PARABOLIC WAKIMOTO MODULES AND APPLICATIONS

KENTA SUZUKI

We will define generalized Wakimoto modules, which gives a functorial way of constructing $\widehat{\mathfrak{g}}$ modules from $\widehat{\mathfrak{m}}$-modules for parabolic subalgebras $\mathfrak{p}=\mathfrak{m} \ltimes \mathfrak{u} \subset \mathfrak{g}$. We will give applications of Wakimoto modules, including the Kac-Kazhdan conjecture, which computes the characters of Verma modules $\mathbb{M}_{\lambda, \kappa_{c}}$ on the critical level for $\lambda \in \mathfrak{h}^{*}$ generic, i.e., not lying in a countable union of hyperplanes.

1. SEmi-Infinite parabolic induction

Let \mathfrak{g} be a finite-dimensional reductive Lie algebra with Borel subalgebra \mathfrak{b}_{+}and Cartan subalgebra \mathfrak{h} (we work in this generality since we want to apply our construction to Levi subalgebras of simple Lie algebras).

Wakimoto modules, constructed in [Wan24b], are the images of Fock modules under a functor $\widetilde{U}_{\kappa}(\mathfrak{h})-\bmod \rightarrow \widetilde{U}_{\kappa+\kappa_{c}}(\mathfrak{g})-\bmod .{ }^{1}$ We want to generalize the construction by replacing the Borel subalgebra \mathfrak{b} with an arbitrary parabolic subalgebra \mathfrak{p} and replacing the Cartan subalgebra \mathfrak{h} with the Levi component \mathfrak{m} of \mathfrak{p}. Let us first recall what a parabolic subalgebra is:

Definition 1.1. A parabolic subalegbra is a subalgebra $\mathfrak{p} \subset \mathfrak{g}$ such that one of the following equivalent conditions hold:

- \mathfrak{p} contains a Borel subalgebra of \mathfrak{g}; or
- the orthogonal complement of \mathfrak{p} with respect to an invariant orthogonal form ${ }^{2}$ is its nilradical.

Example 1.2. \mathfrak{b}_{+}and \mathfrak{g} are parabolic subalgebras of \mathfrak{g}.
Each conjugacy class of parabolic subalgebras has a unique representative containing \mathfrak{b}_{+}: we call those parabolic subalgebras standard. Let Δ_{s} be the set of simple roots corresponding to $\mathfrak{b}_{+} \subset \mathfrak{g}$. Then standard parabolic subalgebras of \mathfrak{g} are classified by subsets of Δ_{s} : so \mathfrak{b}_{+}corresponds to \varnothing and \mathfrak{g} corresponds to Δ_{s}. More generally, for a subset $S \subset \Delta_{s}$, the corresponding standard parabolic subalgebra $\mathfrak{p}_{S} \subset \mathfrak{g}$ is

$$
\mathfrak{p}_{S}:=\mathfrak{b}_{+} \oplus \bigoplus_{\substack{\alpha>0 \\ \alpha \in \text { span } \Delta_{s}}} \mathfrak{g}_{\alpha} .
$$

The Levi component is then given by:

$$
\mathfrak{m}_{S}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \operatorname{span} \Delta_{s}} \mathfrak{g}_{\alpha} .
$$

Analogous to the opposite Borel subalgebra, let

be the opposite parabolic.

[^0]Example 1.3. When $\mathfrak{g}=\mathfrak{s l}_{n}$, let S be a subset of $\Delta_{s}=\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}$ such that $\Delta_{s} \backslash S=$ $\left\{\alpha_{a_{1}}, \ldots, \alpha_{a_{k}}\right\}$. The corresponding parabolic subalgebras are

$$
\mathfrak{p}_{S}=\mathfrak{s l}_{n} \cap\left(\begin{array}{cccc}
M_{a_{1} \times a_{1}} & * & * & * \\
0 & M_{\left(a_{2}-a_{1}\right) \times\left(a_{2}-a_{1}\right)} & * & * \\
0 & 0 & \ddots & * \\
0 & 0 & 0 & M_{\left(n-a_{k}\right) \times\left(n-a_{k}\right)}
\end{array}\right)
$$

and

$$
\mathfrak{p}_{S,-}=\mathfrak{s l}_{n} \cap\left(\begin{array}{cccc}
M_{a_{1} \times a_{1}} & & & \\
* & M_{\left(a_{2}-a_{1}\right) \times\left(a_{2}-a_{1}\right)} & & \\
* & * & \ddots & \\
* & * & * & M_{\left(n-a_{k}\right) \times\left(n-a_{k}\right)}
\end{array}\right) .
$$

The Levi component is

$$
\begin{aligned}
\mathfrak{m}_{S} & =\left\{\left(x_{0}, \ldots, x_{k}\right) \in \mathfrak{g l}_{a_{1}} \times \cdots \times \mathfrak{g l}_{n-a_{k}}: \operatorname{tr}\left(x_{0}\right)+\cdots+\operatorname{tr}\left(x_{k}\right)=0\right\} \\
& \simeq \mathfrak{s l}_{a_{1}} \times \cdots \times \mathfrak{s l}_{n-a_{k}} \times \mathbb{C}^{\oplus k} .
\end{aligned}
$$

First, we must extend relevant definitions from simple Lie algebras to reductive Lie algebras. The following is the generalization of the critical level:

Definition 1.4. Let \mathfrak{g} be a reductive Lie algebra, which decomposes as $\mathfrak{g}=\bigoplus_{i=1}^{s} \mathfrak{g}_{i} \oplus \mathfrak{g}_{0}$ for some simple Lie algebras $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{s}$ and an abelian Lie algebra \mathfrak{g}_{0}. Then the critical level is $\kappa_{c}(\mathfrak{g}):=$ $\left(\kappa_{i, c}\right)_{i=0}^{s}$, where $\kappa_{0, c}=0$ and $\kappa_{i, c}$ is the critical level for the simple Lie algebra \mathfrak{g}_{i} for $1 \leq i \leq s$.

Given an invariant symmetric bilinear form κ on \mathfrak{g}, let $\widehat{\mathfrak{g}}_{\kappa}$ be the corresponding affine Kac-Moody algebra, as in [KL24]: it is the central extension

$$
0 \rightarrow \mathbb{C} 1 \rightarrow \widehat{\mathfrak{g}}_{k} \rightarrow \mathfrak{g}((t)) \rightarrow 0
$$

with commutation relation

$$
[A \otimes f(t), B \otimes g(t)]=[A, B] \otimes f(t) g(t)-(\kappa(A, B) \operatorname{Res} f d g) \mathbf{1}
$$

Let us now formally re-state our goal:
Goal 1.5. Let \mathfrak{g} be a reductive Lie algebra, let κ be an invariant symmetric bilinear form on \mathfrak{g}, and let $\mathfrak{p}=\mathfrak{m} \ltimes \mathfrak{u} \subset \mathfrak{g}$ be a parabolic subalgebra. Define an exact functor

$$
\widetilde{U}_{\left.\kappa\right|_{\mathfrak{m}}+\kappa_{c}(\widehat{\mathfrak{m})}}(\mathfrak{m})-\bmod \rightarrow \widetilde{U}_{\kappa+\kappa_{c}}(\widehat{\mathfrak{g}})-\bmod
$$

such that the Wakimoto module with highest weight λ is sent to the Wakimoto module with highest weight λ.
1.1. Finite-dimensional analog. Let us first describe the finite-dimensional analog of Goal 1.5.

Definition 1.6. Let \mathfrak{g} be a simple Lie algebra with standard parabolic subalgebra $\mathfrak{p}=\mathfrak{m} \ltimes \mathfrak{u}$. There is an exact functor, the parabolic induction functor

$$
\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}: \mathfrak{m}-\bmod \rightarrow \mathfrak{g}-\bmod
$$

Given a \mathfrak{m}-module V, we may view it as a \mathfrak{p}-module by extension by zero, i.e., by making \mathfrak{u} act by zero, and we let

$$
\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V:=U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V .
$$

Now the $\operatorname{Ind} \mathfrak{p}_{\mathfrak{p}}^{\mathfrak{g}}$ sends Verma modules to Verma modules:
Lemma 1.7. For a weight $\lambda \in \mathfrak{h}^{*}$, let $V_{\mathfrak{m}}(\lambda)$ and $V_{\mathfrak{g}}(\lambda)$ be the Verma modules with highest weight λ of the Lie algebras \mathfrak{m} and \mathfrak{g}, respectively. Then

$$
\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V_{\mathfrak{m}}(\lambda) \simeq V_{\mathfrak{g}}(\lambda)
$$

Proof. Follows from observing that $U(\mathfrak{p}) \otimes_{U\left(\mathfrak{b}_{+}\right)} \mathbb{C}_{\lambda}$ is isomorphic to the inflation of the \mathfrak{m}-module $V_{\mathfrak{m}}(\lambda)$ to \mathfrak{p}, and because induction is transitive.
Remark 1.8. When $\mathfrak{p}=\mathfrak{b}_{+}$, the above recovers the construction of Verma modules (i.e., $V_{\mathfrak{g}}(\lambda)=$ $\left.\operatorname{Ind}_{\mathfrak{b}_{+}}^{\mathfrak{g}} \mathbb{C}_{\lambda}\right)$.

Recall that [Kiy24] gives a geometric construction of dual Verma modules using vector fields on G / N_{-}, where N_{-}is the unipotent radical of the opposite Borel subalgebra B_{-}. The construction admits a straightforward generalization to the parabolic setting: let $P_{ \pm}=M \ltimes U_{ \pm} \subset G$ be subgroups whose Lie algebras are $\mathfrak{p}_{ \pm}=\mathfrak{m} \ltimes \mathfrak{u}_{ \pm} \subset \mathfrak{g}$. Then analogously to [Kiy24, §2] there is a map of Lie algebras

$$
\mathfrak{g} \rightarrow \operatorname{Vect}\left(G / U_{-}\right)^{M_{r}},
$$

where M_{r} acts on G / U_{-}from the right. ${ }^{3}$ Now as in Daishi's talk, $P_{+} U_{-} / U_{-} \subset G / U_{-}$is Zariski open, and restricting to the locus gives a homomorphism of algebras

$$
\begin{equation*}
\varphi_{P_{+}}^{G}: U(\mathfrak{g}) \rightarrow D\left(P_{+}\right)^{M} \simeq D\left(U_{+}\right) \otimes U(\mathfrak{m}) \tag{1.9}
\end{equation*}
$$

where the second isomorphism follows from the isomorphism of varieties $P_{+} \simeq U_{+} \times M$. Now:
Lemma 1.10. Let V be a \mathfrak{m}-module, with structure morphism $\varphi: U(\mathfrak{m}) \rightarrow \operatorname{End}(V)$. Then the modified \mathfrak{g}-module structure on $\mathbb{C}\left[U_{+}\right] \otimes V$ is defined by

$$
U(\mathfrak{g}) \rightarrow D\left(U_{+}\right) \otimes U(\mathfrak{m}) \xrightarrow{1 \otimes \varphi} D\left(U_{+}\right) \otimes \operatorname{End}(V) \rightarrow \operatorname{End}\left(\mathbb{C}\left[U_{+}\right] \otimes V\right),
$$

noting that $\mathbb{C}\left[U_{+}\right]$is naturally a $D\left(U_{+}\right)$-module. Then the \mathfrak{g}-module $\mathbb{C}\left[U_{+}\right] \otimes V^{\vee}$ is isomorphic to the dual parabolic induction $\left(\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} V\right)^{\vee}$. 4

We hope to see Lemma 1.7 from the geometric perspective:
Proposition 1.11. Let $P_{+}=M \ltimes U_{+} \subset G$ be a standard parabolic subgroup. There is a commutative diagram

Here, the homomorphisms $U(\mathfrak{g}) \rightarrow D\left(N_{+}\right) \otimes U(\mathfrak{h})$ and $U(\mathfrak{g}) \rightarrow D\left(U_{+}\right) \otimes U(\mathfrak{m})$ are as in (1.9), and the right vertical isomorphism follows from the multiplication isomorphism ${ }^{5} U_{+} \times\left(N_{+} \cap M\right) \simeq N_{+}$.
Proof. Indeed, the following diagram commutes:

where the vertical homomorphisms are restricting along open immersions $P_{+} \subset G / U_{-}$and $P_{+} /\left(P_{+} \cap\right.$ $\left.N_{-}\right) \subset G / N_{-}$. The first horizontal homomorphism $D(G)^{G_{r}} \hookrightarrow D\left(G / U_{-}\right)^{M_{r}}$ is obtained as follows: any $\sigma \in D(G)^{G_{r}}$ is an operator $\sigma: \mathbb{C}[G] \rightarrow \mathbb{C}[G]$ which is $G_{r^{-}}$-invariant, hence it sends $\left(U_{-}\right)_{r^{-}}$ invariant functions to $\left(U_{-}\right)_{r}$-invariant functions. In fact, for any $\left(U_{-}\right)_{r}$-invariant open subset X of

[^1]G, there is an operator $\sigma: \mathbb{C}[X]^{U_{-, r}} \rightarrow \mathbb{C}[X]^{U_{-, r}}$. In other words, since $\mathbb{C}\left[X / U_{-}\right]=\mathbb{C}[X]^{U_{-, r}}$, it defines an endomorphism of sheaves $\widetilde{\sigma}: \mathcal{O}_{G / U_{-}} \rightarrow \mathcal{O}_{G / U_{-}}$, which can be shown to be a differential operator. Note that we need $\widetilde{\sigma}$ to be an endomorphism of the sheaf $\mathcal{O}_{G / U_{-}}$, and not just $\mathbb{C}\left[G / U_{-}\right]$, since G / U_{-}may not be affine, e.g., $\mathrm{SL}_{2} / N_{-} \simeq \mathbb{A}^{2} \backslash\{(0,0)\}$. Moreover σ is G_{r}-invariant so $\widetilde{\sigma}$ must be M_{r}-invariant, i.e., $\widetilde{\sigma} \in D\left(G / U_{-}\right)^{M_{r}}$. All other horizontal maps are constructed in a similar fashion.

Now we have the isomorphisms $U(\mathfrak{g}) \simeq D(G)^{G_{r}}$ and $D\left(P_{+}\right)^{M_{r}} \simeq D\left(U_{+}\right) \otimes U(\mathfrak{m})$, so (1.12) can be re-written as

which is the desired commtativity. Here the homomorphism $D\left(G / N_{-}\right)^{H_{r}} \rightarrow D\left(N_{+}\right) \otimes U(\mathfrak{h})$ is the composition of the restriction to the open Bruhat cell $D\left(G / N_{-}\right)^{H_{r}} \rightarrow D\left(B_{+}\right)^{H_{r}}$, together with the standard isomorphism $D\left(B_{+}\right)^{H_{r}} \simeq D\left(N_{+}\right) \otimes U(\mathfrak{h})$ from [Kiy24].

Remark 1.13. Proposition 1.11 implies Lemma 1.7.
1.2. Back to affine Lie algebras. Recall the definition of the Weyl algebra $\widehat{\Gamma}^{\mathfrak{g}}$ (denoted simply as $\widehat{\Gamma}$ in [Wan24b]) ${ }^{6}$:

Definition 1.14. Let $\widehat{\Gamma}^{\mathfrak{g}}=\mathbb{C} \mathbf{1} \oplus \mathfrak{n}_{+}((t)) \oplus \mathfrak{n}_{+}^{*}((t)) d t$ with Lie bracket

$$
\begin{equation*}
[x f, y w]=\langle x, y\rangle \operatorname{Res}(f w) \cdot \mathbf{1} \tag{1.15}
\end{equation*}
$$

for $x \in \mathfrak{n}_{+}, y \in \mathfrak{n}_{+}^{*}$, and $f \in \mathbb{C}((t)), w \in \mathbb{C}((t)) d t$. More concretely, it has a topological basis 1, $a_{\alpha, n}:=x_{\alpha} t^{n}$, and $a_{\alpha, n}^{*}:=x_{\alpha}^{*} t^{n-1} d t$ for $\alpha \in \Delta_{+}$and $n \in \mathbb{Z}$ with relations

$$
\left[a_{\alpha, n}, a_{\beta, m}^{*}\right]=\delta_{\alpha, \beta} \delta_{m+n, 0} \mathbf{1} \text { and }\left[a_{\alpha, n}, a_{\beta, m}\right]=\left[a_{\alpha, n}^{*}, a_{\beta, m}^{*}\right]=0 .
$$

Let $\widehat{\Gamma}_{+}^{\mathfrak{g}}=\mathfrak{n}_{+} \llbracket t \rrbracket \oplus \mathfrak{n}_{+}^{*} \llbracket t \rrbracket d t$, i.e., the abelian subalgebra with topological basis $a_{\alpha, n}$ for $n \geq 0$ and $a_{\alpha, n}^{*}$ for $n>0$.

Given a invariant symmetric bilinear form κ on \mathfrak{g}, define the affine vertex algebra $V_{\kappa}(\mathfrak{g})=$ $\operatorname{Ind}_{\mathfrak{g}[t] \oplus \mathbb{C} 1}^{\widehat{\mathfrak{g}}} \mathbb{C}_{\kappa}$ by the same formulas as in [Dum24]: for $x \in \mathfrak{g}$,

$$
\begin{equation*}
\mathcal{Y}\left(x t^{-1}|0\rangle, z\right)=\sum_{n \in \mathbb{Z}} x t^{n} z^{-n-1} \tag{1.16}
\end{equation*}
$$

and $\left[T, x t^{n}\right]=-n x t^{n-1}$. When \mathfrak{g} decomposes as a direct sum, the affine vertex algebra decomposes as a tensor product:
Lemma 1.17. Let $\mathfrak{g}=\oplus_{i=1}^{s} \mathfrak{g}_{i} \oplus \mathfrak{g}_{0}$ where $\mathfrak{g}_{1}, \ldots, \mathfrak{g}_{\text {s }}$ are simple Lie algebras and \mathfrak{g}_{0} is abelian. Then there is an isomorphism

$$
V_{\kappa}(\mathfrak{g}) \simeq \bigotimes_{i=0}^{s} V_{\kappa_{i}}\left(\mathfrak{g}_{i}\right),
$$

where:

[^2]- $\left.V_{\kappa_{i}}\left(\mathfrak{g}_{i}\right)=\operatorname{Ind}_{\mathfrak{g}_{i}}^{\widehat{\mathfrak{g}}_{i}}[t] \oplus \mathbb{C} 1\right] \mathbb{C}|0\rangle$ is the vacuum module over $\widehat{\mathfrak{g}}_{i, \kappa_{i}}$ with the vertex algebra structure given as in [Dum24].
- $V_{\kappa_{0}}\left(\mathfrak{g}_{0}\right)=\operatorname{Ind}_{\mathfrak{g}_{0}[t] \oplus \mathbb{C} \mathbf{1}}^{\widehat{\mathfrak{g}}_{0}} \mathbb{C}|0\rangle$ is the Fock representation of the Heisenberg algebra $\widehat{\mathfrak{g}}_{0}$.

Recall from [Wan24b] (i.e., [Fre07, Theorem 6.2.1]) that the affine analog of the homomorphism $U(\mathfrak{g}) \rightarrow D\left(N_{+}\right) \otimes U(\mathfrak{h})$ constructed in [Kiy24] is a map of vertex algebras

$$
\begin{equation*}
w_{\kappa}: V_{\kappa+\kappa_{c}}(\mathfrak{g}) \rightarrow M_{\mathfrak{g}} \otimes V_{\kappa \mid \mathfrak{h}}(\mathfrak{h}), \tag{1.18}
\end{equation*}
$$

where $M_{\mathfrak{g}}=\operatorname{Ind}{\widehat{\Gamma_{+}}}_{\widehat{\Gamma}_{+}^{\mathfrak{g}}} \oplus \mathbb{C} 1 \mathbb{C}|0\rangle$ is the Fock representation of the Weyl algebra $\widehat{\Gamma}^{\mathfrak{g}}$ and a vertex algebra, i.e., it is generated by a vector $|0\rangle$ such that

$$
\begin{equation*}
a_{\alpha, n}|0\rangle=0 \text { for } n \geq 0, a_{\alpha, n}^{*}|0\rangle=0 \text { for } n>0, \text { and } \mathbf{1}|0\rangle=|0\rangle . \tag{1.19}
\end{equation*}
$$

Later, we will use the explicit formula for $w_{\kappa_{c}}$, as stated in [Wan24b, §4] and [Fre07, Theorem 6.2.1]:
Theorem 1.20. The homomorphism of vertex algebras $w_{\kappa_{c}}: V_{\kappa_{c}}(\mathfrak{g}) \rightarrow M_{\mathfrak{g}} \otimes V_{0}(\mathfrak{h})$ is explicitly,

$$
\begin{align*}
& w_{\kappa_{c}}\left(e_{i}(z)\right)=a_{\alpha_{i}}(z)+\sum_{\beta \in \Delta_{+}}: P_{\beta}^{i}\left(\underline{a}^{*}(z)\right) a_{\beta}(z): \tag{1.21}\\
& w_{\kappa_{c}}\left(h_{i}(z)\right)=-\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right): a_{\beta}^{*}(z) a_{\beta}(z):+b_{i}(z) \tag{1.22}\\
& w_{\kappa_{c}}\left(f_{i}(z)\right)=\sum_{\beta \in \Delta_{+}}: Q_{\beta}^{i}\left(\underline{a}^{*}(z)\right) a_{\beta}(z):+b_{i}(z) a_{\alpha_{i}}^{*}(z)+c_{i} \partial_{z} a_{\alpha_{i}}^{*}(z), \tag{1.23}
\end{align*}
$$

for some constants $c_{i} \in \mathbb{C}$, where P_{β}^{i} and Q_{β}^{i} are explicit polynomials defined in [Fre07, §5.2].
By the isomorphism $\widetilde{U}\left(V_{\kappa}(\mathfrak{g})\right) \simeq \widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$ from [Wan24a, §2.3], the homomorphism w_{κ} induces a map on the completed universal enveloping algebras

$$
\begin{equation*}
\widetilde{U}_{\kappa+\kappa_{c}}(\widehat{\mathfrak{g}}) \rightarrow \widetilde{\mathscr{A}^{\mathfrak{g}}} \widehat{\otimes} \widetilde{U}_{\left.\kappa\right|_{\mathfrak{h}}}(\widehat{\mathfrak{h}}) .^{7} \tag{1.24}
\end{equation*}
$$

We hope to generalize the homomorphism w_{κ} to arbitrary parabolics. Our goal is to prove the following, which is the affine analog of the homomorphism (1.9):
Theorem 1.25. Let κ be an invariant symmetric bilinear form on \mathfrak{g}, and let $\mathfrak{p} \subset \mathfrak{g}$ be a parabolic subalgebra. Then there exists a map of vertex algebras

$$
w_{\kappa}^{\mathfrak{p}}: V_{\kappa+\kappa_{c}}(\mathfrak{g}) \rightarrow M_{\mathfrak{g}, \mathfrak{p}} \otimes V_{\left.\kappa\right|_{\mathfrak{m}}+\kappa_{c}(\mathfrak{m})}(\mathfrak{m}) .
$$

Here, $M_{\mathfrak{g}, \mathfrak{p}}$ is also a Weyl vertex algebra, but for a smaller nilpotent Lie algebra than \mathfrak{n}_{+}. We small make this precise below.
Remark 1.26. When $\mathfrak{p}=\mathfrak{b}_{+}$, we have $w_{\kappa}^{\mathfrak{p}}=w_{\kappa}$ from (1.18).
Let us first define all the notation in the theorem statement.
Let Δ_{+}^{\prime} be the set of positive roots of \mathfrak{g} occurring in \mathfrak{u}_{+}, or, equivalently, not occuring in \mathfrak{p}_{-}. The following is the generalization of $\widehat{\Gamma}^{\mathfrak{g}}$ to the parabolic setting:
Definition 1.27. Let $\widehat{\Gamma}^{\mathfrak{g}, \mathfrak{p}}=\mathbb{C} 1 \oplus \mathfrak{u}_{+}((t)) \oplus \mathfrak{u}_{+}^{*}((t)) d t$ with Lie bracket as in (1.15). Explicitly, it has topological basis $\mathbf{1}, a_{\alpha, n}, a_{\alpha, n}^{*}$ for $\alpha \in \Delta_{+}^{\prime}$ and $n \in \mathbb{Z}$, with brackets

$$
\left[a_{\alpha, n}, a_{\beta, m}^{*}\right]=\delta_{\alpha, \beta} \delta_{m+n, 0} \mathbf{1} \text { and }\left[a_{\alpha, n}, a_{\beta, m}\right]=\left[a_{\alpha, n}^{*}, a_{\beta, m}^{*}\right]=0 .
$$

There is a sub-Lie algebra $\widehat{\Gamma}_{+}^{\mathfrak{g}, \mathfrak{p}}:=\mathfrak{u}_{+} \llbracket t \rrbracket \oplus \mathfrak{u}_{+}^{*} \llbracket t \rrbracket d t$. Let the Fock representation be $M_{\mathfrak{g}, \mathfrak{p}}=$ $\operatorname{Ind} \hat{\Gamma}_{+}^{\widehat{\Gamma}_{+}^{\mathfrak{g}, \mathfrak{p}}} \oplus \mathbb{C} 10|0\rangle$.

[^3]The Fock representation $M_{\mathfrak{g}, \mathfrak{p}}$ can be given a vertex algebra structure by the same formula used for $M_{\mathfrak{g}}$. It is related to $M_{\mathfrak{g}}$ as follows:

Exercise 1.28. There is a vertex algebra isomorphism

$$
M_{\mathfrak{g}, \mathfrak{p}} \otimes M_{\mathfrak{m}} \simeq M_{\mathfrak{g}}
$$

sending:

$$
\begin{aligned}
a_{\alpha, n}|0\rangle \otimes|0\rangle & \mapsto a_{\alpha, n}|0\rangle, & a_{\alpha, n}^{*}|0\rangle \otimes|0\rangle \mapsto a_{\alpha, n}^{*}|0\rangle \text { for } \alpha \in \Delta_{+}^{\prime}, \text { and } \\
|0\rangle \otimes a_{\beta, n}|0\rangle \mapsto a_{\beta, n}|0\rangle, & & |0\rangle \otimes a_{\beta, n}^{*}|0\rangle \mapsto a_{\beta, n}^{*}|0\rangle \text { for } \alpha \in \Delta_{+} \backslash \Delta_{+}^{\prime} .
\end{aligned}
$$

The proof of Theorem 1.25 follows the same strategy as [Fre07, Theorem 6.2.1], explained by [Wan24b], so we will not repeat it here.

Now Theorem 1.25 gives a homomorphism analogous to (1.24):

$$
\widetilde{U}_{\kappa+\kappa_{c}}(\widehat{\mathfrak{g}}) \rightarrow \widetilde{\mathscr{A}^{\mathfrak{g}}, \mathfrak{p}} \widehat{\otimes} \widetilde{U}_{\kappa \mid \mathfrak{m}}+\kappa_{c}(\mathfrak{m})(\widehat{\mathfrak{m}}),
$$

which allows us to define generalized Wakimoto modules:
Definition 1.29. Let R be a smooth $\widehat{\mathfrak{m}}_{\kappa \mid \mathfrak{m}+\kappa_{c}(\mathfrak{m})}$-module. Then $M_{\mathfrak{g}, \mathfrak{p}} \otimes R$ carries a smooth $\widehat{\mathfrak{g}}_{\kappa+\kappa_{c}}-$ module structure, called the generalized Wakimoto module corresponding to R. We denote it by $\mathrm{Wak}_{\mathfrak{p}}^{\mathfrak{g}} R$.

Now we have the following analog of Lemma 1.7, which finally accomplishes Goal 1.5 (see [Los24b] for a proof sketch):

Proposition 1.30. There is a commutative diagram:

where the vertical isomorphism was defined in Exercise 1.28. Thus, for any $\lambda \in \mathfrak{h}^{*}$ there is an isomorphism

$$
\operatorname{Wak}_{\mathfrak{p}}^{\mathfrak{g}}\left(W_{\lambda,\left.\kappa\right|_{\mathfrak{m}}+\kappa_{c}(\mathfrak{m})}\right) \simeq W_{\lambda, \kappa+\kappa_{c}} .
$$

2. Comparing affine Verma modules to Wakimoto modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra now. Let $\widetilde{\mathfrak{b}}_{+}:=\mathfrak{b}_{+}+t \mathfrak{g} \llbracket t \rrbracket$ and $\widetilde{\mathfrak{n}}_{+}:=\mathfrak{n}_{+}+t \mathfrak{g} \llbracket t \rrbracket$ be the pre-images of \mathfrak{b}_{+}and \mathfrak{n}_{+}, respectively, under the quotient map $\mathfrak{g} \llbracket t \rrbracket \rightarrow \mathfrak{g}$ evaluating at $t=0$. The subalgebra $\widetilde{\mathfrak{b}}_{+}$is called the Iwahori subalgebra, and $\widetilde{\mathfrak{n}}_{+}$is its topological nilpotent radical. Now for a weight $\lambda \in \mathfrak{h}^{*}$ let \mathbb{C}_{λ} be the one-dimensional representation of $\widetilde{\mathfrak{b}}_{+} \oplus \mathbb{C} \mathbf{1}$ such that $\widehat{\mathfrak{n}}_{+}$acts by zero, \mathfrak{h} acts by λ, and $\mathbf{1}$ acts as the identity.

Definition 2.1. The Verma module $\mathbb{M}_{\lambda, \kappa}$ of level κ and highest weight λ is

$$
\mathbb{M}_{\lambda, \kappa}:=\operatorname{Ind}_{\mathfrak{b}^{\mathfrak{g}} \kappa \oplus \mathbb{C} 1}^{\mathfrak{Q}_{\lambda}} \mathbb{C}_{\lambda} .
$$

Denote the highest-weight vector, $1 \otimes 1$, as $v_{\lambda, \kappa}$.
We hope to compare the Wakimoto module $W_{0, \kappa_{c}}$ with the Verma module $\mathbb{M}_{0, \kappa_{c}}$. There is a homomorphism

$$
\begin{equation*}
\mathbb{M}_{0, \kappa_{c}} \rightarrow V_{\kappa_{c}}(\mathfrak{g}) \xrightarrow{w_{\kappa_{c}}} W_{0, \kappa_{c}} \tag{2.2}
\end{equation*}
$$

which sends the highest-weight vector $v_{0, \kappa_{c}}$ to $|0\rangle \otimes|0\rangle$, since by construction $w_{\kappa_{c}}$ is $\widehat{\mathfrak{g}}_{\kappa_{c}}$-equivariant. Here, the first homomorphism is by the transitivity of induction:

$$
\mathbb{M}_{0, \kappa_{c}}=\operatorname{Ind}_{\tilde{\mathfrak{b}}_{+}}^{\widehat{\mathfrak{g}}} \mathbb{C}_{0}=\operatorname{Ind}_{\mathfrak{g}_{\mathfrak{g}[t] \oplus \mathbb{C}}^{\widehat{\mathfrak{g}}}}^{\widehat{\ln }} \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{0} \rightarrow \operatorname{Ind}_{\mathfrak{g}[t] \oplus \mathbb{C} 1}^{\widehat{\mathfrak{g}}_{\kappa_{c}}} \mathbb{C}=V_{\kappa_{c}}(\mathfrak{g})
$$

However, (2.2) cannot be an isomorphism; indeed, the energy zero component of $\mathbb{M}_{\lambda, \kappa_{c}}$ is the Verma module $\operatorname{Ind} \mathfrak{b}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{0}$ while the energy zero component of $W_{0, \kappa_{c}}$ is the dual Verma module $\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{0}\right)^{\vee}$, so they cannot be isomorphic. Thus, we modify the Wakimoto modules $W_{\lambda, \kappa}$ to $W_{\lambda, \kappa}^{+}$to be defined below, so that the following holds:

Theorem 2.3 ([Fre07, Proposition 6.3.3]). The Wakimoto module $W_{0, \kappa_{c}}^{+}$is isomorphic to the Verma module $\mathbb{M}_{0, \kappa_{c}}$.

To define $W_{\lambda, \kappa}^{+}$, the Fock representation of $\widehat{\Gamma}^{\mathfrak{g}}$, defined as $M_{\mathfrak{g}}:=\operatorname{Ind}_{\Gamma_{+}^{\mathfrak{\Gamma}}}^{\widehat{\Gamma}^{\mathfrak{g}}} \oplus \mathbb{C} \mathbf{C}|0\rangle$, is modified to the module with the following modification of (1.19):

$$
a_{\alpha, n}|0\rangle^{\prime}=0 \text { for } n>0, a_{\alpha, n}^{*}|0\rangle^{\prime}=0 \text { for } n \geq 0, \text { and } \mathbf{1}|0\rangle^{\prime}=|0\rangle^{\prime} .
$$

Now let

$$
\begin{equation*}
W_{\lambda, \kappa}^{+}:=M_{\mathfrak{g}}^{\prime} \otimes \pi_{-2 \rho-\lambda}^{\kappa-\kappa_{c}}, \tag{2.4}
\end{equation*}
$$

where $\pi_{-2 \rho-\lambda}^{\kappa-\kappa_{c}}$ was defined in [Wan24b, §0]:

$$
\pi_{-2 \rho-\lambda}^{\kappa-\kappa_{c}}:=\operatorname{Ind}_{\mathfrak{h}[t] \| \oplus \mathbb{C}}^{\hat{\mathrm{h}}_{-1}} \mathbb{C}|-2 \rho-\lambda\rangle .
$$

Denote the vector $|0\rangle^{\prime} \otimes|-2 \rho-\lambda\rangle$ in $W_{\lambda, \kappa}^{+}$as $|0\rangle^{\prime}$. The shift by 2ρ in (2.4) is explained in $\S 2.2$; it is necessary for $|0\rangle^{\prime} \in W_{\lambda, \kappa}^{+}$to be a highest weight vector of weight λ.

We may modify the formulas in Theorem 1.20 to obtain a homomorphism $\widehat{\mathfrak{g}}_{\kappa}$-module structure on $W_{\lambda, \kappa}^{+}$. We will give explicit formulas at the critical level:
Theorem 2.5. The module $W_{\lambda, \kappa}^{+}$has a $\widehat{\mathfrak{g}}_{\kappa_{c}}$-module structure given by

$$
\begin{align*}
& w_{\kappa_{c}}^{\prime}\left(f_{i}(z)\right)=a_{\alpha_{i}}(z)+\sum_{\beta \in \Delta_{+}}: P_{\beta}^{i}\left(\underline{a}^{*}(z)\right) a_{\beta}(z): \tag{2.6}\\
& w_{\kappa_{c}}^{\prime}\left(h_{i}(z)\right)=\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right): a_{\beta}^{*}(z) a_{\beta}(z):-b_{i}(z) \tag{2.7}\\
& w_{\kappa_{c}}^{\prime}\left(e_{i}(z)\right)=\sum_{\beta \in \Delta_{+}}: Q_{\beta}^{i}\left(\underline{a}^{*}(z)\right) a_{\beta}(z):+b_{i}(z) a_{\alpha_{i}}^{*}(z)+c_{i} \partial_{z} a_{\alpha_{i}}^{*}(z), \tag{2.8}
\end{align*}
$$

for some constants $c_{i} \in \mathbb{C}$ and where polynomials P_{β}^{i} and Q_{β}^{i} are defined in $[F r e 07, \S 5.2]$.
In fact, there are formulas for $w_{\kappa_{c}}^{\prime}\left(f_{\alpha}(z)\right)$ for arbitrary $\alpha \in \Delta_{+}$, not just for simple roots:

$$
\begin{equation*}
w_{\kappa_{c}}^{\prime}\left(f_{\alpha}(z)\right)=a_{\alpha}(z)+\sum_{\beta \in \Delta_{+} ; \beta>\alpha}: P_{\beta}^{\alpha}\left(\underline{a}^{*}(z)\right) a_{\beta}(z): \tag{2.9}
\end{equation*}
$$

for some polynomials P_{β}^{α}. See [Fre07, equation (6.1-2)].
We prove Theorem 2.3 in three steps:
(a) comparing the formal characters;
(b) constructing a homomorphism $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$; and
(c) proving the surjectivity of the homomorphism.

From the three steps, the isomorphism is clear: the character of the kernel of $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$must be zero by (a). Step (b) is accomplished in exactly the same way the homomorphism $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}$ was constructed in (2.2), by sending the highest vector $v_{0, \kappa_{c}}$ to the vacuum vector $|0\rangle^{\prime} \otimes|-2 \rho\rangle$.
2.1. Formal characters of $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$-modules. To check (a), let us recall what the character of a $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$-module is. For a $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$-module M, suppose there is a grading operator $d: M \rightarrow M$ compatible with the $\widehat{\mathfrak{g}}_{\kappa}$-action, i.e., such that $\left[d, x t^{n}\right]=n x t^{n-1}$. Let $\mathfrak{h}^{\prime}=\mathfrak{h} \oplus \mathbb{C} d$, so the characters are of the form $\lambda^{\prime}=(\lambda, \phi)$ where $\lambda \in \mathfrak{h}^{*}$ and $\phi \in \mathbb{C}$, so d acts by ϕ.

Now, we can define the character of a $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$-module:
Definition 2.10. Let M be a smooth $\widehat{\mathfrak{g}}_{\kappa}^{\prime}$-module, such that $\mathbf{1}$ acts by identity and the Cartan $\mathfrak{h} \oplus \mathbb{C} d \oplus \mathbb{C} 1$ acts semi-simply on M with finite-dimensional weight spaces:

$$
M=\bigoplus_{\lambda^{\prime} \in\left(h^{\prime}\right)^{*}} M\left(\lambda^{\prime}\right) .
$$

Then the character of M is

$$
\operatorname{ch} M=\sum_{\lambda^{\prime} \in\left(\mathfrak{h}^{\prime}\right)^{*}} \operatorname{dim} M\left(\lambda^{\prime}\right) \cdot e^{\lambda^{\prime}} .
$$

Letting $\delta:=(0,1) \in \widetilde{\mathfrak{h}}^{*}$, the set of positive roots of $\widehat{\mathfrak{g}}^{\prime}$ is:

$$
\begin{equation*}
\widehat{\Delta}_{+}=\left(\Delta_{+}+\mathbb{Z}_{\geq 0} \delta\right) \sqcup\left(\left(\Delta_{-} \cup\{0\}\right)+\mathbb{Z}_{>0} \delta\right) . \tag{2.11}
\end{equation*}
$$

The positive roots define a partial order on $\widetilde{\mathfrak{h}}^{*}$:
Definition 2.12. Let $\lambda^{\prime}>\mu^{\prime}$ if $\lambda^{\prime}-\mu^{\prime}=\sum_{i} \beta_{i}^{\prime}$ for some $\beta_{i}^{\prime} \in \widehat{\Delta}_{+}$.
The Verma module $\mathbb{M}_{\lambda, \kappa}$ over $\widehat{\mathfrak{g}}_{\kappa}$, as defined in Definition 2.1, can be extended to $\widehat{\mathfrak{g}}_{\kappa}^{\prime}$, which we denote by $\mathbb{M}_{\lambda^{\prime}, \kappa}$ where $\lambda^{\prime}=(\lambda, 0)$:

$$
\mathbb{M}_{\lambda^{\prime}, \kappa}:=\operatorname{Ind}_{\tilde{\mathfrak{b}}_{+} \oplus \mathbb{C} 1 \oplus \mathbb{C} d}^{\mathfrak{g}_{\lambda^{\prime}}^{\prime}}
$$

Now by the PBW theorem, as a vector space $\mathbb{M}_{\lambda, \kappa} \simeq U\left(\widetilde{\mathfrak{n}}_{-}\right)$, where $\widetilde{\mathfrak{n}}_{-}=\mathfrak{n}_{-} \oplus t^{-1} \mathfrak{g}\left[t^{-1}\right]$, so

$$
\begin{equation*}
\operatorname{ch} \mathbb{M}_{\lambda^{\prime}, \kappa}=e^{\lambda^{\prime}} \prod_{\alpha^{\prime} \in \widehat{\Delta}_{+}}\left(1-e^{-\alpha^{\prime}}\right)^{- \text {mult } \alpha^{\prime}} \tag{2.13}
\end{equation*}
$$

where mult α^{\prime} is the dimension of the weight space $\widehat{\mathfrak{g}}_{\kappa_{c}, \alpha^{\prime}}^{\prime}$.
Since $W_{0, \kappa_{c}}^{+}$has a basis in the monomials

$$
\begin{equation*}
a_{\alpha, n}, \alpha \in \Delta_{+}, n<0 ; a_{\alpha, n}^{*}, \alpha \in \Delta_{+}, n \leq 0 ; \text { and } b_{i, n}, i=1, \ldots, \ell, n<0, \tag{2.14}
\end{equation*}
$$

to compute the character of the $\widehat{\mathfrak{g}}_{\kappa}^{\prime}$-module $W_{0, \kappa_{c}}^{+}$, we must compute the \mathfrak{h}^{\prime}-action on $a_{\alpha, n}, a_{\alpha, n}^{*}$, and $b_{i, n}$.

Since d simply acts by $L_{0}=-t \partial_{t}$ on $M_{\mathfrak{g}} \otimes V_{0}(\mathfrak{h})$,

$$
\begin{equation*}
\left[d, a_{\alpha, n}\right]=-n a_{\alpha, n}, \quad\left[d, a_{\alpha, n}^{*}\right]=-n a_{\alpha, n}^{*}, \quad\left[d, b_{i, n}\right]=-n b_{i, n}, \tag{2.15}
\end{equation*}
$$

where $a_{\alpha, n}, a_{\alpha, n}^{*} \in M_{\mathfrak{g}}$, and $b_{i, n} \in \widetilde{U}_{0}\left(\mathfrak{h}^{*}((t))\right)$. The \mathfrak{h}-action on $W_{0, \kappa_{c}}^{+}$is given by, for $h \in \mathfrak{h}$,

$$
\begin{equation*}
\left[h, a_{\alpha, n}\right]=\alpha(h) a_{\alpha, n}, \quad\left[h, a_{\alpha, n}^{*}\right]=\alpha(h) a_{\alpha, n}^{*}, \quad\left[h, b_{i, n}\right]=0 . \tag{2.16}
\end{equation*}
$$

Formula (2.16) follows from (1.22):
Exercise 2.17. Deduce formula (2.16) from (1.22).
Now (2.15) and (2.16) together show that the character of $W_{0, \kappa_{c}}^{+}$equals (2.13).
2.2. Constructing the homomorphism. Let us compute the action of \mathfrak{h} on $|0\rangle^{\prime}$:

Exercise 2.18. For any $\lambda \in \mathfrak{h}^{*}$ and $h \in \mathfrak{h}$, then $h \cdot|0\rangle^{\prime}=\lambda(h)|0\rangle^{\prime}$ in $W_{0, \kappa_{c}}^{+}$.
The Exercise shows why the shift by 2ρ was necessary in (2.4). The classical analog is the following: $\mathbb{C}[x]$ and $\mathbb{C}\left[\delta_{0}\right]$ are both $D\left(\mathbb{A}^{1}\right) \simeq \mathbb{C}\left[x, \partial_{x}\right]$-modules, where δ_{0} is the delta function supported on $0 .{ }^{8}$ Then $L_{0}=-x \partial_{x}$ acts as 0 on $1 \in \mathbb{C}[x]$, but acts instead as

$$
-x \partial_{x} \cdot 1=\left(1-\partial_{x} x\right) 1=1 .
$$

Solution to Exercise 2.18. The constant term in (2.7) is (by definition of the normally ordered product)

$$
\begin{aligned}
w_{\kappa_{c}}\left(h_{i, 0}|0\rangle\right) & =\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right)\left(\sum_{n \geq 0} a_{\beta,-n}^{*} a_{\beta, n}+\sum_{n<0} a_{\beta, n} a_{\beta,-n}^{*}\right)|0\rangle^{\prime}-b_{i, 0}|0\rangle^{\prime} \\
& =\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right) a_{\beta, 0}^{*} a_{\beta, 0}|0\rangle^{\prime}-(-2 \rho-\lambda)\left(h_{i}\right)|0\rangle^{\prime} \\
& =\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right)\left(a_{\beta, 0} a_{\beta, 0}^{*}-1\right)|0\rangle^{\prime}+(2 \rho+\lambda)\left(h_{i}\right)|0\rangle^{\prime} \\
& =-\sum_{\beta \in \Delta_{+}} \beta\left(h_{i}\right)|0\rangle^{\prime}+(2 \rho+\lambda)\left(h_{i}\right)|0\rangle^{\prime} \\
& =\lambda\left(h_{i}\right)|0\rangle^{\prime} .
\end{aligned}
$$

Now, by the character formula in $\S 2.1$ the weight spaces of $\lambda^{\prime}>0$ are zero, i.e., $|0\rangle^{\prime} \in W_{0, \kappa_{c}}^{+}$is annihilated by $\widetilde{\mathfrak{n}}_{+}$. Thus there is a homomorphism $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$.

2.3. Proving the surjectivity of the homomorphism.

The remainder of the proof of Theorem 2.3. We need to check that $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$is surjective, i.e., that $W_{0, \kappa_{c}}^{+}$is generated as a $\widehat{\mathfrak{g}}_{\kappa_{c}}$-module by $|0\rangle^{\prime}$. Consider the coinvariants of $W_{0, \kappa_{c}}^{+}$with respect to $\tilde{\mathfrak{n}}_{-}=\mathfrak{n}_{-} \oplus t^{-1} \mathfrak{g}\left[t^{-1}\right]$:

$$
\left(W_{0, \kappa_{c}}^{+}\right) \tilde{\mathfrak{n}}_{-}:=\mathbb{C}_{0} \otimes_{U\left(\tilde{\mathfrak{n}}_{-}\right)} W_{0, \kappa_{c}}^{+},
$$

which is a \mathfrak{h}^{\prime}-representation since $\widetilde{\mathfrak{n}}_{-} \subset \widehat{\mathfrak{g}}_{\kappa_{c}}$ is \mathfrak{h}^{\prime}-stable. If $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$were not surjective, then there is an exact sequence of $\widehat{\mathfrak{g}}_{\kappa_{c}}^{\prime}$-modules

$$
\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+} \rightarrow V \rightarrow 0,
$$

for some non-zero V, which induces an exact sequence of \mathfrak{h}^{\prime}-modules

$$
\begin{equation*}
\left(\mathbb{M}_{0, \kappa_{c}}\right)_{\tilde{\mathfrak{n}}_{-}}=\mathbb{C} \rightarrow\left(W_{0, \kappa_{c}}^{+}\right)_{\tilde{\mathfrak{n}}_{-}} \rightarrow V_{\tilde{\mathfrak{n}}_{-}} \rightarrow 0 \tag{2.19}
\end{equation*}
$$

where $V_{\tilde{n}_{-}} \neq 0$. But $\left(\mathbb{M}_{0, \kappa_{c}}\right)_{\tilde{n}_{-}} \rightarrow\left(W_{0, \kappa_{c}}^{+}\right) \tilde{\mathfrak{n}}_{-}$is an isomorphism on the $(0,0)$-weight space, so $\left(W_{0, \kappa_{c}}^{+}\right)_{\tilde{n}_{-}}$must have a nonzero weight μ^{\prime}. In other words $W_{0, \kappa_{c}}^{+}$has an irreducible quotient $L_{\mu^{\prime}, \kappa_{c}}$ with highest weight μ^{\prime}. Since $\mathbb{M}_{0, \kappa_{c}}$ and $W_{0, \kappa_{c}}^{+}$have the same characters, they define the same class in the Grothendieck group and hence must have the same irreducible subquotients. Now we shall:
(1) observe restrictions on $\mu^{\prime} \in\left(\mathfrak{h}^{\prime}\right)^{*}$ coming from $L_{\mu^{\prime}, \kappa_{c}}$ being a subquotient of $W_{0, \kappa_{c}}^{+}$; and
(2) observe restrictions on $\mu^{\prime} \in\left(\mathfrak{h}^{\prime}\right)^{*}$ coming from $L_{\mu^{\prime}, \kappa_{c}}$ being a subquotient of $\mathbb{M}_{0, \kappa_{c}}$.

[^4]We will show the two restrictions on μ^{\prime} are incompatible, and hence our assumption, that $V \neq 0$, must have been wrong.

First, however, there is a sublety: $\mathbb{M}_{0, \kappa_{c}}$ and $W_{0, \kappa_{c}}^{+}$have infinite length, so ch $\mathbb{M}_{0, \kappa_{c}}=\operatorname{ch} W_{0, \kappa_{c}}^{+}$ does not imply they have the same irreducible subquotients in the naïve way. The correct statement is as follows:

Exercise 2.20. Let M and N be category \mathcal{O}-modules for $\widehat{\mathfrak{g}}_{\kappa}^{\prime}$. Then ch $M=\operatorname{ch} N$ if and only if M and N define the same class in the completed Grothendieck group $\widehat{K}_{0}\left(\mathcal{O}_{\widehat{\mathfrak{g}}_{\kappa}^{\prime}}\right)$, which is the inverse limit

$$
\widehat{K}_{0}\left(\mathcal{O}_{\widehat{\mathfrak{g}}_{\kappa}^{\prime}}\right):=\lim _{\lambda^{\prime} \in\left(\mathfrak{h}^{\prime}\right)^{*}} K_{0}\left(\mathcal{O}_{\widehat{\mathfrak{g}}_{\kappa}^{\prime}} / \mathcal{O}_{\widehat{\mathfrak{g}}_{\kappa}^{\prime}}, \leq \lambda^{\prime}\right),
$$

over the partial order on $\left(\mathfrak{h}^{\prime}\right)^{*}$ defined in (2.12) where $\mathcal{O}_{\hat{\mathfrak{g}}_{\kappa}^{\prime}, \leq \lambda^{\prime}}$ is the Serre subcategory of $\mathcal{O}_{\widehat{\mathfrak{g}}_{\kappa}^{\prime}}$ consisting of modules with weights $\leq \lambda^{\prime}$. Moreover when this holds, if L is an irreducible subquotient of M, then L is also an irreducible subquotient of N.

For (1), note that by the explicit formulas for $f_{\alpha}(z)$ and $h_{i}(z)$-actions on $W_{0, \kappa_{c}}^{+}$in (2.7) and (2.9), respectively, the lexicographically ordered monomials

$$
\begin{equation*}
\prod_{\ell_{\alpha}<0} b_{i_{\alpha}, \ell_{\alpha}} \prod_{m_{b} \leq 0} f_{\alpha_{b}, m_{b}} \prod_{n_{c}<0} a_{\beta_{c}, n_{c}}^{*}|0\rangle^{\prime} \text { where } 1 \leq i_{\alpha} \leq \ell, \alpha_{b} \in \Delta_{s}, \text { and } \beta_{c} \in \Delta_{+} \tag{2.21}
\end{equation*}
$$

form a basis of $W_{0, \kappa_{c}}^{+}$. The weights appearing in the coinvariants must be of the form

$$
\begin{equation*}
\mu^{\prime}=-\sum_{j}\left(n_{j} \delta-\beta_{j}\right) \tag{2.22}
\end{equation*}
$$

where $n_{j}>0$ and $\beta_{j} \in \Delta_{+}$. Indeed, by the description of the basis of $W_{0, \kappa_{c}}^{+}$in (2.21), there is an isomorphism of $\widetilde{\mathfrak{h}}$-modules
and $\left(W_{0, \kappa_{c}}^{+}\right)_{\tilde{n}_{-}}$is a quotient.
For (2) note that [KK79, Theorem 2] (also see [Fre07, §6.3.3]) gives a characterization of possible irreducible subquotient of Verma modules:

Proposition 2.23. A weight $\mu^{\prime}=(\mu, n)$ appears as the highest weight of an irreducible subquotient of $\mathbb{M}_{(\lambda, 0), \kappa_{c}}$ if and only if $n \leq 0$ and $\mu=w(\rho)-\rho$ for some $w \in W$.

Note that for any $w \in W$ the weight $w(\rho)-\rho$ equals the linear combination of simple roots of \mathfrak{g} with non-positive coefficients, hence the weight of any irreducible subquotient of $\mathbb{M}_{0, \kappa_{c}}$ has the form

$$
\begin{equation*}
\mu^{\prime}=-n \delta-\sum_{i} m_{i} \alpha_{i} \tag{2.24}
\end{equation*}
$$

for some $n \geq 0$ and $m_{i} \geq 0$. Finally, note that (2.22) and (2.24) cannot simultaneously hold, a contradiction, and hence $V=0$. We have thus completed (a), (b), and (c), which together prove that $\mathbb{M}_{0, \kappa_{c}} \simeq W_{0, \kappa_{c}}^{+}$.

Next, we characterize all the endomorphisms of our module $\mathbb{M}_{0, \kappa_{c}} \simeq W_{0, \kappa_{c}}^{+}$. In other words, we hope to characterize all $\widehat{\mathfrak{g}}_{\kappa_{c}}^{\prime}$-homomorphisms $\mathbb{M}_{0, \kappa_{c}} \rightarrow W_{0, \kappa_{c}}^{+}$. By adjunction, this is equivalent to characterize the vectors in $W_{0, \kappa_{c}}^{+}$annihilated by $\widetilde{\mathfrak{b}}_{+}$.
Lemma 2.25 ([Fre07, Lemma 6.3.4]). The space of $\widetilde{\mathfrak{b}}_{+-}$-invariants of $W_{0, \kappa_{c}}^{+}$is equal to $\pi_{-2 \rho} \subset W_{0, \kappa_{c}}^{+}$.

Proof. The formulas in Theorem 2.5 shows the vectors of $\pi_{-2 \rho}$ are annihilated by $\widetilde{\mathfrak{b}}_{+}$. To prove the converse, note that $W_{0, \kappa_{c}}^{+}$has another basis

$$
\prod_{\ell_{\alpha}<0} b_{i_{\alpha}, \ell_{\alpha}} \prod_{m_{b} \leq 0} f_{\alpha_{b}, m_{b}}^{R} \prod_{n_{c}<0} a_{\alpha_{c}, n_{c}}^{*}|0\rangle^{\prime},
$$

by the same argument as for (2.21). Here the $f_{\alpha, n}^{R}$ generate an action of $t \mathfrak{n}_{-} \llbracket t \rrbracket$ as defined in [Los24a], which we now briefly recall. There is an isomorphism of the Fock representation of $\widehat{\Gamma}^{\mathfrak{g}}$ with the vertex algebra of chiral differential operators on N_{-}:

$$
M_{\mathfrak{g}} \simeq \mathrm{CDO}\left(N_{-}\right)
$$

Now viewing $\mathcal{J} \mathfrak{n}_{-}=\mathfrak{n}_{-} \llbracket t \rrbracket$ as the right-invariant vector fields on $\mathcal{J} N_{-}$defines a left $\mathfrak{n}_{-} \llbracket t \rrbracket$-action on $\operatorname{CDO}\left(N_{-}\right)$, which induces the restriction of the $\widehat{\mathfrak{g}}_{\kappa_{c}}^{\prime}$-action on $W_{0, \kappa_{c}}^{+}$. On the other hand, viewing $\mathfrak{n}_{-} \llbracket t \rrbracket$ as the left-invariant vector fields on $\mathcal{J} N_{-}$defines a right $\mathfrak{n}_{-} \llbracket t \rrbracket$-action which are the $f_{\alpha, n}^{R}$.

Thus there is a tensor product decomposition

$$
W_{0, \kappa_{c}}^{+}=\bar{W}_{0, \kappa_{c}}^{+} \otimes W_{0, \kappa_{c}}^{+, *},
$$

where $W_{0, \kappa_{c}}^{+, *}$ (resp., $\bar{W}_{0, \kappa_{c}}^{+}$) is the span of monomials in $a_{\alpha, n}^{*}$ (resp., in $b_{i, \ell}$ and $f_{\alpha . m}^{R}$). Since the left action of $t \mathfrak{n}_{-} \llbracket t \rrbracket$ commutes with $b_{i, \ell}$ and $f_{\alpha, m}^{R}$, we conclude $t \mathfrak{n}_{-} \llbracket t \rrbracket$ acts by zero on $\bar{W}_{0, \kappa_{c}}^{+}$. In fact, it is isomorphic to the restricted dual of the free $\widetilde{U}\left(\mathfrak{n}_{-} \llbracket t \rrbracket\right)$-module with one generator. Thus

$$
\left(W_{0, \kappa_{c}}^{+}\right)^{t \mathfrak{n}-\llbracket t \rrbracket}=\bar{W}_{0, \kappa_{c}}^{+} \otimes\left(W_{0, \kappa_{c}}^{+}\right)^{t \mathfrak{n}-\llbracket t \rrbracket}=\bar{W}_{0, \kappa_{c}}^{+} .
$$

Furthermore, for $h \in \mathfrak{h}$ since

$$
\left[h, a_{\alpha, n}^{*}\right]=\alpha(h) a_{\alpha, n}^{*},
$$

a vector in $\bar{W}_{0, \kappa_{c}}^{+}$is annihilated by \mathfrak{h} if and only if it belongs to $\pi_{-2 \rho}$.

3. Proof of the Kac-Kazhdan conjecture

The Verma module $\mathbb{M}_{\lambda^{\prime}, \kappa}$ over $\widehat{\mathfrak{g}}_{\kappa}^{\prime}$ has a unique irreducible quotient $L_{\lambda^{\prime}, \kappa}$. The Kac-Kazhdan conjecture computes the character of $\mathbb{M}_{\lambda^{\prime}, \kappa}$ for generic λ^{\prime}.

First, recall that the roots $\widehat{\Delta}_{+}$from (2.11) has a subset of real roots

$$
\widehat{\Delta}_{+}^{\mathrm{re}}:=\left(\Delta_{+}+\mathbb{Z}_{\geq 0} \delta\right) \sqcup\left(\Delta_{-}+\mathbb{Z}_{>0} \delta\right),
$$

i.e., the roots $(\lambda, \phi) \in \widehat{\Delta}_{+}$such that $\lambda \neq 0$.

Theorem 3.1. For a generic weight $\lambda \in \mathfrak{h}^{*}$ of critical level,

$$
\operatorname{ch} L_{\lambda^{\prime}, \kappa_{c}}=e^{\lambda^{\prime}} \prod_{\alpha^{\prime} \in \widehat{\Delta}_{+}^{\text {re }}}\left(1-e^{-\alpha^{\prime}}\right)^{-1} .
$$

Here, a weight λ is generic when $\lambda \notin \bigcup_{\beta \in \widehat{\Delta}_{+}^{\mathrm{re}}, m>0} H_{\beta, m}^{\kappa_{c}}$ where $H_{\beta, m}^{\kappa_{c}}$ are certain hyperplanes in \mathfrak{h}^{*} defined in [KK79].

Proof. For $\lambda \in \mathfrak{h}^{*}$ the Wakimoto module of critical level $W_{\lambda / t}$ is a $\widehat{\mathfrak{g}}_{\kappa_{c}}^{\prime}$-module since $M_{\mathfrak{g}}$ is graded, and the $\mathfrak{h}((t))$-module $\mathbb{C}_{\lambda / t}$ is graded, and hence $W_{\lambda / t}:=M_{\mathfrak{g}} \otimes \mathbb{C}_{\lambda / t}$ inherits a grading. The $\widehat{\mathfrak{g}}_{\kappa_{c}}^{\prime}-$ module $W_{\lambda / t}$ has character

$$
\operatorname{ch} W_{\lambda / t}=e^{\lambda^{\prime}} \prod_{\alpha^{\prime} \in \widehat{\Delta}_{+}^{\mathrm{re}}}\left(1-e^{-\alpha^{\prime}}\right)^{-1},
$$

where $\lambda^{\prime}=(\lambda, 0)$, from a similar argument as in (a) in the proof of Theorem 2.3. Moreover, the same argument as in (b) in the proof of Theorem 2.3 shows there is a homomorphism $\mathbb{M}_{\lambda^{\prime}, \kappa_{c}} \rightarrow W_{\lambda / t}$
sending the highest weight vector to $|0\rangle$. It thus suffices to check that if λ is a generic weight of critical level, then $W_{\lambda / t}$ is irreducible, since then $L_{\lambda^{\prime}, \kappa_{c}} \simeq W_{\lambda / t}$. If $W_{\lambda / t}$ is not irreducible, either:

- $W_{\lambda / t}$ is not generated by its highest vector, i.e., the homomorphism $\mathbb{M}_{\lambda^{\prime}, \kappa_{c}} \rightarrow W_{\lambda / t}$ is not surjective; or
- $W_{\lambda / t}$ is generated by its highest vector, in which $\mathbb{M}_{\lambda^{\prime}, \kappa_{c}} \rightarrow W_{\lambda / t}$ is surjective and the image of a highest weight of the maximal sub-module of $\mathbb{M}_{\lambda^{\prime}, \kappa_{c}}$ is a non-zero singular vector in $W_{\lambda / t}$ not in $\mathbb{C}|0\rangle$.
If $W_{\lambda / t}$ contains a singular vector not in $\mathbb{C}|0\rangle$ then it must be annihilated by $\mathfrak{n}_{+} \llbracket t \rrbracket$. We know that

$$
\prod_{n_{a}<0} e_{\alpha_{a}, n_{a}}^{R} \prod_{m_{b} \leq 0} a_{\alpha_{b}, m_{b}}^{*}|0\rangle
$$

forms a basis of $M_{\mathfrak{g}}$, where the $e_{\alpha_{a}, n_{a}}^{R}$ are defined as in the proof of Lemma 2.25, using the description of $M_{\mathfrak{g}} \simeq \mathrm{CDO}\left(N_{+}\right)$, as in the proof of Lemma 2.25. By the same method as in Lemma 2.25, the $\mathfrak{n}_{+} \llbracket t \rrbracket$-invariants of $W_{0, \kappa_{c}}$ equals the subspace $\bar{W}_{0, \kappa_{c}}$ spanned by all monomials of $e_{\alpha_{a}, n_{a}}^{R}$. In particular, the weight of any singular vector of $W_{\lambda / t}$ is of the form $\lambda^{\prime}-\sum_{j}\left(n_{j} \delta-\beta_{j}\right)$ where $n_{j}>0$ and $\beta_{j} \in \Delta_{+}$. Thus $W_{\lambda / t}$ contains an irreducible subquotient of that highest weight. Now, since for $\alpha^{\prime} \in \widehat{\Delta}_{+}$,

$$
\text { mult } \alpha^{\prime}= \begin{cases}1 & \text { if } \alpha^{\prime} \in \widehat{\Delta}_{+}^{\mathrm{re}} \\ \ell & \text { otherwise }\end{cases}
$$

we have

$$
\begin{equation*}
\operatorname{ch} \mathbb{M}_{\lambda^{\prime}, \kappa_{c}}=\prod_{n>0}\left(1-e^{-n \delta}\right)^{-\ell} \operatorname{ch} W_{\lambda / t} \tag{3.2}
\end{equation*}
$$

where ℓ is the rank of \mathfrak{g}. Thus if an irreducible module $L_{\mu^{\prime}, \kappa_{c}}$ appears as a subquotient of $W_{\lambda / t}$, it must also appear as a subquotient of $\operatorname{ch} \mathbb{M}_{\lambda^{\prime}, \kappa_{c}}$: only look at the part of (3.2) with energy zero. But our contradicts the assumption that λ is generic: irreducible subquotients of Verma modules are controlled by hyperplanes by [KK79]. Thus $W_{\lambda / t}$ does not contain any singular vectors other than the highest weight.

Next, if $W_{\lambda / t}$ is not generated by its highest vector, then by the same argument as above there is an irreducible subquotient of $W_{\lambda / t}$ with highest weight $\lambda^{\prime}-\sum_{j}\left(n_{j} \delta+\beta_{j}\right)$ with $n_{j} \geq 0$ and $\beta_{j} \in \Delta_{+}$. This again contradicts λ being a generic weight.

References

[Dum24] Ilya Dumanski, Vertex algebras, seminar notes 2024.
[Fre07] Edward Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
[Kiy24] Daishi Kiyohara, Free field realization, seminar notes 2024.
[KK79] V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97-108. MR 547842
[KL24] Ivan Karpov and Ivan Losev, Invariants of jets and the center for $\widehat{\mathfrak{s l}}_{2}$, seminar notes 2024.
[Los24a] Ivan Losev, Chiral differential operators 1, seminar notes 2024.
[Los24b] , Chiral differential operators 2, seminar notes 2024.
[Wan24a] Hamilton Wan, Central elements of the completed universal enveloping algebra, seminar notes 2024.
[Wan24b] Zeyu Wang, Wakimoto modules, seminar notes 2024.
M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA

Email address: kjsuzuki@mit.edu

[^0]: ${ }^{1}$ These are categories of smooth modules.
 ${ }^{2}$ When \mathfrak{g} is semisimple we can use the Killing form, but for arbitrary reductive Lie algebras the Killing form may be degenerate.

[^1]: ${ }^{3}$ the action is well-defined because M normalizes U_{-}.
 ${ }^{4}$ Here, as usual, letting $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be the Cartan involution and given $M=\oplus_{\mu} M_{\mu}$, we let $M^{\vee}=\bigoplus_{\mu} M_{\mu}^{*}$ with $\langle x \cdot n, m\rangle=\langle n,-\tau(x) m\rangle$ for $n \in M^{\vee}, m \in M$. Alternatively, it is the parabolic co-induction, the right adjoint to restriction.
 ${ }^{5} \mathrm{An}$ isomorphism of varieties; not of groups!

[^2]: ${ }^{6}$ [Fre07, §5.3.3] denotes this Lie algebra as $\mathscr{A}^{\mathfrak{g}}$, but we avoid this notation since in [Kiy24] it denotes an associative algebra. In our notes, $\widetilde{\mathscr{A}^{\mathfrak{g}}}$ denotes an associative algebra with the same relations as $\Gamma^{\mathfrak{g}}$.

[^3]: ${ }^{7}$ Recall that $\widetilde{\mathscr{A}^{\mathfrak{g}}}:=\widetilde{U}\left(\widehat{\Gamma}^{\mathfrak{g}}\right) /(\mathbf{1}-1)$.

[^4]: ${ }^{8}$ They are Fourier transforms of each other.

