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Recall that in [K][Theorem 3.3.1] we proved

Theorem 0.1. There is a canonical isomorphism

z(ŝl2)x ∼= C[Proj (Dx)],

where Proj (Dx) is the space of projective connections on Dx := Spec(Ox).

In this note we will show that Theorem 0.1 implies

Theorem 0.2. There is a canonical isomorphism

Z(Ũκc(g)) =: Z(ŝl2)x ∼= C[Proj (
◦
Dx)],

where Proj (
◦
Dx) is the space of projective connections on

◦
Dx:= Spec(Kx).

We will also generalize the statements in the following way. Let G be a simply-connected semi-simple
algebraic group with the root system ∆. Let ∆̌ be the dual root system.

Definition 0.1. Langlands dual group Ǧ is the adjoint group with root system ∆̌.

The goal of this seminar is to prove

Theorem 0.3. There is a canonical isomorphism

z(ĝ)x ∼= C[OpǦ(Dx)],

where OpǦ(Dx) is the space of opers, which will be analogs of projective connections for general Ǧ.

Theorem 0.4. There is a canonical isomorphism

Z(ĝ)x ∼= C[OpǦ(
◦
Dx)].

1. Generalities on connections.

Throughout this section let G be adjoint group. Let X be a smooth variety, P be a principal G-
bundle. Abusing notation we will also denote the total space of this principal G-bundle by P, and
projection to X by f .

We have a G-equivariant short exact sequence

(1.1) 0→ f∗Ω1
X → Ω1

P → OP ⊗ g∗ → 0.

Definition 1.1. A connection ∇ on P is a G-equivariant section of (1.1).

Or, equivalently, a section P ×G g∗ → (f∗Ω
1
P)G of

(1.2) 0→ Ω1
X → (f∗Ω

1
P)G → P ×G g∗ → 0,

where P ×G g∗ is, by definition, the quotient of P × g∗ by the diagonal action.
Given a trivialization of P we get another section. Namely, then we get P ∼= X ×G and therefore

Ω1
P ∼= f∗Ω1

X ⊕ (OP ⊗ g∗).

Taking the difference we obtain an element of Hom(P ×G g∗,Ω1
X) ∼= Hom(OX , (P ×G g)⊗ Ω1

X).
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Remark 1.2. Let X be a smooth 1-dimensional variety. Choose a local coordinate z. Then P
trivializes and the data of the connection is an element of Hom(OX , g⊗ Ω1

X), and can be given by

(1.3) ∇ = dz +A(z)dz,

where A is a function valued in g. In this formula, d stands for the connection coming from the
trivialization of P.

Below we will abuse the notation and remove the dz from the formula (1.3). We will write a
connection in the form

∂z +A(z).

Exercise 1.3. Under change of trivialization of P by a function g : X → G we have

∂z +A(z) 7→ ∂z + gA(z)g−1 − (∂zg)g−1.

These are called gauge transformations.

Now let us specialize to the case G = PGL2. Choose a Borel B ⊂ PGL2. Suppose we have a
connection ∇ on P and a section s of P ×G (PGL2 /B). Note that PGL2 /B is nothing but P1 with
the natural action of PGL2.

Remark 1.4. Giving a section P×G (PGL2 /B) is equivalent to giving a B-reduction PB of P. Indeed,
for PB take a fiber product

PB P

X P ×G (PGL2 /B).

Construction 1.5. Choose a local section s′ of P lifting s. This gives a trivialization of P and hence
an element of Hom(OX ,P ×G g ⊗ Ω1

X). Project to Hom(OX ,PB ×B g/b ⊗ Ω1
X). The result is called

the derivative of s along ∇. Note that it does not depend on s′.

2. Opers for PGL2.

Set X = Spec(C[[t]]) or Spec(C((t))).

Notation 2.1. Denote D := Spec(C[[t]]) and
◦
D:= Spec(C((t))).

Definition 2.2. A PGL2-oper on X is a principal PGL2-bundle F over X with a connection ∇, plus
a globally defined section s of the associated P1-bundle F ×PGL2 (PGL2 /B), which has a nowhere
vanishing derivative along ∇.

Remark 2.3. Note that although Spec(C[[t]]) and Spec(C((t))) are not varieties, the constructions
from previous sections still make sense.

For D set Ω1
D := C[[t]]dt, and note that all G-bundles on D are trivial.

For
◦
D set Ω1

◦
D

:= C((t))dt, and note by [S][III.2.3. Theorem 1′ ] that all G-bundles on
◦
D are trivial.

Remark 2.4. Definition 2.2 makes sense for a smooth curve as well, but we will specialize to X.

The condition that the derivative of s along ∇ is nowhere vanishing says that ∇ does not preserve
FB at any point. More precisely:

Exercise 2.5. let (F ,∇, s) be a PGL2-oper. Choose a lift of s to F to get a trivialization of F . Then

∇∂t = ∂t +

(
a(t) b(t)
c(t) d(t)

)
,

where a(t) + d(t) = 0. The derivative of s along ∇ is nowhere vanishing if and only if c(t) is nowhere
vanishing (i.e. invertible element of C[[t]] or C((t))).
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Lemma 2.6. Let (F ,∇, s) be as above. Then ∇ can be brought to a form

∂t +

(
0 v(t)
1 0

)
in a unique way. So we get that PGL2-opers non-canonically form an (ind)-affine space in the sense
of algebraic geometry.

Proof. Apply the gauge transformation by(
c(t) 0
0 1

)
∈ PGL2

to get a connection of the form

∂t +

(
a1(t) b1(t)

1 d1(t)

)
.

Then apply the gauge transformation by(
1 −a1(t)
0 1

)
∈ PGL2 .

�

Remark 2.7. Another way to realize a PGL2-oper (F ,∇, s) is the following. Trivialize the PGL2-

bundle F and choose a lift F̃ to an SL2-torsor with connection ∇. The lift is unique up to tensoring
with line bundles that square to OX with connection.

Section of the associated P1-bundle s gives a B-reduction, which gives rize to a line subbundle

F1 ⊂ F̃ .
The connection ∇ on F̃ corresponds to a map OX → F̃⊗F̃∗⊗Ω1

X , and thus to a map F̃ → F̃ ⊗Ω1
X .

An oper condition means that for

0→ F1
∇−→ F̃ ⊗ Ω1

X → F̃/F1 ⊗ Ω1
X → 0

is an isomorphism.
This means that

0→ F1 ⊗ Ω1
X ⊗ F̃/F1 ⊗ Ω1

X
∼= F2

1 ⊗ Ω1
X → 0,

and therefore
F2

1 ⊗ Ω1
X
∼= det F̃ ⊗ (Ω1

X)2,

i.e.
F2

1
∼= Ω1

X .

Choose F1 for a square root of Ω1
X . We get

0→ Ω
1
2
X → F̃ → Ω

− 1
2

X → 0.

Proposition 2.8. There is a one-to-one correspondence

{PGL2 -opers on X} ←→ {Projective connections on X} .

Proof. Let us canonically construct a projective connection from a PGL2-oper. Let (F̃ ,∇) be as in
Remark 2.7. We have

0 Ω
1
2
X F̃ Ω

− 1
2

X 0

0 Ω
3
2
X F̃ ⊗ Ω1

X Ω
1
2
X 0,

i

∇

π

such that π ◦ ∇ ◦ i is the identity.

Let us construct a differential operator ρ : Ω
− 1

2
X → Ω

3
2
X . Let s be a section of Ω

− 1
2

X . Choose a lift s′

of s to a section of F . Then set
ρ(s) = ∇(s̃),
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where s̃ := s′ − i ◦ π ◦ ∇(s′).
Now choose s such that s2 = (dt)−1 (the choice is unique up to a sign). Consider a basis (s−1, s̃),

and in this basis

∇∂t = ∂t +

(
0 v(t)
1 0

)
.

Exercise 2.9. Using s and s3 as trivializations of Ω
1
2
X and Ω

3
2
X respectively, show that ρ = ∂2

t + v(t).

So we constructed a canonical map which is seen to be a bijection. �

3. Opers for general G.

To define opers for general G we need to formulate an analog of the non-vanishing derivative condi-
tion.

Let G be an adjoint group. Choose g = n− ⊕ h⊕ n+. This gives n+ ⊂ b ⊂ g and

N = [B,B] ⊂ B ⊂ G ⊃ H.
Let fi be the standard generators of n−, let ei be corresponding standard generators of n+. Set

nαi = Cei, n−αi = Cfi.
Let [n, n]⊥ ⊂ g be the orthogonal complement of [n, n] w.r.t. κ0.

Lemma 3.1. We have

[n, n]⊥/b ∼= ⊕rk g
i=1n−αi .

Construction 3.2. Note that B acts on [n, n]⊥/b. There is a unique open B-orbit

O ⊂ [n, n]⊥/b ⊂ g/b

consisting of vectors with non-zero projection on each n−αi . This orbit is isomorphic to B/N , where
we use that G is adjoint.

Remark 3.3. Note that O only depends on the choice of b.

Construction 3.4. Recall that X = Spec (C[[t]]) or Spec (C((t))). Let F be a G-torsor on X with a
connection ∇ and B-reduction FB . Choose any flat connection ∇′ on F preserving FB (we can do it
since FB is trivial) and take ∇ − ∇′. This gives a section of F ×G g ⊗ Ω1

X
∼= FB ×B g ⊗ Ω1

X . Now
project this section to FB ×B g/b⊗Ω1

X , and note that the result does not depend on ∇′. We call this
element of Hom(OX ,FB ×B g/b⊗ Ω1

X) the relative position of ∇ and FB and denote it by ∇/FB .

Definition 3.5. We say that FB is transversal to ∇ if

∇/FB ∈ Hom(OX ,FB ×B O⊗ Ω1
X) ⊂ Hom(OX ,FB ×B g/b⊗ Ω1

X).

Remark 3.6. When G = PGL2 this is exactly the non-vanishing condition we had before.

Definition 3.7. A G-oper on X is a triple (F ,∇,FB), where F is a principal G-bundle, ∇ is a
connection on F such that FB is transversal to ∇.

Remark 3.8. Choose a trivialization of FB . Then the oper condition says that

(3.1) ∇∂t = ∂t +

rk g∑
i=1

ψi(t)fi + v(t),

where ψi are non-vanishing functions (i.e. invertible elements of C[[t]] or C((t))) , and v(t) is a b-valued
function.

Definition 3.9. Let ÕpG(X) be the space of opers of the form

(3.2) ∇∂t = ∂t +

rk g∑
i=1

fi + v(t),

where v(t) is a b-valued function.
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Notation 3.10. For an affine scheme T we denote by TX the arc scheme T [[t]] in the case of X = D

and the loop ind-scheme T ((t)) in the case of X =
◦
D (see section 4).

There is a natural action of NX on ÕpG(X).

Lemma 3.11. We have
OpG(X) ∼= ÕpG(X)/NX .

Proof. Recall that B-orbit O is an H-torsor, so we can bring a connection of the form (3.1) to the form
(3.2) by a unique element of HX . �

We are now going to describe the (ind)-scheme of opers using the Kostant slice.

Notation 3.12. Let p−1 =
∑rk g
i=1 fi, and let (p−1, 2ρ̌, p1) be the principal sl2-triple.

Note that ker ad p−1 ⊂ b, and p−1 + b is stable under the action of N . Recall that the following two
proposition and their corollaries were discussed in [K]:

Proposition 3.13. (Kostant) The map

N × S → p−1 + b

given by the action is an isomorphism.

Corollary 3.14. NX × SX ∼= (p−1 + b)X .

Proposition 3.15. (Kostant) The composition of the embedding S ↪→ g and the quotient morphism
g→ g//G is an isomorphism.

Corollary 3.16. SX → gX//GX .

We now apply them in the study of opers.

Proposition 3.17. The morphism of schemes

(3.3) N [[t]]× {∂t + S[[t]]} → {∂t + (p−1 + b)[[t]]} = ÕpG(D)

induced by the gauge transformation action is an isomorphism.

Proof. Let A1
λ = Spec(C[λ]) and let AffSch/A1

λ
be the category of affine schemes over A1

λ. Consider

{λ∂t + S[[t]]}, {λ∂t + (p−1 + b)[[t]]} ∈ AffSch/A1
λ

.

By definition, the gauge action of n(t) ∈ N [[t]] on (λ∂t + s(t)) ∈ {λ∂t + S[[t]]} is given by

(3.4) n(t) · (λ∂t + s(t)) = λ∂t + Ad(n(t))s(t)− λ(∂tn(t))n(t)−1.

Note that N [[t]]× {λ∂t + S[[t]]} and {λ∂t + (p−1 + b)[[t]]} admit a Gm-action such that the action
map is equivariant. Indeed, for z ∈ C× we have

z · (n(t), λ∂t + s(t)) := (zAd(ρ̌(z))n(t), zλ∂t + zAd ρ̌(z)s(t)),

z ·(λ∂t+Ad(n(t))s(t)−λ(∂tn(t))n(t)−1) = zλ∂t+zAd(ρ̌(z)) Ad(n(t))s(t)+zλAd(ρ̌(z))(∂tn(t))n(t)−1.

The restriction of the action map to the fiber λ = 1 is the desired map (3.3). This implies that there
is a natural filtration on C[N [[t]]]⊗ C[{∂t + S[[t]]}] and C[{∂t + (p−1 + b)[[t]]}] such that the pullback
map

(3.5) C[{∂t + (p−1 + b)[[t]]}]→ C[N [[t]]]⊗ C[{∂t + S[[t]]}]
is filtered. Note that the filtration is non-negative. However, the restriction of the action map to
the fiber λ = 0 is the isomorphism from Corollary 3.14. Thus the associated graded of (3.5) is an
isomorphism, and hence (3.5) is also an isomorphism. �

Corollary 3.18. We have
OpG(D) ∼= {∂t + S[[t]]}.

Moreover, we get that

grC[OpG(D)] ∼= C[S[[t]]] ∼= C[g[[t]]]G[[t]],

and hence C[OpG(D)] ∼= C[g[[t]]]G[[t]].
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We also have an analogous statement for loop spaces defined in Example 4.3:

Proposition 3.19. The morphism of ind-schemes

(3.6) N((t))× {∂t + S((t))} → {∂t + (p−1 + b)((t))} = ÕpG(
◦
D)

induced by the gauge transformation action is an isomorphism.

Corollary 3.20. We have an isomorphism of ind-schemes

OpG(
◦
D) ∼= {∂t + S((t))}.

Finally, to make sense of the statement of Theorem 0.4 we need define algebras of functions on

ind-schemes (OpG(
◦
D) in our case). This is addressed in Definition 4.8.

4. Appendix: Ind-schemes and loop spaces.

Definition 4.1. An ind-scheme is a functor AffSchop → Sets that can be represented as a filtered
colimit of schemes along closed embeddings.

Example 4.2. A∞ind := ∪nAn is an ind-scheme.

Example 4.3. The functor An((t)) : AffSchop → Sets sending SpecR to An((t))(SpecR) = An(R((t)))
is represented by an ind-scheme.

Proof. We have

An((t))(SpecR) = An(R((t))) = R((t))×n = colimk(t−kR[[t]])×n = colimAn[[t]](R).

Hence An((t)) can be written as a colimit of An[[t]] along maps given by multiplication by powers of
t. �

Exercise 4.4. For an affine scheme Y the functor Y ((t)) : AffSchop → Sets sending SpecR to
Y ((t))(SpecR) = Y (R((t))) is represented by an ind-scheme.

Definition 4.5. We say that an ind-scheme is ind-affine if can be represented as a filtered colimit of
affine schemes along closed embeddings.

Remark 4.6. Examples 4.2, 4.3 and 4.4 are ind-affine.

Example 4.7. The affine grassmannian GrG := G((t))/G[[t]] is an ind-scheme but it is not ind-affine.

Definition 4.8. For an ind-affine ind-scheme Z = colimi∈IZi define C[Z] := limi∈Iop C[Zi]. This
algebra carries a natural topology with kerαi, where αi : C[Z]→ C[Zi], being neighborhoods of zero.

Remark 4.9. Given the algebra of functions A with topology one can recover the ind-affine ind-scheme
as a colimit of Spec(Aj) for A→ Aj continuous where Aj has discrete topology.
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