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Recall that in [K][Theorem 3.3.1] we proved
Theorem 0.1. There is a canonical isomorphism
3(52). = C[Proj (D),
where Proj(Dy) is the space of projective connections on Dy := Spec(Oy).
In this note we will show that Theorem 0.1 implies

Theorem 0.2. There is a canonical isomorphism
~ ~ o
Z(Uk,(9)) = Z(sl2)2 = C[Proj(D2)],
where Proj(D5) is the space of projective connections on Dg:= Spec(KCz).

We will also generalize the statements in the following way. Let G be a simply-connected semi-simple
algebraic group with the root system A. Let A be the dual root system.

Definition 0.1. Langlands dual group G is the adjoint group with root system A.
The goal of this seminar is to prove
Theorem 0.3. There is a canonical isomorphism
3(8)z = C[Opg(D2)],
where Opg(Dy) ts the space of opers, which will be analogs of projective connections for general G.

Theorem 0.4. There is a canonical isomorphism
Z(g)x = ClOpg(D2)]-

1. GENERALITIES ON CONNECTIONS.

Throughout this section let G be adjoint group. Let X be a smooth variety, P be a principal G-
bundle. Abusing notation we will also denote the total space of this principal G-bundle by P, and
projection to X by f.

We have a G-equivariant short exact sequence

(1.1) 0 f Q% 5 Qp > O0pg" — 0.

Definition 1.1. A connection V on P is a G-equivariant section of (1.1).
Or, equivalently, a section P xg g* — (f:Qp)¢ of

(1.2) 0= Qx = (£2p)° > P xag" =0,

where P X g is, by definition, the quotient of P x g* by the diagonal action.
Given a trivialization of P we get another section. Namely, then we get P = X x GG and therefore

Qp = fOx @ (Op @ ¢7).

Taking the difference we obtain an element of Hom(P x¢ g*, %) = Hom(Ox, (P x¢ g) ® Q).
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Remark 1.2. Let X be a smooth 1-dimensional variety. Choose a local coordinate z. Then P
trivializes and the data of the connection is an element of Hom(Ox, g ® Q% ), and can be given by

(1.3) V =d. + A(z)dz,

where A is a function valued in g. In this formula, d stands for the connection coming from the
trivialization of P.

Below we will abuse the notation and remove the dz from the formula (1.3). We will write a
connection in the form

0. + A(z).
Exercise 1.3. Under change of trivialization of P by a function g : X — G we have
0+ A(z) = 0: + gA(2)g " — (9:9)9™ "
These are called gauge transformations.

Now let us specialize to the case G = PGLy. Choose a Borel B C PGL2. Suppose we have a
connection V on P and a section s of P xg (PGL2 /B). Note that PGLz /B is nothing but P! with
the natural action of PGLs.

Remark 1.4. Giving a section P X ¢ (PGL2 /B) is equivalent to giving a B-reduction Pp of P. Indeed,
for Pp take a fiber product
Pg ——m— P

| |

X —— P x¢ (PGL2 /B).

Construction 1.5. Choose a local section s’ of P lifting s. This gives a trivialization of P and hence
an element of Hom(Ox,P x¢ g ® Q%). Project to Hom(Ox,Ps x5 g/b ® Q%). The result is called
the derivative of s along V. Note that it does not depend on s’.

2. OPERS FOR PGLs.
Set X = Spec(C[[t]]) or Spec(C((t))).

Notation 2.1. Denote D := Spec(C[[t]]) and Di= Spec(C((t))).

Definition 2.2. A PGLs-oper on X is a principal PGLs-bundle F over X with a connection V, plus
a globally defined section s of the associated P'-bundle F XpaL, (PGL2 /B), which has a nowhere
vanishing derivative along V.

Remark 2.3. Note that although Spec(C|[[t]]) and Spec(C((t))) are not varieties, the constructions
from previous sections still make sense.
For D set Q}, := C[[t]]dt, and note that all G-bundles on D are trivial.

For D set QL = C((t))dt, and note by [S][II1.2.3. Theorem 1’ | that all G-bundles on D are trivial.
D

Remark 2.4. Definition 2.2 makes sense for a smooth curve as well, but we will specialize to X.

The condition that the derivative of s along V is nowhere vanishing says that V does not preserve
Fp at any point. More precisely:

Exercise 2.5. let (F,V,s) be a PGLa-oper. Choose a lift of s to F to get a trivialization of F. Then
_ a(t) b(t)
va=oct (o) uty):

where a(t) + d(t) = 0. The derivative of s along V is nowhere vanishing if and only if c¢(t) is nowhere
vanishing (i.e. invertible element of Cl[t]] or C((t))).
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Lemma 2.6. Let (F,V,s) be as above. Then V can be brought to a form

0 w(t)
o+ (7 "Y)
in a unique way. So we get that PGL2-opers non-canonically form an (ind)-affine space in the sense
of algebraic geometry.

Proof. Apply the gauge transformation by

to get a connection of the form

we (M1 Gl0)

Then apply the gauge transformation by
1 —ai (t)
(0 1 € PGLs.
d

Remark 2.7. Another way to realize a PGL2-oper (F,V,s) is the following. Trivialize the PGLo-
bundle F and choose a lift F to an SLo-torsor with connection V. The lift is unique up to tensoring
with line bundles that square to Ox with connection.

Secﬁc}on of the associated P*-bundle s gives a B-reduction, which gives rize to a line subbundle
F1 CF.

The connection V on F corresponds to a map Ox — FRF* ®Q%, and thus to a map FoF® k.
An oper condition means that for

00 F LS FRQ - F/F ek >0

is an isomorphism.
This means that
05 FRQxQF/FIo0k 2 Fio0k 0,
and therefore
Fio Ok 2det F @ (Q%)?,

F2xql.
Choose F; for a square root of Q. We get
0—>Q§(—>f—>ﬂ;% — 0.
Proposition 2.8. There is a one-to-one correspondence
{PGLg -opers on X} +— {Projective connections on X}.

Proof. Let us canonically construct a projective connection from a PGLg-oper. Let (.7-~'7 V) be as in
Remark 2.7. We have

3 ~ 1
0— N —— FRQ —— NF —— 0,
such that m o V o4 is the identity.
1

_1 3 _1
Let us construct a differential operator p: Q2 — Q%. Let s be a section of Q2. Choose a lift s’
of 5 to a section of F. Then set
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where §:= s —iomoV(s).
Now choose s such that s = (dt)™! (the choice is unique up to a sign). Consider a basis (s™*, 3),

and in this basis
0 ot
vat:at+<1 (0)>

1 3
Exercise 2.9. Using s and s* as trivializations of Q% and Q2% respectively, show that p = 87 + v(t).

So we constructed a canonical map which is seen to be a bijection. O

3. OPERS FOR GENERAL G.

To define opers for general G we need to formulate an analog of the non-vanishing derivative condi-
tion.
Let G be an adjoint group. Choose g =n_ @ b @ ny. This gives n C b C g and
N=[B,BJC BCGDH.
Let f; be the standard generators of n_, let e; be corresponding standard generators of ny. Set
N, = (Cei, N, = sz
Let [n,n]* C g be the orthogonal complement of [n, n] w.r.t. o.

Lemma 3.1. We have
)t /b= @ on_,..
Construction 3.2. Note that B acts on [n,n]*/b. There is a unique open B-orbit
O C [n,n]"/b C g/b
consisting of vectors with non-zero projection on each n_,. This orbit is isomorphic to B/N, where
we use that G is adjoint.

Remark 3.3. Note that O only depends on the choice of b.

Construction 3.4. Recall that X = Spec (C[[t]]) or Spec (C((¢))). Let F be a G-torsor on X with a
connection V and B-reduction Fg. Choose any flat connection V' on F preserving Fp (we can do it
since Fp is trivial) and take V — V’. This gives a section of F xg g ® Q% = Fp x5 g ® Qk. Now
project this section to Fg x5 g/b ® Q%, and note that the result does not depend on V’. We call this
element of Hom(Ox, Fg xp §/b ® Q%) the relative position of V and Fp and denote it by V/Fz.

Definition 3.5. We say that Fg is transversal to V if

V/Fp € Hom(Ox,Fp xp 0@ Q%) C Hom(Ox, Fs X5 g/b @ Q).
Remark 3.6. When G = PGL; this is exactly the non-vanishing condition we had before.
Definition 3.7. A G-oper on X is a triple (F,V,Fg), where F is a principal G-bundle, V is a

connection on F such that Fp is transversal to V.

Remark 3.8. Choose a trivialization of Fg. Then the oper condition says that

rkg

(3.1) Vo, =0 + Z%(t)fi +o(t),

=1
where 9; are non-vanishing functions (i.e. invertible elements of C[[t]] or C((t))) , and v(t) is a b-valued
function.
Definition 3.9. Let évpc (X) be the space of opers of the form

rkg

(3.2) Vo, =0i+ > fi+o(t),

=1

where v(t) is a b-valued function.
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Notation 3.10. For an affine scheme T we denote by T'x the arc scheme T'[[t]] in the case of X = D
and the loop ind-scheme T'((¢)) in the case of X = D (see section 4).

There is a natural action of Nx on GE)G(X)‘
Lemma 3.11. We have .

Opg(X) = Opg(X)/Nx.

Proof. Recall that B-orbit O is an H-torsor, so we can bring a connection of the form (3.1) to the form
(3.2) by a unique element of Hx. O

We are now going to describe the (ind)-scheme of opers using the Kostant slice.
Notation 3.12. Let p_; = Ezg fi, and let (p—1,2p,p1) be the principal slo-triple.

Note that kerad p—1 C b, and p_1 + b is stable under the action of N. Recall that the following two
proposition and their corollaries were discussed in [K]:

Proposition 3.13. (Kostant) The map
NxS—>p_1+b

given by the action is an isomorphism.
Corollary 3.14. Nx x Sx = (p—1+b)x.
Proposition 3.15. (Kostant) The composition of the embedding S — g and the quotient morphism
g — g//G is an isomorphism.
Corollary 3.16. Sx — gx//Gx.

We now apply them in the study of opers.

Proposition 3.17. The morphism of schemes
(3.3) N{[#)) x {9 + S[[t]]} = {0 + (p-1 + b)[[£]]} = Ops(D)

induced by the gauge transformation action is an isomorphism.

Proof. Let A} = Spec(C[)\]) and let AffSch/Ai be the category of affine schemes over A}. Consider
{20 + S}, {A0: + (p—1 + B)[[t]]} € AffSch 1.

By definition, the gauge action of n(t) € N|[[t]] on (Ad: + s(t)) € {\d: + S[[t]]} is given by
(3.4) n(t) - (A0 + s(t)) = A0 + Ad(n(t))s(t) — AM(@en(t))n(t) ™"

Note that N[[t]] x {\0: + S[[t]]} and {\0: + (p—1 + b)[[t]]} admit a G.,-action such that the action
map is equivariant. Indeed, for z € C* we have

2 (1), 70 + 5(8)) = (2 Ad(p(2))n(t), 2A0; + 2 Ad 5(2)s(1)),

z2- (A +Ad(n(t))s(t) — MO ())n(t) ") = 220 +z Ad(p(2)) Ad(n(t))s(t) +2zX Ad(p(2)) (en(t))n(t) .

The restriction of the action map to the fiber A = 1 is the desired map (3.3). This implies that there

is a natural filtration on C[N[[t]]] ® C[{d: + S[[t]]}] and C[{d: + (p—1 + b)[[¢]]}] such that the pullback
map

(3.5) Cl{8: + (p—1 + B)[[E1} — CIN[[H]) @ C[{8: + S[[¢]]}]

is filtered. Note that the filtration is non-negative. However, the restriction of the action map to
the fiber A = 0 is the isomorphism from Corollary 3.14. Thus the associated graded of (3.5) is an
isomorphism, and hence (3.5) is also an isomorphism. g

Corollary 3.18. We have
Op¢ (D) = {0, + S[[t]]}.
Moreover, we get that
gr C[Opg (D)) = C[S[[A])] = Cla[[#]]) “1,
and hence C[Opg (D)) = Clg[[t]]] ¢,
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We also have an analogous statement for loop spaces defined in Example 4.3:
Proposition 3.19. The morphism of ind-schemes
(3.6) N(() x {0+ 5((1)} = {9 + (p—1 + b)((£))} = Ops(D)
induced by the gauge transformation action is an isomorphism.
Corollary 3.20. We have an isomorphism of ind-schemes

Opq(D) = {9: + S((1))}-

Finally, to make sense of the statement of Theorem 0.4 we need define algebras of functions on

ind-schemes (Opg( B) in our case). This is addressed in Definition 4.8.
4. APPENDIX: IND-SCHEMES AND LOOP SPACES.

Definition 4.1. An ind-scheme is a functor AffSch®® — Sets that can be represented as a filtered
colimit of schemes along closed embeddings.

Example 4.2. A7y, := U, A" is an ind-scheme.

Example 4.3. The functor A"((t)) : AffSch®® — Sets sending Spec R to A™((t))(Spec R) = A™(R((t)))
is represented by an ind-scheme.

Proof. We have
A"((1))(Spec R) = A™(R((t))) = R((£))*" = colimx(t™*R[[t])*" = colimA" [[t]}(R).

Hence A™((t)) can be written as a colimit of A™[[¢]] along maps given by multiplication by powers of
t. |

Exercise 4.4. For an affine scheme Y the functor Y((t)) : AffSch®® — Sets sending Spec R to
Y ((t))(Spec R) = Y (R((t))) is represented by an ind-scheme.

Definition 4.5. We say that an ind-scheme is ind-affine if can be represented as a filtered colimit of
affine schemes along closed embeddings.

Remark 4.6. Examples 4.2, 4.3 and 4.4 are ind-affine.
Example 4.7. The affine grassmannian Grg := G((t))/G|[t]] is an ind-scheme but it is not ind-affine.

Definition 4.8. For an ind-affine ind-scheme Z = colim;erZ; define C[Z] := lim;eror C[Z;]. This
algebra carries a natural topology with ker «;, where «; : C[Z] — C[Z;], being neighborhoods of zero.

Remark 4.9. Given the algebra of functions A with topology one can recover the ind-affine ind-scheme
as a colimit of Spec(A4;) for A — A; continuous where A; has discrete topology.
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