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Set X = Spec(C[[t]]) or Spec(C((t))).

Notation 0.1. We will denote D := Spec(C[[t]]) and
◦
D:= Spec(C((t))).

Notation 0.2. For an affine scheme Y by YX we mean either the jet scheme JY or the loop ind-scheme
LY .

Recall that if (F ,∇,FB) is a G-oper on X then

∇∂t = ∂t +

rk g∑
i=1

ψi(t)fi + v(t),

where ψi(t) 6= 0 for all i and v(t) ∈ bX .
Therefore

OpG(X) ∼= {∂t +

rk g∑
i=1

ψi(t)fi + v(t), ψi(t) 6= 0, v(t) ∈ BX}/BX .

Since every oper of the form

∇∂t = {∂t +

rk g∑
i=1

ψi(t)fi + v(t), ψi(t) 6= 0, v(t) ∈ BX}

can be represented in the form

{∂t +

rk g∑
i=1

fi + v(t), v(t) ∈ BX}

by gauging by a unique element of HX , we get that

(0.1) OpG(X) ∼= ÕpG(X)/NX .

In the first part of this talk we also proved that

(0.2) OpG(X) ∼= ÕpG(X)/NX ∼= {∂t + SX},
where S is the Kostant slice.

1. Action of coordinate changes.

In this section we want to see how Aut(O) acts on the canonical representatives from (0.2). Let s
be another coordinate on D, i.e. s =

∑
i≥1 ait

i with a1 6= 0. Let t = φ(s).

Recall that p−1 :=
∑rk g
i=1 fi, and (p−1, 2ρ̌, p1) is the principal sl2-triple. Set V := ker ad p1 (note

that Kostant slice S = p−1 + V ). The operator ad ρ̌ defines a grading on g = ⊕igi.
Let di, . . . , drk g denote the exponents (di + 1 are the degrees of free homogeneous generators of

C[g]G) of g. Then

V = ⊕rk g
i=1Vdi .

Note that p1 spans Vd1 = V1. Choose pj to be linear generator of Vdj .
Using (0.2) write a G-oper as

∇∂t = ∂t + p−1 + v(t), v(t) ∈ VX .

Write v(t) =
∑rk g
j=1 vj(t)pj for vj(t) ∈ C[X].
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Then

∇∂t = ∇φ′(s)−1∂s = φ′(s)−1∂s + p−1 + v(φ(s)),

hence

(1.1) ∇∂s = ∂s + φ′(s)p−1 + φ′(s)v(φ(s)).

We now need to apply gauge transformations to bring this connection to the canonical form from
(0.2).

We first apply gauge transformation by ρ̌(φ′(s)), where

ρ̌ =

rk g∑
i=1

ω̌i : C× → H.

Under this gauge transformation (1.1) becomes

∂s + p−1 + ṽ(s),

where

ṽ(s) := φ′(s)ρ̌(φ′(s))v(φ(s))ρ̌(φ′(s))−1 − dρ̌(
φ′′(s)

φ′(s)
).

Note that this is an element of ÕpG(X), and by (0.1) there exist unique g ∈ NX and ∂s+p−1 + v̄(s)
with v̄(s) ∈ VX such that

∂s + p−1 + v̄(s) = g · (∂s + p−1 + ṽ(s)),

Exercise 1.1. Find that

(1) g = exp( 1
2
φ′′

φ′ p1) Hint: for s ∈ S, find g ∈ G such that Ad s(ρ̌+ s) ∈ S.,

(2) v̄1 = v1(φ(s))(φ′)2 − 1
2
{φ, s}, where {φ, s} := φ′′′

φ′ −
3
2
(φ
′′

φ′ )2,

(3) v̄j = vj(φ(s))(φ′)dj+1 for j > 1.

So we defined the action of Aut(O) on OpG(X) and therefore can form OpG(Dx) and OpG(
◦
Dx).

The formulae from Exercise 1.1 show that under changes of coordinates v1 transforms as a projective

connection and vj for j > 1 transform as (dj + 1)-differential forms on Dx or
◦
Dx. Hence

OpG(Dx) ∼= Proj (Dx)×⊕rk g
j=2Ω

⊗(dj+1)

Ox
,

OpG(
◦
Dx) ∼= Proj (

◦
Dx)×⊕rk g

j=2Ω
⊗(dj+1)

Kx
.

2. The center for the arbitrary Kac-Moody algebra.

Recall that the main goal of the seminar is to prove the following two statements:

Theorem 2.1. There is a canonical isomorphism

z(ĝ)x ∼= C[OpG(Dx)].

Or, equivalently, there is a canonical (Der(O),Aut(O))-equivariant isomorphism

z(ĝ) ∼= C[OpG(D)].

Theorem 2.2. There is a canonical isomorphism

Z(ĝ)x ∼= C[OpG(
◦
Dx)].

Or, equivalently, there is a canonical (Der(O),Aut(O))-equivariant isomorphism

Z(ĝ) ∼= C[OpG(
◦
D)].

The goal of this section is to deduce Theorem 2.2 from Theorem 2.1.
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Remark 2.1. The second isomorphism in Theorem 2.1 is compatible with the natural filtrations on
both sides. Recall that the filtration on z(ĝ) is induced from the PBW filtration on Vκc(g). And the
filtration on C[OpG(Dx)] was introduced in the proof of (0.2) in [B][Proposition 3.17].

This implies the following statement:

Lemma 2.2. The natural embedding gr z(ĝ) ↪→ C[Jg]JG is an isomorphism.

Let f1, . . . frk g be free homogeneous generators of C[g]G. Let fi,n, 1 ≤ i ≤ rk g, n < 0 be corre-
sponding free homogeneous generators of C[Jg]JG (see [W][Section 3.4] and [K][Theorem 1.3.1]).

Remark 2.3. Under the second isomorphism in Theorem 2.1 the element f1,−1 ∈ C[OpG(D)] goes to
the Segal-Sugawara vector S−2 = 1

2

∑
i xi(−1)xi(−1)|0〉. Using equivariance of the isomorphism under

the action of L−1 = −∂t ∈ Der(O) we get that f1,−k ∈ C[OpG(D)] goes to the Segal-Sugawara vector
S−k−1.

Recall from [W][Remark 3.9] that we have a homomorphism

Ũ(z(ĝ))→ Z(ĝ).

Proposition 2.4. The homomorphism Ũ(z(ĝ))→ Z(ĝ) is an isomorphism.

Proof. Recall that z(ĝ) ∼= C[fi,n] for 1 ≤ i ≤ rk g, n < 0. By [L] we have

Ũ(z(ĝ)) ∼= C[L(g �G)] = lim
N∈Z+

C[fi,n, 1 ≤ i ≤ rk g, n ∈ Z]/(fi,n, n > N).

The latter is equivalent to

lim
N∈Z+

C[fi,n, 1 ≤ i ≤ rk g, n ∈ Z]/(fi,n, n > (di + 1)N) ∼= lim
N∈Z+

(C
[
g⊗ t−NC[[t]]

]JG
).

It suffices to prove that

(2.1) C
[
g⊗ t−NC[[t]]

]JG
→ Z(ĝ)/Z(ĝ) ∩ IN ,

where IN := (g ⊗ tNC[[t]]), is an isomorphism. PBW filtration on Uκc(ĝ) induces a filtration on
Z(ĝ)/Z(ĝ)

⋂
IN (note that we need to take the quotient since the filtration on Z(ĝ) is not exhaustive),

and (2.1) is filtered. Hence it suffices to check that

(2.2) gr(C
[
g⊗ t−NC[[t]]

]JG
)→ gr(Z(ĝ)/Z(ĝ) ∩ IN )

is an isomorphism.
But since Uκc(ĝ)/IN is Jg-stable we have

(2.3) gr(Z(ĝ)/Z(ĝ) ∩ IN ) ↪→ gr
(

(Uκc(ĝ)/IN )Jg
)
↪→ (grUκc(ĝ)/ gr IN )Jg.

Note that

grUκc(ĝ)/ gr IN ∼= Sym g((t))/(g⊗ tNC[[t]]) ∼= C
[
g∗ ⊗ t−NC[[t]]

]
∼= C

[
g⊗ t−NC[[t]]

]
,

and therefore

(2.4) (grUκc(ĝ)/ gr IN )Jg ∼= C
[
g⊗ t−NC[[t]]

]JG
.

So we get that the composition of (2.2) and (2.4)◦(2.3) is identity. Since (2.4)◦(2.3) is injective left
inverse to (2.2) we get that (2.2) is an isomorphism.

�

Corollary 2.5. Z(ĝ) ∼= Ũ (C[OpG(D)]).

Exercise 2.6. Ũ(C[OpG(D)]) ∼= C[OpG(
◦
D)].

So we deduced Theorem 2.2.

Proposition 2.7. For κ 6= κc one has Z(Ũκ(ĝ)) ∼= C.
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