of the G-action. Now we would like to
explain in which sense Y is a reasonable quotient of (an appropriate subset of) X by G. To do so, first we
recall a few basic facts on the Proj construction.

Lemma 2.17. The following is true.

(i) Y is covered by affine open sets Yy for f € C[X ] an homogeneous element of degree > 1. Moreover,
Clyy] = C[X]9[f Yo, the algebra of degree 0 elements on C[X]1°[f Y.

(i) Let X0 .= | U{X;: f € (C[ X is homogeneous of degree > 1}. Then, the morphisms Xy =Yy
induced by the inclusions C[X]%[f Yo — C[X][f Yo glue together to give a (by definition, affine)
morphism ¢ : X075 Y,

Based on the previous lemma, we make the following definition.

Definition 2.18. Let G act on the projective varielty X and fiz a linearization 6 of this action. A point
r € X is said to be -semistable if there evist n > 0 and f € C[X]S with f(x) # 0. Thus, the set of
0-semistable points is precisely the set X9~ from Lemma .

So we get a map ¢ : X975 — Y. Let us examine the properties of this map that follow from the work we
have already done with affine varieties.

Proposition 2.19. The map ¢ : X?=%% =Y is a good quotient of X% by G.

Proof. Recall that the map ¢ is constructed by glueing maps between affine varieties. Moreover, it is clear
that for f € C[X]¢, n > 0, we have that C[Yy] = CIX]9[f 1o = (C[X][f o) = C[Xf]. This observation,
together with Theorem completes the proof. ]

For the affine case, we were able to find an open subset X® of X such that the restriction of 7 : X — X//G
behaves like a geometric quotient. We would like to do the same for the projective case. This motivates the
following definition.

Definition 2.20. Fiz a linearization 6 for the action of G on X. A point x € X is said to be f-stable
if dimG.x = dimG, and there exist n > 0, f € C[X|S with x € X; and the action of G on Xy is

closed (meaning that all orbits are closed in Xy¢.) We denote the set of stable points by X0=s5_ Clearly,
X@—s C X@—ss'

We remark that X%~ is open in X. Indeed, the set {z € X : dim G.z = dim G} is open in X since the
dimension of an orbit is a lower semi-continuos function on z.

Proposition 2.21. There exists an open subset Y° CY such that ¢~ (Y®) = X9=5. Moreover, O xo-s 1S @
geometric quotient.
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Proof. Let Y* := ¢(X%~*). We must show, first, that Y* is open in Y. In order to do so, let YO := | J{Y} : f €

C[X]C for some n > 1 and the action of G on X ¢ is closed}, this is clearly an open subset of Y. We remark
that ¢| #—1(Yp) 1s & geometric quotient - it is a good quotient since this is a local notion, and by the definition
of Y0 it is an orbit space. This already implies that X?~% = ¢~1(Y*) and that ¢(¢~1(Yp) \ X97%) = Y, \ Ys.
Since @|g-1(yy) is a geometric (in particular, good) quotient, this is a closed set in Yp. So Y%=% is open in
Y, and so it is also open in Y. Finally, it is an easy exercise to show that ¢ : X% — Y* is a geometric
quotient. ]

So we see that ¢ : X~ — Y® is a geometric quotient. By construction, the variety Y is compact and
should be thought of as a compactification of the orbit space Y*. The following is a slightly easier description
of stable points.

Proposition 2.22. For z € X755 the following are equivalent.
(1) z € X0,
(2) The orbit G.x is closed in X~*% and dim G.x = dim G.
(3) The orbit G.x is closed in X% and the stabilizer Gy, is finite.

Proof. (1) = (2). Assume z € X%~%. The only thing we need to show is that G.z is closed in X975, Well,
we have that ¢~ '(¢(z)) € X%=%, this follows from the previous proposition. Now, ¢~1(¢(x)) is clearly a
closed subset of X975 and so G.z N X755 C ¢~ (4(x)) € X975, By Proposition the action of G on
X5 is closed. So G.z is closed in X5, Therefore, G.z = G.x N X5 = G.2 N X755, So G.z is closed in
XQ—SS'

(2) = (1). First of all, since z € X% there exist n > 0 and f € C[X]S with z € X¢. Since G.x is closed
in X975 it is also closed in X¢. Now, consider Z := {y € Xy : dimG.y < dim G}, this is a closed subset of
Y that is disjoint from G.x. So thanks to -a slight generalization of- Lemma we may find g € C[X f]G
with g(Z) = 0,¢(xz) = 1. Recall that, by definition, C[X] = C[X][f Yo, so g = h/f for some invariant
homogeneous h € C[X] (note that here we are using that G is reductive.) Clearly, z € X € X¢\ Z. Thus,
for every y € Xyp,dimG.y = dim G. This implies, thanks to Corollary that the action of G on Xy,

is closed. Finally, (2) < (3) follows from the arguments in this paragraph and Matsushima’s criterion, cf.
Lemma O

2.3.1. Ezample: Quadric hypersurfaces in P"™. A quadric hypersurface in P” is the set of zeroes of an homoge-
neous polynomial of degree 2 in C[xo, ..., x,|. These can be identified with the projective space P(S), where
S is the set of symmetric (n+1) x (n+1)-matrices. So we get an action of SL(n+1) on S by g.A4 = (¢*) "1 Ag~!
that descends to an action on P(S). Let us find stable and semistable points here. First, there is a clear
homogeneous invariant, the determinant det, and we have P(S)4e; C P(S)?7%5. It is clear that P(S)qe is a
single SL(n+1)-orbit. Note, however, that dim(P(S)ge;) < dim SL(n+1), so points in P(.S)ge are not stable.

We claim now that if f € C[S] is homogeneous and invariant then there exists A € C, k > 0 such that
f = Adet®. This follows easily from the fact that P(S)qet is a single SL(n + 1)-orbit and P(5)get is dense
in P(S). So we get that there are no stable quadric hypersurface in P(n) and a quadric hypersurface is
semistable if and only if it is nonsingular. The GIT quotient is Y = Proj(C[det]) = pt.

2.3.2. Example: Binary cubics. A binary form of degree n is a homogeneous polynomial of degree n in 2
variables:

-1 ~1,2
[ =aoxi + arxy” 1+ agxy ]+ -+ apay

Note that the set of binary forms of degree n forms a vector space V,, 41 of dimension n + 1 that we are
going to identify with C"*!. The corresponding projective space P" is in correspondence with the set of n
points (with multiplicities) on P!': a binary form f corresponds to the roots of the equation f(xq,z1) = 0.
We have a natural action of SL(2) on P!, that therefore determines an action on P”. We linearize this action
as follows: SL(2) acts on V41 by:
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g-f(xo,w1) = f(g~ (xo,21)) [ € Viyr, g € SL(2)
We recall that for z1, T2, 23, Y1, y2, y3 € P!, with the /s and y’s all distinct, there exists a unique element
g € PGL(2) with g(z;) = y;. This fact will be important in our argument. We focus in the case n = 3, the
so-called binary cubics. We have one invariant, the discriminant

A= 270%(1% — a%a% — 18agpayaqas + 4a0a§ + 4a:{’a3
The set P is the set of all binary cubics without repeated roots. So P is a single SL(2)-orbit. Note that
]P’i is dense in P3 and so by a similar argument to that of Example we get that every homogeneous
invariant has the form AA* for A € C, k > 0. Thus, P4 = (P?)?~**. Moreover, dimP% = 3 = dim SL(2), so
by Proposition we get P = (P3)77%¢ = (P3)?~%. The GIT quotient Y is again a point.

We will examine binary forms of higher degree in the next section, after we have developed more sophis-
ticated tools for finding (semi)stable points.

3. THE HILBERT-MUMFORD CRITERION

So far, the only way we have to find (semi)stable points is to explicitly find invariants and look at their
non-vanishing locus, see e.g. Examples The goal of this section is to explain a more numerical
criterion for computing stability. We start with the following re-statement of the notion of stability. So fix
a projective variety X — P", with a linear action of a reductive group G.

Lemma 3.1. Let x € X and let T € C"*! be a point lying over x. Then:
(i) x is semistable if and only if 0 ¢ G.T.
(ii) x is stable if and only if G.T is closed and the stabilizer Gz is finite.

Proof. The proof of (i) is an exercise, while (ii) is a reformulation of Proposition [2.22] O

3.1. The Hilbert-Mumford Criterion. In this subsection we state and prove the Hilbert-Mumford Cri-
terion. This is a technique that allows us to find the locus of (semi)stable points in X by looking at actions
of 1-parametric subgroups of G, that is, morphisms A : C* — G. It is, basically, a consequence of the
following theorem.

Theorem 3.2 (Hilbert-Mumford Criteriﬂl). Let G be a reductive algebraic group acting rationally on a
vector space V. Let x € V and let y € Gz be such that Gy s the unique closed orbit in Gx. Then, there
exists a 1-parametric subgroup A : C* — G such that limy_o \(t).x € Gy.

Let us say a few words on the proof of Theorem We follow a proof by R. Richardson in [B]. We
remark that this proof, while considerably more elementary than the one in [MFK], does not generalize to
arbitrary characteristic. We will use the fact that, for a C-vector space V and a locally closed subset W C V/
(for example, an orbit under the action of a reductive group) we have W = W" where " denotes the closure
in the usual topology. So assume the hypothesis in the statement of Theorem First, we reduce to the
case where G is a torus. This is done by the following.

Claim: There exists a mazimal torus T C G such that G.yNT.x # ()

We proceed by contradiction. Assume the claim is not true, that is, G.y N T.z = () for every maximal
torus T of G. Choose any maximal torus T. For z = gr € G.x, we get T.z = g(g~'Tg).z, so that
GynT.z=g(Gyn(g~1Tg).wx) = ) because g~'Tg is a maximal torus. Thus, there exists f, € C[V]T such
that f,(G.y) = 0 and the restriction of f, to T.z is the constant 1. Let U, C V be the open set defined by
[z

Now we pick a Cartan decomposition G = KTK of G. Since K.z is compact and K.z C (J,.q, U,
we have that there exist z1,...,z; such that K.x C Ule U.,. We define the function f : V" — R by
flz) = Zle |f2 (2)|. Note that this function is continuous in the usual topology, and that 0 ¢ f(K.x). So f
attains a strictily positive minimum value on K.z. Since f is clearly T-invariant, the same is true for TK.x
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and TK.z' . Since f(G.y) =0, we see that G.yN TRz’ = (), hence G.y N KTK.z' = (. We claim that this
is already a contradiction. Indeed, using that G = KT K we have:
Gr=KTKxCKTKz')CKGz =Gua’

Since K is compact, KT K 2" is closed in the usual topology. So from the above chain of inclusions we
get KTK.z =Gz’ =Ga. So G.yNG.x =0, a contradiction. Thus, the claim is true.

Now we need to show Theoremin the case where G =T = (C*)", a torus. So let V be a representation
of T and let x € V. First, note that we have a weight decomposition for V: there exist a,...,a € Z", not
necessarily all distinct, such that:

Let e; € V,,, be nonzero. So we have x = Zle xie;, and we may assume without loss of generality that

x; # 0 for all i. We remark that T.z is closed in the set {Zle yie; € V 1 y; # 0 for all i}, this follows
because the image of T" under the action map is closed in GL(V).

Now let X := {m = (mq,... ) 6 Zk ZZ ymic; =0}, and X = XﬂZ>O For any m € X we have
amapm:V — C, > vie; — 1)1 k *. By definition, m|r, is a nonzero constant, so mlﬂ is also that con-
stant. It follows that if there exists i € {1,...,k} with m; # 0, then for every y = Y y,e; € T.x we must have
y; # 0. By the observation at the end of the previous paragraph, {i € {1,...,k} : m; =0 for allm € X}
is nonempty. Changing the order if necessary, we may assume that this set is {1,...,m} for some 1 <m < k.

An exercise now is to check that there exists a linear map f : Z"™ — Z such that f(a;) >0ifi=1,...,m
and f(a;) =0if i =m+1,...,k. A hint: if we denote by W the subgroup generated by {am+1,..., %},
then 0 is not in the convex hull of {ay +W,..., oy + W} in Z™/W. This map determines a 1-parametric
subgroup A : C* — (C*)", t — (tf(ei))?zl, where {¢;} is the tautological basis of Z". Note that, by definition,
we get:

%gr(l))\ %E%th Ti€; —l;lxzez—

To finish the proof, we show that T.y is closed. If it is not then, repeating the procedure above, we
may find a 1-parametric subgroup A with limy_,o N (¢).y = Zf:mﬂ zhe; =: z, with 2} = x; or 0. Since
z € G.y C G.z, then by our work above we have that z # 0 for all i € {m+1,...,k}. So z =y. Thus, T.y
is closed.

3.2. A numerical criterion. Let us rephrase the Hilbert-Mumford criterion in the way we are going to
apply it. To do so, we introduce some notation regarding 1-parametric subgroups. So let G be a reductive
algebraic group acting rationally on V and let A : C* — G be a 1-parametric subgroup. So we may consider
V as a representation of C*. Every such representation V' is completely reducible, so there exists a basis
€o,...,en of Vand ro,...,r, € Z such that A(t).e; = t"e;. For a nonzero v =) " ,ve; define:

(v, A) == max{—r; : v; # 0}
Note that by definition we have, for p € Z

does not exist if o < p(v, A)
Hm ##(A(8).v) = 4 25020 Gou(unrvies 7 0 i p = pa(v, A)
0 if > p(v, A)

So u(v, ) does not depend on the chosen basis. It follows that:
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wv,A) >0 < limy_,o A(t).v does not exist
w(v,\) =0 < limy_0 A(t).v exists and it is nonzero

(1)

So an obvious consequence of and Lemma is the following.

Proposition 3.3. Assume a reductive group G acts on the projective variety X — P, and fix a linearization
for the action with respect to this inclusion. For x € X, let T be a lift of x to C"*1. Then, x is semistable
if and only if u(z,\) > 0 for every 1-parametric subgroup \ of G.

Let us proceed to stability.

Proposition 3.4. With the notation of Proposition we have that x is stable if and only if u(z,A) >0
for every nontrivial 1-parametric subgroup A of G.

Proof. We need to show that x is stable if and only if, for every nontrivial 1-parametric subgroup A,
lim; 0 A(t).Z does not exist. First, assume that x is stable. If there exists a l-parametric subgroup with
y := limy_,0 A(t).Z, then y € G.Z = G.T is stabilized by A(C*), contradicting the fact that the stabilizer of
T is finite.

Conversely, assume that for every 1-parametric subgroup A : C* — G, lim;_0 A(t).Z does not exist. It
follows immediately from the Hilbert-Mumford criterion that GG.x is closed, hence affine. By Matsushima’s
Criterion, Gz is reductive. Thus, if it is not finite then, thanks to the Cartan decomposition, it must con-
tain a 1-dimensional torus. But then we can find a l-parametric subgroup stabilizing Z, contradicting our
hypothesis. Thus, x is stable. O

3.3. Example. Binary forms. Let us apply the Hilbert-Mumford criterion to find the (semi)stable binary
forms of degree n, see Example First of all, we remark that every l-parametric subgroup of SL(2) is
conjugate to one of the form:

0
)\r.t»—><0 t’”)’ r>0

which can be easily seen from the fact that every representation of C* is completely reducible. So a binary
form is not (semi)stable if and only if it is SL(2)-conjugate to one for which p(f, Ar) <0 (< 0) for some 7.
Now, it is obvious that A, (t).xéa:’f_i = t’“(%_”)x% ?_i, so the induced action of C* is diagonal with respect
to the obvious basis of the space V,,4+1 of binary n-forms. Thus,

n
u(f = Z aim%):l"?lliia Ar) = r(n — 2ip),
=0

where i := min{i : a; # 0}. Thus, we have u(f, A\,) <0 (< 0) if and only if a; = 0 for i < n/2 (i <n/2,)
that is, if and only if the point [0 : 1] is a 0 of multiplicity > n/2 (> n/2.) So we get.

Proposition 3.5. A binary n-form is (semi)stable if and only if no point of P! occurs as a point of multi-
plicity > n/2 (> n/2) for the given form. In particular, if n is odd, a form is semistable if and only if it is
stable.

Note that for the case n = 3 this agrees with Example but has the advantage that we do not need
to compute the invariants. For the case n = 4, we have that a binary quartic is stable if all of its points
are simple, and there are two types of semistable quartics: those with two double points and those with
one double point and two simple points. For the stable quartics, we can fix one of the points and can send
the other three points to any other three points. So, if ¢ : P(V}) — Y denotes the quotient, we have that
¢(P(V4)?) = C. Similarly, we can see that each type of semistable quartics forms a single SL(2)-orbit. These
two orbits get identified to a single point in the quotient, and Y = P!,
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3.4. Example: N ordered points on a line. Let us describe first a general situation. Let X be a projec-
tive variety and fix an inclusion X < P". Assume the reductive group G acts on X and fix a linearization
of this action with respect to the fixed inclusion X < P". Consider the diagonal action of G on X~. We
claim that this action has a natural linearization. Indeed, first of all note that X% is a projective variety
via the Segre embedding (P")Y < P*¥, k = (n + 1) — 1. By the very definition of the Segre embedding,
the induced action of G on the N-fold tensor product (C"*1)®V is a linearization of the diagonal action of
G on XV,

Now let A be a 1-parameter subgroup of G. It is an easy exercise to see that, for x1,...,xy € X:
N
pl(@1,. s mn), A) = > @i, )
i=1

Let us apply this in a concrete situation. Let X = P!, G = SL(2). Using the notation from the previous
example, we have that for z € P!

)z #[0:1]
H@ ) = {—r x=10:1]

Thus, for x = (21,...,2x5) € (PYY, let ¢ = #{i : 2, = [0: 1]}. We have u((x1,...,2N8),Ar) = (N — 2q)r.
Then, we get that a point (x1,...,2y) is (semi)stable if and only if no coordinate is repeated > (>) N/2
times. Note, in particular, than if N is odd then every semistable point is stable.

3.5. Example: Plane Cubics. A plane cubic is a curve in P? defined by an homogeneous polynomial of
degree 3. We assume that this polynomial has the form

3 2 2 3 2 2 2 2 3
f = asor3 + ag1x722 + a122125 + ap3xh + azroxr] + a11x01T2 + ageTorsy + a10Tyx1 + ap1Tpx2 + agoxy

We have an action of SL(3) on the set of all plane cubics. This action is clearly linear. Now, every
1-parametric subgroup of SL(3) is conjugate to one of the form:

At diag(t0, ¢ 7)), 19 > 11 > ro,mg + 11+ 12 =0

Under such A, we have that:

p(f,A) =max{(3 —i— j)ro+ir1 + jra : a;; # 0}

So, if u(f,\) < 0, then agp = a9 = apr = agp = a11 = 0. Conversely, if these numbers are 0 then for
ro=3,11 = —1,70 = —2 we get u(f,\) < 0. So we get that a curve is not semistable if and only if [1: 0 : 0]
is a triple point or a double point with a unique tangent. Then, a curve is semistable if and only if it has no
triple points and no double points with a unique tangent.

Let us now find the stable locus. First of all, if [1 : 0 : 0] is a singular point then agp = a9 = ap1 = 0.
Taking now 79 = 2,71 = —1 = ro we get u(f,\) < 0. So f is not stable. Thus, if f is stable then it has
no singular points. Conversely, we check that if there exists A of the form above such that pu(f,A) < 0
then f has a singular point. We have that, if this is the case, then agg = a9 = 0. If agpy = 0 then
[1:0:0]is a singular point and we are done. If ajg # 0 then 2rg + ro < 0, so that ro = —2rg, 71 = 19
(indeed, we cannot have 2rg + ro < 0 because of the requirements rg > r1 > 79,79 + 71 + ro = 0.) Thus,
(A, f) = max{(3 — 3j)rg : a;; # 0}. Thus, u(f,A) < 0 if and only if ajp = 0 for all i. This implies that
f = xof’ for some form f’ of degree 2. So f is singular at points for which x9 = f' = 0. To conclude, f is
stable if and only if it is nonsingular.
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4. LUNA’S SLICE THEOREM

We finish these notes with a brief discussion of the étale slice theorem of Luna and some of its applications.
This is a fundamental result that is helpful in studying the étale topology of the affine quotients X//G from
Subsection We remark that throughout this section all our varieties are defined over C. Over fields of
positive characteristic, the definitions become slightly more complicated.

4.1. Etale Slices. We recall first the notion of an étale morphism. For a variety X and a point x € X, we
denote by O, then stalk of the structure sheaf at zx.

Definition 4.1. Let X, Y be varieties and let f : X — Y be a morphism. For x € X, the morphism f is
called étale at x if the map (’)j}(x) — O is an isomorphism, where o denotes the completion at the mazimal

ideal. We say that the map f is étale if it is étale at every point x € X.

So a morphism is étale at x if it induces an isomorphism between the formal neighborhoods of = and f(z).
For example, an open immersion is étale. We remark that étale morphisms are stable under composition
and base change.We remark that, if X is smooth at = and Y is smooth at f(x), then f is étale at x if and
only if T f : Ty X — Ty(;)Y is an isomorphism. Now let us bring a G-action into the picture.

Definition 4.2. Let G be a reductive group; X, Y affine G-varieties and a G-equivariant map f: X — Y.
We say that f is strongly étale if
(i) The induced map f : X//G — Y//G is étale.
(ii) The G-morphism f x mx : X =Y Xy X//G is an isomorphism.
In other words, f is strongly étale if the following diagram is Cartesian with the bottom horizontal arrow
being étale.

X Y
-
X//G Y//G

Now assume f : X — Y is a strongly étale G-morphism. The following are immediate consequences of
the definition.
(1) f is étale and its image is an open subset U C Y satisfying U = my" (my (U)).
(2) For every u € X//G, f induces an isomorphism 75" (u) 2 73 (f(u)).
(3) For every z € X, f|g.4 is injective. Moreover, G.z is closed if and only if G.f(z) is closed.

We are now ready to give the definition of an étale slice. So let X be an affine G-variety and « € X be
such that G.x is closed, in particular G is reductive. Let S C X be a locally closed, G -invariant subvariety
of X, with € X. We have a G-action on G x S that is given by h.(g,s) = (gh !, hs). The multiplication
morphism p: G xS — X, (g,s) — gv is Gg-invariant and so it induces a morphism of G-varieties:

wS,z -G X Gy S = (G X S)//Ga; — X
where G acts on the domain by left-multiplication on the first component.
Definition 4.3. S is called an étale slice at x if the map s, is strongly étale.

Let us remark that (G x¢g, S)//G = S//G5. So, paraphrasing, S is an étale slice if the diagram

G % . S wS,z X
\L "pS,x l
S//Ga X//G

is cartesian and the morphism g, (and therefore also tg,) is étale. Thus, we have an isomorphism

OQ,S//Gx = OQ,X//G'
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4.2. The étale slice theorem.

Theorem 4.4 (Luna’s Slice Theorem). Let G be a reductive algebraic group acting on an affine variety X
and let x € X be such that the orbit Gz is closed. Then, there exists an étale slice S at x.

We remark that, if X is smooth at x then we automatically have that S is smooth at z and that
T.X =T,(G.x) ®T,S. Even more is true.

Theorem 4.5 (Luna’s Slice Theorem for smooth varieties). Under the assumptions of Theorem assume
moreover that X is smooth at x.. Then, there is an étale Gy-invariant morphism ¢ : S — T, S such that
¢(x) =0,T¢, = id and:
(a) The image of ¢ is an open subset U of T,.S satisfying U = 7= *(w(U)), where 7 : TS — (T,.5)//G
1s the projection.
(b) The map ¢ : S — T,S is a strongly étale G,-morphism.

Let us give a brief sketch on how to construct S in the smooth case. First, we have the following result.

Lemma 4.6. Let G be a reductive group acting on an affine variety X. Let x € X be a smooth point, and
assume that G, is reductive. Then, there is a morphism ¢ : X — T, X such that:

(1) ¢ is Gy-invariant.

(2) ¢ is étale at x.

(3) ¢(z) = 0.
Proof. Let m,, C C[X] be the maximal ideal corresponding to x € X, and denote by d : m, — m,/m2 =
(T, X)* the projection. Note that this map is Gy-equivariant. Since G is reductive, we may find a G-
invariant subspace W C m, such that the restriction d|w : W — (7, X)* is an isomorphism. We denote o :=
(d|w)~!, which extends to a map between the symmetric algebras: S(a) : S(T;X) — S(W). Composing
this with the canonical map S(W) — m, C C[X], we get a map ¢ : X — T, X. It is easy to check that ¢
satisfies (1), (2) and (3). O

Now, assume that x € X is smooth, and G.z is closed. Since G, is reductive, we may find a G, -splitting:
T.X =T,G.x & N. Now let ¢ be the map constructed in Lemma and let U := ¢~ 1(N). We remark,
first, that U is a Gy-invariant subvariety with € U and U is smooth at . Moreover, G X, U is smooth
at (1,7) and G xg, U — X is étale at (1, x), this follows because T(1 ,)(G xg, U) = (1G ® T U)/T1G,. A
theorem now is that there exists an affine open subset S C U that is a required slice. For details, the reader
may consult [D].

4.3. Applications of the slice theorem. Let us see a few consequences of Theorems in the study
of the geometry of X and X//G.

Proposition 4.7. Let G act on an affine variety X. Assume that the stabilizer of any point of X is trivial.
Then, the map 7 : X — X//G is a principal G-bundle.

Proof. We remark, first, that if the stabilizer of any point is trivial then any orbit is closed (otherwise the
closure of an orbit will contain a point with nontrivial stabilizer, see Corollary ) Now, for any =z € X//G,
choose a lifting 7 € X, and let S be an étale slice through z. Since Gz = {1}, G xg, S = G x S, and we
have a Cartesian diagram

sz
G xS > X
g sz X/
With the maps ¥ gz and 15z being étale. This is precisely the definition of a principal G-bundle. O

Proposition 4.8. Let G act on the affine, smooth variety X. Assume that the stabilizer of any point of X
is trivial. Then, X//G is smooth.

Proof. The only difference with the previous proposition is that, thanks to Theorem we can take S to
be smooth at Z. Since ¢y z is étale, this shows that X//G is smooth at z. O
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Proposition 4.9. Let G act on an affine variety X, and let x € X be a point such that G.z is closed. Then,
there exists an open meighborhood U of x such that for every y € U there exists g € G with g~ G,g C G,.

Proof. Let S be an étale slice through X, and let U = img,. Since we have a Cartesian diagram

G xq. S Ysz X
l Ysz l
SI/Ga X//G
we see that for every y € U, Gy = Gy for any ' € @Dgi(y) Now, for (g,s) € G x S, the stabilizer of its
image in G X, S is precisely g(Gz)sg~!. Thus, if y = gs, g7 1Gyg C (G)s C Ga. O
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