OPERS I

EKATERINA BOGDANOVA

Recall that in [K][Theorem 3.3.1] we proved

Theorem 0.1. There is a canonical isomorphism

$$\mathfrak{z}(\mathfrak{sl}_2)_x \cong \mathbb{C}[Proj(D_x)],$$

where $Proj(D_x)$ is the space of projective connections on $D_x := \operatorname{Spec}(\mathcal{O}_x)$.

In this note we will show that Theorem 0.1 implies

Theorem 0.2. There is a canonical isomorphism

$$\mathcal{Z}(\widetilde{U}_{\kappa_c}(\mathfrak{g})) =: \mathcal{Z}(\hat{\mathfrak{sl}}_2)_x \cong \mathbb{C}[\operatorname{Proj}(\check{D}_x)],$$

where $\operatorname{Proj}(\overset{\circ}{D_x})$ is the space of projective connections on $\overset{\circ}{D_x} := \operatorname{Spec}(\mathcal{K}_x)$.

We will also generalize the statements in the following way. Let G be a simply-connected semi-simple algebraic group with the root system Δ . Let $\check{\Delta}$ be the dual root system.

Definition 0.1. Langlands dual group \check{G} is the adjoint group with root system $\check{\Delta}$.

The goal of this seminar is to prove

Theorem 0.3. There is a canonical isomorphism

$$\mathfrak{z}(\hat{\mathfrak{g}})_x \cong \mathbb{C}[\operatorname{Op}_{\check{G}}(D_x)],$$

where $\operatorname{Op}_{\tilde{G}}(D_x)$ is the space of opers, which will be analogs of projective connections for general \tilde{G} .

Theorem 0.4. There is a canonical isomorphism

$$\mathcal{Z}(\hat{\mathfrak{g}})_x \cong \mathbb{C}[\operatorname{Op}_{\check{G}}(\check{D}_x)].$$

1. Generalities on connections.

Throughout this section let G be adjoint group. Let X be a smooth variety, \mathcal{P} be a principal Gbundle. Abusing notation we will also denote the total space of this principal G-bundle by \mathcal{P} , and projection to X by f.

We have a G-equivariant short exact sequence

(1.1)
$$0 \to f^* \Omega^1_X \to \Omega^1_{\mathcal{P}} \to \mathcal{O}_{\mathcal{P}} \otimes \mathfrak{g}^* \to 0.$$

Definition 1.1. A connection ∇ on \mathcal{P} is a *G*-equivariant section of (1.1).

Or, equivalently, a section $\mathcal{P} \times_G \mathfrak{g}^* \to (f_*\Omega^1_{\mathcal{P}})^G$ of

(1.2)
$$0 \to \Omega^1_X \to (f_*\Omega^1_{\mathcal{P}})^G \to \mathcal{P} \times_G \mathfrak{g}^* \to 0,$$

where $\mathcal{P} \times_G \mathfrak{g}^*$ is, by definition, the quotient of $\mathcal{P} \times \mathfrak{g}^*$ by the diagonal action.

Given a trivialization of \mathcal{P} we get another section. Namely, then we get $\mathcal{P} \cong X \times G$ and therefore

$$\Omega^1_{\mathcal{P}} \cong f^* \Omega^1_X \oplus (\mathcal{O}_{\mathcal{P}} \otimes \mathfrak{g}^*).$$

Taking the difference we obtain an element of $\operatorname{Hom}(\mathcal{P} \times_G \mathfrak{g}^*, \Omega^1_X) \cong \operatorname{Hom}(\mathcal{O}_X, (\mathcal{P} \times_G \mathfrak{g}) \otimes \Omega^1_X).$

Remark 1.2. Let X be a smooth 1-dimensional variety. Choose a local coordinate z. Then \mathcal{P} trivializes and the data of the connection is an element of Hom $(\mathcal{O}_X, \mathfrak{g} \otimes \Omega_X^1)$, and can be given by

(1.3)
$$\nabla = d_z + A(z)dz$$

where A is a function valued in \mathfrak{g} . In this formula, d stands for the connection coming from the trivialization of \mathcal{P} .

Below we will abuse the notation and remove the dz from the formula (1.3). We will write a connection in the form

$$\partial_z + A(z).$$

Exercise 1.3. Under change of trivialization of \mathcal{P} by a function $g: X \to G$ we have

$$\partial_z + A(z) \mapsto \partial_z + gA(z)g^{-1} - (\partial_z g)g^{-1}.$$

These are called gauge transformations.

Now let us specialize to the case $G = \text{PGL}_2$. Choose a Borel $B \subset \text{PGL}_2$. Suppose we have a connection ∇ on \mathcal{P} and a section s of $\mathcal{P} \times_G (\text{PGL}_2/B)$. Note that PGL_2/B is nothing but \mathbb{P}^1 with the natural action of PGL_2 .

Remark 1.4. Giving a section $\mathcal{P} \times_G (\operatorname{PGL}_2 / B)$ is equivalent to giving a *B*-reduction \mathcal{P}_B of \mathcal{P} . Indeed, for \mathcal{P}_B take a fiber product

Construction 1.5. Choose a local section s' of \mathcal{P} lifting s. This gives a trivialization of \mathcal{P} and hence an element of $\operatorname{Hom}(\mathcal{O}_X, \mathcal{P} \times_G \mathfrak{g} \otimes \Omega^1_X)$. Project to $\operatorname{Hom}(\mathcal{O}_X, \mathcal{P}_B \times_B \mathfrak{g}/\mathfrak{b} \otimes \Omega^1_X)$. The result is called the derivative of s along ∇ . Note that it does not depend on s'.

2. Opers for
$$PGL_2$$
.

Set $X = \operatorname{Spec}(\mathbb{C}[[t]])$ or $\operatorname{Spec}(\mathbb{C}((t)))$.

Notation 2.1. Denote $D := \operatorname{Spec}(\mathbb{C}[[t]])$ and $\overset{\circ}{D} := \operatorname{Spec}(\mathbb{C}((t)))$.

Definition 2.2. A PGL₂-oper on X is a principal PGL₂-bundle \mathcal{F} over X with a connection ∇ , plus a globally defined section s of the associated \mathbb{P}^1 -bundle $\mathcal{F} \times_{\mathrm{PGL}_2} (\mathrm{PGL}_2/B)$, which has a nowhere vanishing derivative along ∇ .

Remark 2.3. Note that although $\text{Spec}(\mathbb{C}[[t]])$ and $\text{Spec}(\mathbb{C}((t)))$ are not varieties, the constructions from previous sections still make sense.

For D set $\Omega_D^1 := \mathbb{C}[[t]]dt$, and note that all G-bundles on D are trivial.

For $\overset{\circ}{D}$ set $\Omega^1_{\overset{\circ}{D}} := \mathbb{C}((t))dt$, and note by [S][III.2.3. Theorem 1'] that all *G*-bundles on $\overset{\circ}{D}$ are trivial.

Remark 2.4. Definition 2.2 makes sense for a smooth curve as well, but we will specialize to X.

The condition that the derivative of s along ∇ is nowhere vanishing says that ∇ does not preserve \mathcal{F}_B at any point. More precisely:

Exercise 2.5. let (\mathcal{F}, ∇, s) be a PGL₂-oper. Choose a lift of s to \mathcal{F} to get a trivialization of \mathcal{F} . Then

$$abla_{\partial_t} = \partial_t + \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix},$$

where a(t) + d(t) = 0. The derivative of s along ∇ is nowhere vanishing if and only if c(t) is nowhere vanishing (i.e. invertible element of $\mathbb{C}[[t]]$ or $\mathbb{C}((t))$).

OPERS I

Lemma 2.6. Let (\mathcal{F}, ∇, s) be as above. Then ∇ can be brought to a form

$$\partial_t + \begin{pmatrix} 0 & v(t) \\ 1 & 0 \end{pmatrix}$$

in a unique way. So we get that PGL_2 -opers non-canonically form an (ind)-affine space in the sense of algebraic geometry.

Proof. Apply the gauge transformation by

$$\begin{pmatrix} c(t) & 0\\ 0 & 1 \end{pmatrix} \in \mathrm{PGL}_2$$

to get a connection of the form

$$\partial_t + \begin{pmatrix} a_1(t) & b_1(t) \\ 1 & d_1(t) \end{pmatrix}.$$

Then apply the gauge transformation by

$$\begin{pmatrix} 1 & -a_1(t) \\ 0 & 1 \end{pmatrix} \in \mathrm{PGL}_2$$

Remark 2.7. Another way to realize a PGL₂-oper (\mathcal{F}, ∇, s) is the following. Trivialize the PGL₂bundle \mathcal{F} and choose a lift $\widetilde{\mathcal{F}}$ to an SL₂-torsor with connection ∇ . The lift is unique up to tensoring with line bundles that square to \mathcal{O}_X with connection.

Section of the associated \mathbb{P}^1 -bundle *s* gives a *B*-reduction, which gives rize to a line subbundle $\mathcal{F}_1 \subset \widetilde{\mathcal{F}}$.

The connection ∇ on $\widetilde{\mathcal{F}}$ corresponds to a map $\mathcal{O}_X \to \widetilde{\mathcal{F}} \otimes \widetilde{\mathcal{F}}^* \otimes \Omega^1_X$, and thus to a map $\widetilde{\mathcal{F}} \to \widetilde{\mathcal{F}} \otimes \Omega^1_X$. An oper condition means that for

$$0 \to \mathcal{F}_1 \xrightarrow{\nabla} \widetilde{\mathcal{F}} \otimes \Omega^1_X \to \widetilde{\mathcal{F}}/\mathcal{F}_1 \otimes \Omega^1_X \to 0$$

is an isomorphism.

This means that

$$0 \to \mathcal{F}_1 \otimes \Omega^1_X \otimes \widetilde{\mathcal{F}} / \mathcal{F}_1 \otimes \Omega^1_X \cong \mathcal{F}_1^2 \otimes \Omega^1_X \to 0,$$

and therefore

$$\mathcal{F}_1^2 \otimes \Omega_X^1 \cong \det \widetilde{\mathcal{F}} \otimes (\Omega_X^1)^2,$$

i.e.

$$\mathcal{F}_1^2 \cong \Omega_X^1$$

Choose \mathcal{F}_1 for a square root of Ω^1_X . We get

$$0 \to \Omega_X^{\frac{1}{2}} \to \widetilde{\mathcal{F}} \to \Omega_X^{-\frac{1}{2}} \to 0.$$

Proposition 2.8. There is a one-to-one correspondence

 $\{PGL_2 \text{ opers on } X\} \longleftrightarrow \{Projective \text{ connections on } X\}.$

Proof. Let us canonically construct a projective connection from a PGL₂-oper. Let $(\tilde{\mathcal{F}}, \nabla)$ be as in Remark 2.7. We have

such that $\pi \circ \nabla \circ i$ is the identity.

Let us construct a differential operator $\rho: \Omega_X^{-\frac{1}{2}} \to \Omega_X^{\frac{3}{2}}$. Let *s* be a section of $\Omega_X^{-\frac{1}{2}}$. Choose a lift *s'* of *s* to a section of \mathcal{F} . Then set

$$\rho(s) = \nabla(\tilde{s}),$$

where $\tilde{s} := s' - i \circ \pi \circ \nabla(s')$.

Now choose s such that $s^2 = (dt)^{-1}$ (the choice is unique up to a sign). Consider a basis (s^{-1}, \tilde{s}) , and in this basis

$$\nabla_{\partial_t} = \partial_t + \begin{pmatrix} 0 & v(t) \\ 1 & 0 \end{pmatrix}.$$

Exercise 2.9. Using s and s^3 as trivializations of $\Omega_X^{\frac{1}{2}}$ and $\Omega_X^{\frac{3}{2}}$ respectively, show that $\rho = \partial_t^2 + v(t)$.

So we constructed a canonical map which is seen to be a bijection.

3. Opers for general G.

To define opers for general G we need to formulate an analog of the non-vanishing derivative condition.

Let G be an adjoint group. Choose $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. This gives $\mathfrak{n}_+ \subset \mathfrak{b} \subset \mathfrak{g}$ and

$$N = [B, B] \subset B \subset G \supset H.$$

Let f_i be the standard generators of \mathfrak{n}_- , let e_i be corresponding standard generators of \mathfrak{n}_+ . Set $\mathfrak{n}_{\alpha_i} = \mathbb{C}e_i, \, \mathfrak{n}_{-\alpha_i} = \mathbb{C}f_i.$

Let $[\mathfrak{n},\mathfrak{n}]^{\perp} \subset \mathfrak{g}$ be the orthogonal complement of $[\mathfrak{n},\mathfrak{n}]$ w.r.t. κ_0 .

Lemma 3.1. We have

 $[\mathfrak{n},\mathfrak{n}]^{\perp}/\mathfrak{b} \cong \bigoplus_{i=1}^{\mathrm{rk}\,\mathfrak{g}}\mathfrak{n}_{-\alpha_i}.$

Construction 3.2. Note that B acts on $[\mathfrak{n}, \mathfrak{n}]^{\perp}/\mathfrak{b}$. There is a unique open B-orbit

$$\mathbb{O} \subset [\mathfrak{n},\mathfrak{n}]^{\perp}/\mathfrak{b} \subset \mathfrak{g}/\mathfrak{b}$$

consisting of vectors with non-zero projection on each $\mathfrak{n}_{-\alpha_i}$. This orbit is isomorphic to B/N, where we use that G is adjoint.

Remark 3.3. Note that \mathbb{O} only depends on the choice of \mathfrak{b} .

Construction 3.4. Recall that $X = \text{Spec}(\mathbb{C}[[t]])$ or $\text{Spec}(\mathbb{C}((t)))$. Let \mathcal{F} be a *G*-torsor on X with a connection ∇ and *B*-reduction \mathcal{F}_B . Choose any flat connection ∇' on \mathcal{F} preserving \mathcal{F}_B (we can do it since \mathcal{F}_B is trivial) and take $\nabla - \nabla'$. This gives a section of $\mathcal{F} \times_G \mathfrak{g} \otimes \Omega^1_X \cong \mathcal{F}_B \times_B \mathfrak{g} \otimes \Omega^1_X$. Now project this section to $\mathcal{F}_B \times_B \mathfrak{g}/\mathfrak{b} \otimes \Omega^1_X$, and note that the result does not depend on ∇' . We call this element of Hom $(\mathcal{O}_X, \mathcal{F}_B \times_B \mathfrak{g}/\mathfrak{b} \otimes \Omega_X^1)$ the relative position of ∇ and \mathcal{F}_B and denote it by ∇/\mathcal{F}_B .

Definition 3.5. We say that \mathcal{F}_B is *transversal* to ∇ if

$$\nabla/\mathcal{F}_B \in \operatorname{Hom}(\mathcal{O}_X, \mathcal{F}_B \times_B \mathbb{O} \otimes \Omega^1_X) \subset \operatorname{Hom}(\mathcal{O}_X, \mathcal{F}_B \times_B \mathfrak{g}/\mathfrak{b} \otimes \Omega^1_X).$$

Remark 3.6. When $G = PGL_2$ this is exactly the non-vanishing condition we had before.

Definition 3.7. A *G*-oper on X is a triple $(\mathcal{F}, \nabla, \mathcal{F}_B)$, where \mathcal{F} is a principal *G*-bundle, ∇ is a connection on \mathcal{F} such that \mathcal{F}_B is transversal to ∇ .

Remark 3.8. Choose a trivialization of \mathcal{F}_B . Then the oper condition says that

(3.1)
$$\nabla_{\partial_t} = \partial_t + \sum_{i=1}^{\mathrm{rk}\,\mathfrak{g}} \psi_i(t) f_i + v(t),$$

where ψ_i are non-vanishing functions (i.e. invertible elements of $\mathbb{C}[[t]]$ or $\mathbb{C}((t))$), and v(t) is a b-valued function.

Definition 3.9. Let $\widetilde{\operatorname{Op}}_G(X)$ be the space of opers of the form

(3.2)
$$\nabla_{\partial_t} = \partial_t + \sum_{i=1}^{\mathrm{rk}\,\mathfrak{g}} f_i + v(t),$$

where v(t) is a b-valued function.

Notation 3.10. For an affine scheme T we denote by T_X the arc scheme T[[t]] in the case of X = D and the loop ind-scheme T((t)) in the case of $X = \overset{\circ}{D}$ (see section 4).

There is a natural action of N_X on $\widetilde{\operatorname{Op}}_G(X)$.

Lemma 3.11. We have

$$\operatorname{Op}_G(X) \cong \operatorname{Op}_G(X)/N_X$$

Proof. Recall that *B*-orbit \mathbb{O} is an *H*-torsor, so we can bring a connection of the form (3.1) to the form (3.2) by a unique element of H_X .

We are now going to describe the (ind)-scheme of opers using the Kostant slice.

Notation 3.12. Let $p_{-1} = \sum_{i=1}^{\mathrm{rk}\,\mathfrak{g}} f_i$, and let $(p_{-1}, 2\check{\rho}, p_1)$ be the principal \mathfrak{sl}_2 -triple.

Note that ker ad $p_{-1} \subset \mathfrak{b}$, and $p_{-1} + \mathfrak{b}$ is stable under the action of N. Recall that the following two proposition and their corollaries were discussed in [K]:

Proposition 3.13. (Kostant) The map

$$N \times S \to p_{-1} + \mathfrak{b}$$

given by the action is an isomorphism.

Corollary 3.14. $N_X \times S_X \cong (p_{-1} + \mathfrak{b})_X$.

Proposition 3.15. (Kostant) The composition of the embedding $S \hookrightarrow \mathfrak{g}$ and the quotient morphism $\mathfrak{g} \to \mathfrak{g}//G$ is an isomorphism.

Corollary 3.16. $S_X \to \mathfrak{g}_X //G_X$.

We now apply them in the study of opers.

Proposition 3.17. The morphism of schemes

(3.3)
$$N[[t]] \times \{\partial_t + S[[t]]\} \to \{\partial_t + (p_{-1} + \mathfrak{b})[[t]]\} = \operatorname{Op}_G(D)$$

induced by the gauge transformation action is an isomorphism.

Proof. Let $\mathbb{A}^1_{\lambda} = \operatorname{Spec}(\mathbb{C}[\lambda])$ and let $\operatorname{AffSch}_{/\mathbb{A}^1_{\lambda}}$ be the category of affine schemes over \mathbb{A}^1_{λ} . Consider $\{\lambda \partial_t + S[[t]]\}, \{\lambda \partial_t + (p_{-1} + \mathfrak{b})[[t]]\} \in \operatorname{AffSch}_{/\mathbb{A}^1_{\lambda}}$.

By definition, the gauge action of $n(t) \in N[[t]]$ on $(\lambda \partial_t + s(t)) \in \{\lambda \partial_t + S[[t]]\}$ is given by

(3.4)
$$n(t) \cdot (\lambda \partial_t + s(t)) = \lambda \partial_t + \operatorname{Ad}(n(t))s(t) - \lambda(\partial_t n(t))n(t)^{-1}$$

Note that $N[[t]] \times \{\lambda \partial_t + S[[t]]\}$ and $\{\lambda \partial_t + (p_{-1} + \mathfrak{b})[[t]]\}$ admit a \mathbb{G}_m -action such that the action map is equivariant. Indeed, for $z \in \mathbb{C}^{\times}$ we have

$$z \cdot (n(t), \lambda \partial_t + s(t)) := (z \operatorname{Ad}(\check{\rho}(z))n(t), z \lambda \partial_t + z \operatorname{Ad}\check{\rho}(z)s(t))$$

 $z \cdot (\lambda \partial_t + \operatorname{Ad}(n(t))s(t) - \lambda(\partial_t n(t))n(t)^{-1}) = z\lambda \partial_t + z\operatorname{Ad}(\check{\rho}(z))\operatorname{Ad}(n(t))s(t) + z\lambda\operatorname{Ad}(\check{\rho}(z))(\partial_t n(t))n(t)^{-1}.$

The restriction of the action map to the fiber $\lambda = 1$ is the desired map (3.3). This implies that there is a natural filtration on $\mathbb{C}[N[[t]]] \otimes \mathbb{C}[\{\partial_t + S[[t]]\}]$ and $\mathbb{C}[\{\partial_t + (p_{-1} + \mathfrak{b})[[t]]\}]$ such that the pullback map

(3.5)
$$\mathbb{C}[\{\partial_t + (p_{-1} + \mathfrak{b})[[t]]\}] \to \mathbb{C}[N[[t]]] \otimes \mathbb{C}[\{\partial_t + S[[t]]\}]$$

is filtered. Note that the filtration is non-negative. However, the restriction of the action map to the fiber $\lambda = 0$ is the isomorphism from Corollary 3.14. Thus the associated graded of (3.5) is an isomorphism, and hence (3.5) is also an isomorphism.

Corollary 3.18. We have

$$\operatorname{Op}_G(D) \cong \{\partial_t + S[[t]]\}.$$

Moreover, we get that

$$\operatorname{gr} \mathbb{C}[\operatorname{Op}_G(D)] \cong \mathbb{C}[S[[t]]] \cong \mathbb{C}[\mathfrak{g}[[t]]]^{G[[t]]}$$

and hence $\mathbb{C}[\operatorname{Op}_G(D)] \cong \mathbb{C}[\mathfrak{g}[[t]]]^{G[[t]]}$.

E. BOGDANOVA

We also have an analogous statement for loop spaces defined in Example 4.3:

Proposition 3.19. The morphism of ind-schemes

 $N((t)) \times \{\partial_t + S((t))\} \to \{\partial_t + (p_{-1} + \mathfrak{b})((t))\} = \widetilde{\operatorname{Op}}_G(\overset{\circ}{D})$ (3.6)induced by the gauge transformation action is an isomorphism.

Corollary 3.20. We have an isomorphism of ind-schemes

$$\operatorname{Op}_{G}(\check{D}) \cong \{\partial_{t} + S((t))\}.$$

Finally, to make sense of the statement of Theorem 0.4 we need define algebras of functions on ind-schemes $(\operatorname{Op}_G(\check{D})$ in our case). This is addressed in Definition 4.8.

4. Appendix: Ind-schemes and loop spaces.

Definition 4.1. An ind-scheme is a functor $AffSch^{op} \rightarrow Sets$ that can be represented as a filtered colimit of schemes along closed embeddings.

Example 4.2. $\mathbb{A}_{ind}^{\infty} := \bigcup_n \mathbb{A}^n$ is an ind-scheme.

Example 4.3. The functor $\mathbb{A}^n((t))$: AffSch^{op} \rightarrow Sets sending Spec R to $\mathbb{A}^n((t))(\text{Spec } R) = \mathbb{A}^n(R((t)))$ is represented by an ind-scheme.

Proof. We have

 $\mathbb{A}^{n}((t))(\operatorname{Spec} R) = \mathbb{A}^{n}(R((t))) = R((t))^{\times n} = \operatorname{colim}_{k}(t^{-k}R[[t]])^{\times n} = \operatorname{colim}\mathbb{A}^{n}[[t]](R).$

Hence $\mathbb{A}^n((t))$ can be written as a colimit of $\mathbb{A}^n[[t]]$ along maps given by multiplication by powers of t. \square

Exercise 4.4. For an affine scheme Y the functor Y((t)): AffSch^{op} \rightarrow Sets sending Spec R to $Y((t))(\operatorname{Spec} R) = Y(R((t)))$ is represented by an ind-scheme.

Definition 4.5. We say that an ind-scheme is *ind-affine* if can be represented as a filtered colimit of affine schemes along closed embeddings.

Remark 4.6. Examples 4.2, 4.3 and 4.4 are ind-affine.

Example 4.7. The affine grassmannian $\operatorname{Gr}_G := G((t))/G[[t]]$ is an ind-scheme but it is not ind-affine.

Definition 4.8. For an ind-affine ind-scheme $Z = \operatorname{colim}_{i \in I} Z_i$ define $\mathbb{C}[Z] := \lim_{i \in I^{OP}} \mathbb{C}[Z_i]$. This algebra carries a natural topology with ker α_i , where $\alpha_i : \mathbb{C}[Z] \to \mathbb{C}[Z_i]$, being neighborhoods of zero.

Remark 4.9. Given the algebra of functions A with topology one can recover the ind-affine ind-scheme as a colimit of $\operatorname{Spec}(A_j)$ for $A \to A_j$ continuous where A_j has discrete topology.

References

- [B] "Opers II." E. Bogdanova, seminar notes
- [K] "Invariants of jets and the center for $\hat{\mathfrak{sl}}_2$." I. Karpov, seminar notes
- [S] [W] "Galois cohomology." J.-P. Serre
- "Central elements of the completed universal enveloping algebra." H. Wan, seminar notes

HARVARD UNIVERSITY, USA

Email address: ebogdanova@math.harvard.edu