## OPERS I

EKATERINA BOGDANOVA

Recall that in [K][Theorem 3.3.1] we proved
Theorem 0.1. There is a canonical isomorphism

$$
\mathfrak{z}\left(\hat{\mathfrak{s}}_{2}\right)_{x} \cong \mathbb{C}\left[\operatorname{Proj}\left(D_{x}\right)\right],
$$

where $\operatorname{Proj}\left(D_{x}\right)$ is the space of projective connections on $D_{x}:=\operatorname{Spec}\left(\mathcal{O}_{x}\right)$.
In this note we will show that Theorem 0.1 implies
Theorem 0.2. There is a canonical isomorphism

$$
\mathcal{Z}\left(\widetilde{U}_{\kappa_{c}}(\mathfrak{g})\right)=: \mathcal{Z}\left(\hat{\mathfrak{s l}}_{2}\right)_{x} \cong \mathbb{C}\left[\operatorname{Proj}\left(\stackrel{\circ}{D}_{x}\right)\right],
$$

where $\operatorname{Proj}\left(\stackrel{\circ}{D}_{x}\right)$ is the space of projective connections on $\stackrel{\circ}{D}_{x}:=\operatorname{Spec}\left(\mathcal{K}_{x}\right)$.
We will also generalize the statements in the following way. Let $G$ be a simply-connected semi-simple algebraic group with the root system $\Delta$. Let $\Delta$ be the dual root system.

Definition 0.1. Langlands dual group $\check{G}$ is the adjoint group with root system $\check{\Delta}$.
The goal of this seminar is to prove
Theorem 0.3. There is a canonical isomorphism

$$
\mathfrak{z}(\hat{\mathfrak{g}})_{x} \cong \mathbb{C}\left[\mathrm{Op}_{\tilde{G}}\left(D_{x}\right)\right],
$$

where $\mathrm{Op}_{\check{G}}\left(D_{x}\right)$ is the space of opers, which will be analogs of projective connections for general $\check{G}$.
Theorem 0.4. There is a canonical isomorphism

$$
\mathcal{Z}(\hat{\mathfrak{g}})_{x} \cong \mathbb{C}\left[\mathrm{Op}_{\check{G}}\left(\stackrel{\circ}{D}_{x}\right)\right] .
$$

1. Generalities on connections.

Throughout this section let $G$ be adjoint group. Let $X$ be a smooth variety, $\mathcal{P}$ be a principal $G$ bundle. Abusing notation we will also denote the total space of this principal $G$-bundle by $\mathcal{P}$, and projection to $X$ by $f$.

We have a $G$-equivariant short exact sequence

$$
\begin{equation*}
0 \rightarrow f^{*} \Omega_{X}^{1} \rightarrow \Omega_{\mathcal{P}}^{1} \rightarrow \mathcal{O}_{\mathcal{P}} \otimes \mathfrak{g}^{*} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

Definition 1.1. A connection $\nabla$ on $\mathcal{P}$ is a $G$-equivariant section of (1.1).
Or, equivalently, a section $\mathcal{P} \times_{G} \mathfrak{g}^{*} \rightarrow\left(f_{*} \Omega_{\mathcal{P}}^{1}\right)^{G}$ of

$$
\begin{equation*}
0 \rightarrow \Omega_{X}^{1} \rightarrow\left(f_{*} \Omega_{\mathcal{P}}^{1}\right)^{G} \rightarrow \mathcal{P} \times_{G} \mathfrak{g}^{*} \rightarrow 0, \tag{1.2}
\end{equation*}
$$

where $\mathcal{P} \times{ }_{G} \mathfrak{g}^{*}$ is, by definition, the quotient of $\mathcal{P} \times \mathfrak{g}^{*}$ by the diagonal action.
Given a trivialization of $\mathcal{P}$ we get another section. Namely, then we get $\mathcal{P} \cong X \times G$ and therefore

$$
\Omega_{\mathcal{P}}^{1} \cong f^{*} \Omega_{X}^{1} \oplus\left(\mathcal{O}_{\mathcal{P}} \otimes \mathfrak{g}^{*}\right)
$$

Taking the difference we obtain an element of $\operatorname{Hom}\left(\mathcal{P} \times_{G} \mathfrak{g}^{*}, \Omega_{X}^{1}\right) \cong \operatorname{Hom}\left(\mathcal{O}_{X},\left(\mathcal{P} \times_{G} \mathfrak{g}\right) \otimes \Omega_{X}^{1}\right)$.

Remark 1.2. Let $X$ be a smooth 1-dimensional variety. Choose a local coordinate $z$. Then $\mathcal{P}$ trivializes and the data of the connection is an element of $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathfrak{g} \otimes \Omega_{X}^{1}\right)$, and can be given by

$$
\begin{equation*}
\nabla=d_{z}+A(z) d z \tag{1.3}
\end{equation*}
$$

where $A$ is a function valued in $\mathfrak{g}$. In this formula, $d$ stands for the connection coming from the trivialization of $\mathcal{P}$.

Below we will abuse the notation and remove the $d z$ from the formula (1.3). We will write a connection in the form

$$
\partial_{z}+A(z)
$$

Exercise 1.3. Under change of trivialization of $\mathcal{P}$ by a function $g: X \rightarrow G$ we have

$$
\partial_{z}+A(z) \mapsto \partial_{z}+g A(z) g^{-1}-\left(\partial_{z} g\right) g^{-1}
$$

These are called gauge transformations.
Now let us specialize to the case $G=\mathrm{PGL}_{2}$. Choose a Borel $B \subset \mathrm{PGL}_{2}$. Suppose we have a connection $\nabla$ on $\mathcal{P}$ and a section $s$ of $\mathcal{P} \times{ }_{G}\left(\mathrm{PGL}_{2} / B\right)$. Note that $\mathrm{PGL}_{2} / B$ is nothing but $\mathbb{P}^{1}$ with the natural action of $\mathrm{PGL}_{2}$.

Remark 1.4. Giving a section $\mathcal{P} \times{ }_{G}\left(\mathrm{PGL}_{2} / B\right)$ is equivalent to giving a $B$-reduction $\mathcal{P}_{B}$ of $\mathcal{P}$. Indeed, for $\mathcal{P}_{B}$ take a fiber product


Construction 1.5. Choose a local section $s^{\prime}$ of $\mathcal{P}$ lifting $s$. This gives a trivialization of $\mathcal{P}$ and hence an element of $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{P} \times_{G} \mathfrak{g} \otimes \Omega_{X}^{1}\right)$. Project to $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{P}_{B} \times{ }_{B} \mathfrak{g} / \mathfrak{b} \otimes \Omega_{X}^{1}\right)$. The result is called the derivative of $s$ along $\nabla$. Note that it does not depend on $s^{\prime}$.

## 2. Opers for $\mathrm{PGL}_{2}$.

Set $X=\operatorname{Spec}(\mathbb{C}[[t]])$ or $\operatorname{Spec}(\mathbb{C}((t)))$.
Notation 2.1. Denote $D:=\operatorname{Spec}(\mathbb{C}[[t]])$ and $\stackrel{\circ}{D}:=\operatorname{Spec}(\mathbb{C}((t)))$.
Definition 2.2. A $\mathrm{PGL}_{2}$-oper on $X$ is a principal $\mathrm{PGL}_{2}$-bundle $\mathcal{F}$ over $X$ with a connection $\nabla$, plus a globally defined section $s$ of the associated $\mathbb{P}^{1}$-bundle $\mathcal{F} \times{ }_{\mathrm{PGL}_{2}}\left(\mathrm{PGL}_{2} / B\right)$, which has a nowhere vanishing derivative along $\nabla$.
Remark 2.3. Note that although $\operatorname{Spec}(\mathbb{C}[[t]])$ and $\operatorname{Spec}(\mathbb{C}((t)))$ are not varieties, the constructions from previous sections still make sense.

For $D$ set $\Omega_{D}^{1}:=\mathbb{C}[[t]] d t$, and note that all $G$-bundles on $D$ are trivial.
For $\stackrel{\circ}{D}$ set $\Omega_{\circ}^{1}:=\mathbb{C}((t)) d t$, and note by $[\mathrm{S}]\left[\right.$ III.2.3. Theorem $\left.1^{\prime}\right]$ that all $G$-bundles on $\stackrel{\circ}{D}$ are trivial.
Remark 2.4. Definition 2.2 makes sense for a smooth curve as well, but we will specialize to $X$.
The condition that the derivative of $s$ along $\nabla$ is nowhere vanishing says that $\nabla$ does not preserve $\mathcal{F}_{B}$ at any point. More precisely:
Exercise 2.5. let $(\mathcal{F}, \nabla, s)$ be a $\mathrm{PGL}_{2}$-oper. Choose a lift of $s$ to $\mathcal{F}$ to get a trivialization of $\mathcal{F}$. Then

$$
\nabla_{\partial_{t}}=\partial_{t}+\left(\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right)
$$

where $a(t)+d(t)=0$. The derivative of $s$ along $\nabla$ is nowhere vanishing if and only if $c(t)$ is nowhere vanishing (i.e. invertible element of $\mathbb{C}[t t]]$ or $\mathbb{C}((t))$ ).

Lemma 2.6. Let $(\mathcal{F}, \nabla, s)$ be as above. Then $\nabla$ can be brought to a form

$$
\partial_{t}+\left(\begin{array}{cc}
0 & v(t) \\
1 & 0
\end{array}\right)
$$

in a unique way. So we get that $\mathrm{PGL}_{2}$-opers non-canonically form an (ind)-affine space in the sense of algebraic geometry.

Proof. Apply the gauge transformation by

$$
\left(\begin{array}{cc}
c(t) & 0 \\
0 & 1
\end{array}\right) \in \mathrm{PGL}_{2}
$$

to get a connection of the form

$$
\partial_{t}+\left(\begin{array}{cc}
a_{1}(t) & b_{1}(t) \\
1 & d_{1}(t)
\end{array}\right)
$$

Then apply the gauge transformation by

$$
\left(\begin{array}{cc}
1 & -a_{1}(t) \\
0 & 1
\end{array}\right) \in \mathrm{PGL}_{2}
$$

Remark 2.7. Another way to realize a $\mathrm{PGL}_{2}$-oper $(\mathcal{F}, \nabla, s)$ is the following. Trivialize the $\mathrm{PGL}_{2}-$ bundle $\mathcal{F}$ and choose a lift $\widetilde{\mathcal{F}}$ to an $\mathrm{SL}_{2}$-torsor with connection $\nabla$. The lift is unique up to tensoring with line bundles that square to $\mathcal{O}_{X}$ with connection.

Section of the associated $\mathbb{P}^{1}$-bundle $s$ gives a $B$-reduction, which gives rize to a line subbundle $\mathcal{F}_{1} \subset \widetilde{\mathcal{F}}$.

The connection $\nabla$ on $\widetilde{\mathcal{F}}$ corresponds to a map $\mathcal{O}_{X} \rightarrow \widetilde{\mathcal{F}} \otimes \widetilde{\mathcal{F}}^{*} \otimes \Omega_{X}^{1}$, and thus to a map $\widetilde{\mathcal{F}} \rightarrow \widetilde{\mathcal{F}} \otimes \Omega_{X}^{1}$. An oper condition means that for

$$
0 \rightarrow \mathcal{F}_{1} \xrightarrow{\nabla} \tilde{\mathcal{F}} \otimes \Omega_{X}^{1} \rightarrow \tilde{\mathcal{F}} / \mathcal{F}_{1} \otimes \Omega_{X}^{1} \rightarrow 0
$$

is an isomorphism.
This means that

$$
0 \rightarrow \mathcal{F}_{1} \otimes \Omega_{X}^{1} \otimes \tilde{\mathcal{F}} / \mathcal{F}_{1} \otimes \Omega_{X}^{1} \cong \mathcal{F}_{1}^{2} \otimes \Omega_{X}^{1} \rightarrow 0
$$

and therefore

$$
\mathcal{F}_{1}^{2} \otimes \Omega_{X}^{1} \cong \operatorname{det} \widetilde{\mathcal{F}} \otimes\left(\Omega_{X}^{1}\right)^{2},
$$

i.e.

$$
\mathcal{F}_{1}^{2} \cong \Omega_{X}^{1}
$$

Choose $\mathcal{F}_{1}$ for a square root of $\Omega_{X}^{1}$. We get

$$
0 \rightarrow \Omega_{X}^{\frac{1}{2}} \rightarrow \widetilde{\mathcal{F}} \rightarrow \Omega_{X}^{-\frac{1}{2}} \rightarrow 0
$$

Proposition 2.8. There is a one-to-one correspondence
$\left\{\mathrm{PGL}_{2}\right.$-opers on $\left.X\right\} \longleftrightarrow\{$ Projective connections on $X\}$.
Proof. Let us canonically construct a projective connection from a $\mathrm{PGL}_{2}$-oper. Let $(\widetilde{\mathcal{F}}, \nabla)$ be as in Remark 2.7. We have

such that $\pi \circ \nabla \circ i$ is the identity.
Let us construct a differential operator $\rho: \Omega_{X}^{-\frac{1}{2}} \rightarrow \Omega_{X}^{\frac{3}{2}}$. Let $s$ be a section of $\Omega_{X}^{-\frac{1}{2}}$. Choose a lift $s^{\prime}$ of $s$ to a section of $\mathcal{F}$. Then set

$$
\rho(s)=\nabla(\tilde{s}),
$$

where $\tilde{s}:=s^{\prime}-i \circ \pi \circ \nabla\left(s^{\prime}\right)$.
Now choose $s$ such that $s^{2}=(d t)^{-1}$ (the choice is unique up to a sign). Consider a basis $\left(s^{-1}, \tilde{s}\right)$, and in this basis

$$
\nabla_{\partial_{t}}=\partial_{t}+\left(\begin{array}{cc}
0 & v(t) \\
1 & 0
\end{array}\right)
$$

Exercise 2.9. Using $s$ and $s^{3}$ as trivializations of $\Omega_{X}^{\frac{1}{2}}$ and $\Omega_{X}^{\frac{3}{2}}$ respectively, show that $\rho=\partial_{t}^{2}+v(t)$.
So we constructed a canonical map which is seen to be a bijection.

## 3. Opers for general $G$.

To define opers for general $G$ we need to formulate an analog of the non-vanishing derivative condition.

Let $G$ be an adjoint group. Choose $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. This gives $\mathfrak{n}_{+} \subset \mathfrak{b} \subset \mathfrak{g}$ and

$$
N=[B, B] \subset B \subset G \supset H
$$

Let $f_{i}$ be the standard generators of $\mathfrak{n}_{-}$, let $e_{i}$ be corresponding standard generators of $\mathfrak{n}_{+}$. Set $\mathfrak{n}_{\alpha_{i}}=\mathbb{C} e_{i}, \mathfrak{n}_{-\alpha_{i}}=\mathbb{C} f_{i}$.

Let $[\mathfrak{n}, \mathfrak{n}]^{\perp} \subset \mathfrak{g}$ be the orthogonal complement of $[\mathfrak{n}, \mathfrak{n}]$ w.r.t. $\kappa_{0}$.
Lemma 3.1. We have

$$
[\mathfrak{n}, \mathfrak{n}]^{\perp} / \mathfrak{b} \cong \oplus_{i=1}^{\mathrm{rk} \mathfrak{g}} \mathfrak{n}_{-\alpha_{i}}
$$

Construction 3.2. Note that $B$ acts on $[\mathfrak{n}, \mathfrak{n}]^{\perp} / \mathfrak{b}$. There is a unique open $B$-orbit

$$
\mathbb{O} \subset[\mathfrak{n}, \mathfrak{n}]^{\perp} / \mathfrak{b} \subset \mathfrak{g} / \mathfrak{b}
$$

consisting of vectors with non-zero projection on each $\mathfrak{n}_{-\alpha_{i}}$. This orbit is isomorphic to $B / N$, where we use that $G$ is adjoint.
Remark 3.3. Note that $(\mathbb{1}$ only depends on the choice of $\mathfrak{b}$.
Construction 3.4. Recall that $X=\operatorname{Spec}(\mathbb{C}[[t]])$ or $\operatorname{Spec}(\mathbb{C}((t)))$. Let $\mathcal{F}$ be a $G$-torsor on $X$ with a connection $\nabla$ and $B$-reduction $\mathcal{F}_{B}$. Choose any flat connection $\nabla^{\prime}$ on $\mathcal{F}$ preserving $\mathcal{F}_{B}$ (we can do it since $\mathcal{F}_{B}$ is trivial) and take $\nabla-\nabla^{\prime}$. This gives a section of $\mathcal{F} \times{ }_{G} \mathfrak{g} \otimes \Omega_{X}^{1} \cong \mathcal{F}_{B} \times_{B} \mathfrak{g} \otimes \Omega_{X}^{1}$. Now project this section to $\mathcal{F}_{B} \times_{B} \mathfrak{g} / \mathfrak{b} \otimes \Omega_{X}^{1}$, and note that the result does not depend on $\nabla^{\prime}$. We call this element of $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{F}_{B} \times_{B} \mathfrak{g} / \mathfrak{b} \otimes \Omega_{X}^{1}\right)$ the relative position of $\nabla$ and $\mathcal{F}_{B}$ and denote it by $\nabla / \mathcal{F}_{B}$.
Definition 3.5. We say that $\mathcal{F}_{B}$ is transversal to $\nabla$ if

$$
\nabla / \mathcal{F}_{B} \in \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{F}_{B} \times_{B} \mathbb{O} \otimes \Omega_{X}^{1}\right) \subset \operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{F}_{B} \times_{B} \mathfrak{g} / \mathfrak{b} \otimes \Omega_{X}^{1}\right)
$$

Remark 3.6. When $G=\mathrm{PGL}_{2}$ this is exactly the non-vanishing condition we had before.
Definition 3.7. A $G$-oper on $X$ is a triple $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$, where $\mathcal{F}$ is a principal $G$-bundle, $\nabla$ is a connection on $\mathcal{F}$ such that $\mathcal{F}_{B}$ is transversal to $\nabla$.

Remark 3.8. Choose a trivialization of $\mathcal{F}_{B}$. Then the oper condition says that

$$
\begin{equation*}
\nabla_{\partial_{t}}=\partial_{t}+\sum_{i=1}^{\mathrm{rkg}} \psi_{i}(t) f_{i}+v(t) \tag{3.1}
\end{equation*}
$$

where $\psi_{i}$ are non-vanishing functions (i.e. invertible elements of $\mathbb{C}[[t]]$ or $\left.\mathbb{C}((t))\right)$, and $v(t)$ is a $\mathfrak{b}$-valued function.
Definition 3.9. Let $\widetilde{\mathrm{Op}}_{G}(X)$ be the space of opers of the form

$$
\begin{equation*}
\nabla_{\partial_{t}}=\partial_{t}+\sum_{i=1}^{\mathrm{rk} \mathfrak{g}} f_{i}+v(t) \tag{3.2}
\end{equation*}
$$

where $v(t)$ is a $\mathfrak{b}$-valued function.

Notation 3.10. For an affine scheme $T$ we denote by $T_{X}$ the arc scheme $T[[t]]$ in the case of $X=D$ and the loop ind-scheme $T((t))$ in the case of $X=\stackrel{\circ}{D}$ (see section 4 ).

There is a natural action of $N_{X}$ on $\widetilde{\mathrm{Op}}_{G}(X)$.
Lemma 3.11. We have

$$
\mathrm{Op}_{G}(X) \cong \widetilde{\mathrm{Op}}_{G}(X) / N_{X}
$$

Proof. Recall that $B$-orbit $\mathbb{O}$ is an $H$-torsor, so we can bring a connection of the form (3.1) to the form (3.2) by a unique element of $H_{X}$.

We are now going to describe the (ind)-scheme of opers using the Kostant slice.
Notation 3.12. Let $p_{-1}=\sum_{i=1}^{\mathrm{rkg}} f_{i}$, and let $\left(p_{-1}, 2 \check{\rho}, p_{1}\right)$ be the principal $\mathfrak{s l}_{2}$-triple.
Note that ker ad $p_{-1} \subset \mathfrak{b}$, and $p_{-1}+\mathfrak{b}$ is stable under the action of $N$. Recall that the following two proposition and their corollaries were discussed in $[\mathrm{K}]$ :
Proposition 3.13. (Kostant) The map

$$
N \times S \rightarrow p_{-1}+\mathfrak{b}
$$

given by the action is an isomorphism.
Corollary 3.14. $N_{X} \times S_{X} \cong\left(p_{-1}+\mathfrak{b}\right)_{X}$.
Proposition 3.15. (Kostant) The composition of the embedding $S \hookrightarrow \mathfrak{g}$ and the quotient morphism $\mathfrak{g} \rightarrow \mathfrak{g} / / G$ is an isomorphism.
Corollary 3.16. $S_{X} \rightarrow \mathfrak{g}_{X} / / G_{X}$.
We now apply them in the study of opers.
Proposition 3.17. The morphism of schemes

$$
\begin{equation*}
N[[t]] \times\left\{\partial_{t}+S[[t]]\right\} \rightarrow\left\{\partial_{t}+\left(p_{-1}+\mathfrak{b}\right)[[t]]\right\}=\widetilde{\mathrm{Op}}_{G}(D) \tag{3.3}
\end{equation*}
$$

induced by the gauge transformation action is an isomorphism.
Proof. Let $\mathbb{A}_{\lambda}^{1}=\operatorname{Spec}(\mathbb{C}[\lambda])$ and let AffSch $_{/ \mathbb{A}_{\lambda}^{1}}$ be the category of affine schemes over $\mathbb{A}_{\lambda}^{1}$. Consider $\left\{\lambda \partial_{t}+S[[t]]\right\},\left\{\lambda \partial_{t}+\left(p_{-1}+\mathfrak{b}\right)[[t]]\right\} \in$ AffSch $_{/ \mathbb{A}_{\lambda}^{1}}$.

By definition, the gauge action of $n(t) \in N[[t]]$ on $\left(\lambda \partial_{t}+s(t)\right) \in\left\{\lambda \partial_{t}+S[[t]]\right\}$ is given by

$$
\begin{equation*}
n(t) \cdot\left(\lambda \partial_{t}+s(t)\right)=\lambda \partial_{t}+\operatorname{Ad}(n(t)) s(t)-\lambda\left(\partial_{t} n(t)\right) n(t)^{-1} . \tag{3.4}
\end{equation*}
$$

Note that $N[[t]] \times\left\{\lambda \partial_{t}+S[[t]]\right\}$ and $\left\{\lambda \partial_{t}+\left(p_{-1}+\mathfrak{b}\right)[[t]]\right\}$ admit a $\mathbb{G}_{m}$-action such that the action map is equivariant. Indeed, for $z \in \mathbb{C}^{\times}$we have

$$
z \cdot\left(n(t), \lambda \partial_{t}+s(t)\right):=\left(z \operatorname{Ad}(\check{\rho}(z)) n(t), z \lambda \partial_{t}+z \operatorname{Ad} \check{\rho}(z) s(t)\right),
$$

$z \cdot\left(\lambda \partial_{t}+\operatorname{Ad}(n(t)) s(t)-\lambda\left(\partial_{t} n(t)\right) n(t)^{-1}\right)=z \lambda \partial_{t}+z \operatorname{Ad}(\check{\rho}(z)) \operatorname{Ad}(n(t)) s(t)+z \lambda \operatorname{Ad}(\check{\rho}(z))\left(\partial_{t} n(t)\right) n(t)^{-1}$.
The restriction of the action map to the fiber $\lambda=1$ is the desired map (3.3). This implies that there is a natural filtration on $\mathbb{C}[N[[t]]] \otimes \mathbb{C}\left[\left\{\partial_{t}+S[[t]]\right\}\right]$ and $\mathbb{C}\left[\left\{\partial_{t}+\left(p_{-1}+\mathfrak{b}\right)[[t]]\right\}\right]$ such that the pullback map

$$
\begin{equation*}
\mathbb{C}\left[\left\{\partial_{t}+\left(p_{-1}+\mathfrak{b}\right)[[t]]\right\}\right] \rightarrow \mathbb{C}[N[[t]]] \otimes \mathbb{C}\left[\left\{\partial_{t}+S[[t]]\right\}\right] \tag{3.5}
\end{equation*}
$$

is filtered. Note that the filtration is non-negative. However, the restriction of the action map to the fiber $\lambda=0$ is the isomorphism from Corollary 3.14. Thus the associated graded of (3.5) is an isomorphism, and hence (3.5) is also an isomorphism.

Corollary 3.18. We have

$$
\mathrm{Op}_{G}(D) \cong\left\{\partial_{t}+S[[t]]\right\}
$$

Moreover, we get that

$$
\operatorname{gr} \mathbb{C}\left[\mathrm{Op}_{G}(D)\right] \cong \mathbb{C}[S[[t]]] \cong \mathbb{C}[\mathfrak{g}[[t]]]^{G[[t]]}
$$

and hence $\mathbb{C}\left[\mathrm{Op}_{G}(D)\right] \cong \mathbb{C}[\mathfrak{g}[[t]]]^{G[[t]]}$.

We also have an analogous statement for loop spaces defined in Example 4.3:
Proposition 3.19. The morphism of ind-schemes

$$
\begin{equation*}
N((t)) \times\left\{\partial_{t}+S((t))\right\} \rightarrow\left\{\partial_{t}+\left(p_{-1}+\mathfrak{b}\right)((t))\right\}=\widetilde{\mathrm{Op}}_{G}(\stackrel{\circ}{D}) \tag{3.6}
\end{equation*}
$$

induced by the gauge transformation action is an isomorphism.
Corollary 3.20. We have an isomorphism of ind-schemes

$$
\mathrm{Op}_{G}(\stackrel{\circ}{D}) \cong\left\{\partial_{t}+S((t))\right\}
$$

Finally, to make sense of the statement of Theorem 0.4 we need define algebras of functions on ind-schemes $\left(\mathrm{Op}_{G}(\stackrel{\circ}{D})\right.$ in our case $)$. This is addressed in Definition 4.8.

## 4. Appendix: Ind-schemes and loop spaces.

Definition 4.1. An ind-scheme is a functor AffSch ${ }^{\text {op }} \rightarrow$ Sets that can be represented as a filtered colimit of schemes along closed embeddings.

Example 4.2. $\mathbb{A}_{\text {ind }}^{\infty}:=\cup_{n} \mathbb{A}^{n}$ is an ind-scheme.
Example 4.3. The functor $\mathbb{A}^{n}((t)):$ AffSch ${ }^{\text {op }} \rightarrow$ Sets sending $\operatorname{Spec} R$ to $\mathbb{A}^{n}((t))(\operatorname{Spec} R)=\mathbb{A}^{n}(R((t)))$ is represented by an ind-scheme.

Proof. We have

$$
\mathbb{A}^{n}((t))(\operatorname{Spec} R)=\mathbb{A}^{n}(R((t)))=R((t))^{\times n}=\operatorname{colim}_{k}\left(t^{-k} R[[t]]\right)^{\times n}=\operatorname{colim}^{n}[[t]](R)
$$

Hence $\mathbb{A}^{n}((t))$ can be written as a colimit of $\mathbb{A}^{n}[[t]]$ along maps given by multiplication by powers of $t$.

Exercise 4.4. For an affine scheme $Y$ the functor $Y((t))$ : AffSch ${ }^{\text {op }} \rightarrow$ Sets sending Spec $R$ to $Y((t))(\operatorname{Spec} R)=Y(R((t)))$ is represented by an ind-scheme.

Definition 4.5. We say that an ind-scheme is ind-affine if can be represented as a filtered colimit of affine schemes along closed embeddings.

Remark 4.6. Examples 4.2, 4.3 and 4.4 are ind-affine.
Example 4.7. The affine grassmannian $\operatorname{Gr}_{G}:=G((t)) / G[[t]]$ is an ind-scheme but it is not ind-affine.
Definition 4.8. For an ind-affine ind-scheme $Z=\operatorname{colim}_{i \in I} Z_{i}$ define $\mathbb{C}[Z]:=\lim _{i \in I^{o p}} \mathbb{C}\left[Z_{i}\right]$. This algebra carries a natural topology with $\operatorname{ker} \alpha_{i}$, where $\alpha_{i}: \mathbb{C}[Z] \rightarrow \mathbb{C}\left[Z_{i}\right]$, being neighborhoods of zero.

Remark 4.9. Given the algebra of functions $A$ with topology one can recover the ind-affine ind-scheme as a colimit of $\operatorname{Spec}\left(A_{j}\right)$ for $A \rightarrow A_{j}$ continuous where $A_{j}$ has discrete topology.

## References

[B] "Opers II." E. Bogdanova, seminar notes
[K] "Invariants of jets and the center for $\hat{\mathfrak{s}}_{2}$." I. Karpov, seminar notes
[S] "Galois cohomology." J.-P. Serre
[W] "Central elements of the completed universal enveloping algebra." H. Wan, seminar notes
Harvard University, USA
Email address: ebogdanova@math.harvard.edu

