
PARABOLIC WAKIMOTO MODULES AND APPLICATIONS

KENTA SUZUKI

We will define generalized Wakimoto modules, which gives a functorial way of constructing ĝ-
modules from m̂-modules for parabolic subalgebras p = m ⋉ u ⊂ g. We will give applications
of Wakimoto modules, including the Kac-Kazhdan conjecture, which computes the characters of
Verma modules Mλ,κc on the critical level for λ ∈ h∗ generic, i.e., not lying in a countable union of
hyperplanes.

1. Semi-infinite parabolic induction

Let g be a finite-dimensional reductive Lie algebra with Borel subalgebra b+ and Cartan subal-
gebra h (we work in this generality since we want to apply our construction to Levi subalgebras of
simple Lie algebras).

Wakimoto modules, constructed in [Wan24b], are the images of Fock modules under a functor

Ũκ(h)−mod → Ũκ+κc(g)−mod.1 We want to generalize the construction by replacing the Borel
subalgebra b with an arbitrary parabolic subalgebra p and replacing the Cartan subalgebra h with
the Levi component m of p. Let us first recall what a parabolic subalgebra is:

Definition 1.1. A parabolic subalegbra is a subalgebra p ⊂ g such that one of the following
equivalent conditions hold:

• p contains a Borel subalgebra of g; or
• the orthogonal complement of p with respect to an invariant orthogonal form2 is its nilrad-
ical.

Example 1.2. b+ and g are parabolic subalgebras of g.

Each conjugacy class of parabolic subalgebras has a unique representative containing b+: we call
those parabolic subalgebras standard. Let ∆s be the set of simple roots corresponding to b+ ⊂ g.
Then standard parabolic subalgebras of g are classified by subsets of ∆s: so b+ corresponds to ∅
and g corresponds to ∆s. More generally, for a subset S ⊂ ∆s, the corresponding standard parabolic
subalgebra pS ⊂ g is

pS := b+ ⊕
⊕
α>0

α∈span∆s

gα.

The Levi component is then given by:

mS := h⊕
⊕

α∈span∆s

gα.

Analogous to the opposite Borel subalgebra, let

pS,− := b− ⊕
⊕
α<0

α∈span∆s

gα

be the opposite parabolic.

1These are categories of smooth modules.
2When g is semisimple we can use the Killing form, but for arbitrary reductive Lie algebras the Killing form may

be degenerate.
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Example 1.3. When g = sln, let S be a subset of ∆s = {α1, . . . , αn−1} such that ∆s\S =
{αa1 , . . . , αak}. The corresponding parabolic subalgebras are

pS = sln ∩


Ma1×a1 ∗ ∗ ∗

0 M(a2−a1)×(a2−a1) ∗ ∗

0 0
. . . ∗

0 0 0 M(n−ak)×(n−ak)


and

pS,− = sln ∩


Ma1×a1

∗ M(a2−a1)×(a2−a1)

∗ ∗
. . .

∗ ∗ ∗ M(n−ak)×(n−ak)

 .

The Levi component is

mS = {(x0, . . . , xk) ∈ gla1 × · · · × gln−ak : tr(x0) + · · ·+ tr(xk) = 0}

≃ sla1 × · · · × sln−ak × C⊕k.

First, we must extend relevant definitions from simple Lie algebras to reductive Lie algebras.
The following is the generalization of the critical level:

Definition 1.4. Let g be a reductive Lie algebra, which decomposes as g =
⊕s

i=1 gi ⊕ g0 for some
simple Lie algebras g1, . . . , gs and an abelian Lie algebra g0. Then the critical level is κc(g) :=
(κi,c)

s
i=0, where κ0,c = 0 and κi,c is the critical level for the simple Lie algebra gi for 1 ≤ i ≤ s.

Given an invariant symmetric bilinear form κ on g, let ĝκ be the corresponding affine Kac-Moody
algebra, as in [KL24]: it is the central extension

0 → C1 → ĝκ → g((t)) → 0

with commutation relation

[A⊗ f(t), B ⊗ g(t)] = [A,B]⊗ f(t)g(t)−
(
κ(A,B)Resfdg

)
1.

Let us now formally re-state our goal:

Goal 1.5. Let g be a reductive Lie algebra, let κ be an invariant symmetric bilinear form on g,
and let p = m⋉ u ⊂ g be a parabolic subalgebra. Define an exact functor

Ũκ|m+κc(m̂)(m)−mod → Ũκ+κc(ĝ)−mod

such that the Wakimoto module with highest weight λ is sent to the Wakimoto module with highest
weight λ.

1.1. Finite-dimensional analog. Let us first describe the finite-dimensional analog of Goal 1.5.

Definition 1.6. Let g be a simple Lie algebra with standard parabolic subalgebra p = m ⋉ u.
There is an exact functor, the parabolic induction functor

Indgp : m−mod → g−mod.

Given a m-module V , we may view it as a p-module by extension by zero, i.e., by making u act by
zero, and we let

IndgpV := U(g)⊗U(p) V.

Now the Indgp sends Verma modules to Verma modules:

Lemma 1.7. For a weight λ ∈ h∗, let Vm(λ) and Vg(λ) be the Verma modules with highest weight
λ of the Lie algebras m and g, respectively. Then

IndgpVm(λ) ≃ Vg(λ).
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Proof. Follows from observing that U(p)⊗U(b+) Cλ is isomorphic to the inflation of the m-module
Vm(λ) to p, and because induction is transitive. □

Remark 1.8. When p = b+, the above recovers the construction of Verma modules (i.e., Vg(λ) =
Indgb+Cλ).

Recall that [Kiy24] gives a geometric construction of dual Verma modules using vector fields on
G/N−, where N− is the unipotent radical of the opposite Borel subalgebra B−. The construction
admits a straightforward generalization to the parabolic setting: let P± = M⋉U± ⊂ G be subgroups
whose Lie algebras are p± = m ⋉ u± ⊂ g. Then analogously to [Kiy24, §2] there is a map of Lie
algebras

g → Vect(G/U−)
Mr ,

where Mr acts on G/U− from the right.3 Now as in Daishi’s talk, P+U−/U− ⊂ G/U− is Zariski
open, and restricting to the locus gives a homomorphism of algebras

(1.9) φG
P+

: U(g) → D(P+)
M ≃ D(U+)⊗ U(m),

where the second isomorphism follows from the isomorphism of varieties P+ ≃ U+ ×M . Now:

Lemma 1.10. Let V be a m-module, with structure morphism φ : U(m) → End(V ). Then the
modified g-module structure on C[U+]⊗ V is defined by

U(g) → D(U+)⊗ U(m)
1⊗φ−−→ D(U+)⊗ End(V ) → End(C[U+]⊗ V ),

noting that C[U+] is naturally a D(U+)-module. Then the g-module C[U+] ⊗ V ∨ is isomorphic to
the dual parabolic induction (Indgp V )∨.4

We hope to see Lemma 1.7 from the geometric perspective:

Proposition 1.11. Let P+ = M ⋉ U+ ⊂ G be a standard parabolic subgroup. There is a commu-
tative diagram

U(g) D(N+)⊗ U(h)

D(U+)⊗ U(m) D(U+)⊗
(
D(N+ ∩M)⊗ U(h)

)
.

φG
B+

φG
P+

≃
idD(U+)⊗φM

B+∩M

Here, the homomorphisms U(g) → D(N+)⊗U(h) and U(g) → D(U+)⊗U(m) are as in (1.9), and
the right vertical isomorphism follows from the multiplication isomorphism5 U+× (N+∩M) ≃ N+.

Proof. Indeed, the following diagram commutes:

(1.12)

D(G)Gr D(G/U−)
Mr D(G/N−)

Hr

D(P+)
Mr D(P+/(P+ ∩N−))

Hr

where the vertical homomorphisms are restricting along open immersions P+ ⊂ G/U− and P+/(P+∩
N−) ⊂ G/N−. The first horizontal homomorphism D(G)Gr ↪→ D(G/U−)

Mr is obtained as follows:
any σ ∈ D(G)Gr is an operator σ : C[G] → C[G] which is Gr-invariant, hence it sends (U−)r-
invariant functions to (U−)r-invariant functions. In fact, for any (U−)r-invariant open subset X of

3the action is well-defined because M normalizes U−.
4Here, as usual, letting τ : g → g be the Cartan involution and given M = ⊕µMµ, we let M∨ =

⊕
µ M∗

µ with

⟨x · n,m⟩ = ⟨n,−τ(x)m⟩ for n ∈ M∨,m ∈ M . Alternatively, it is the parabolic co-induction, the right adjoint to
restriction.

5An isomorphism of varieties; not of groups!
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G, there is an operator σ : C[X]U−,r → C[X]U−,r . In other words, since C[X/U−] = C[X]U−,r , it
defines an endomorphism of sheaves σ̃ : OG/U− → OG/U− , which can be shown to be a differential
operator. Note that we need σ̃ to be an endomorphism of the sheaf OG/U− , and not just C[G/U−],

since G/U− may not be affine, e.g., SL2/N− ≃ A2\{(0, 0)}. Moreover σ is Gr-invariant so σ̃ must
be Mr-invariant, i.e., σ̃ ∈ D(G/U−)

Mr . All other horizontal maps are constructed in a similar
fashion.

Now we have the isomorphisms U(g) ≃ D(G)Gr and D(P+)
Mr ≃ D(U+) ⊗ U(m), so (1.12) can

be re-written as

U(g) D(G/U−)
Mr D(G/N−)

Hr D(N+)⊗ U(h)

D(U+)⊗ U(m) D(P+/(P+ ∩N−))
Hr D(U+)⊗D(N+ ∩M)⊗ U(h),

φG
P+

φG
B+

≃

1⊗φM
B+∩M

which is the desired commtativity. Here the homomorphism D(G/N−)
Hr → D(N+)⊗ U(h) is the

composition of the restriction to the open Bruhat cell D(G/N−)
Hr → D(B+)

Hr , together with the
standard isomorphism D(B+)

Hr ≃ D(N+)⊗ U(h) from [Kiy24]. □

Remark 1.13. Proposition 1.11 implies Lemma 1.7.

1.2. Back to affine Lie algebras. Recall the definition of the Weyl algebra Γ̂g (denoted simply

as Γ̂ in [Wan24b])6:

Definition 1.14. Let Γ̂g = C1⊕ n+((t))⊕ n∗+((t))dt with Lie bracket

(1.15) [xf, yw] = ⟨x, y⟩Res(fw) · 1
for x ∈ n+, y ∈ n∗+, and f ∈ C((t)), w ∈ C((t))dt. More concretely, it has a topological basis 1,
aα,n := xαt

n, and a∗α,n := x∗αt
n−1dt for α ∈ ∆+ and n ∈ Z with relations

[aα,n, a
∗
β,m] = δα,βδm+n,01 and [aα,n, aβ,m] = [a∗α,n, a

∗
β,m] = 0.

Let Γ̂g
+ = n+[[t]] ⊕ n∗+[[t]]dt, i.e., the abelian subalgebra with topological basis aα,n for n ≥ 0 and

a∗α,n for n > 0.

Given a invariant symmetric bilinear form κ on g, define the affine vertex algebra Vκ(g) =

Indĝg[[t]]⊕C1Cκ by the same formulas as in [Dum24]: for x ∈ g,

(1.16) Y(xt−1|0⟩, z) =
∑
n∈Z

xtnz−n−1

and [T, xtn] = −nxtn−1. When g decomposes as a direct sum, the affine vertex algebra decomposes
as a tensor product:

Lemma 1.17. Let g = ⊕s
i=1gi⊕g0 where g1, . . . , gs are simple Lie algebras and g0 is abelian. Then

there is an isomorphism

Vκ(g) ≃
s⊗

i=0

Vκi(gi),

where:

6[Fre07, §5.3.3] denotes this Lie algebra as A g, but we avoid this notation since in [Kiy24] it denotes an associative

algebra. In our notes, Ã g denotes an associative algebra with the same relations as Γg.
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• Vκi(gi) = Indĝigi[[t]]⊕C1C|0⟩ is the vacuum module over ĝi,κi with the vertex algebra structure

given as in [Dum24].

• Vκ0(g0) = Indĝ0g0[[t]]⊕C1C|0⟩ is the Fock representation of the Heisenberg algebra ĝ0.

Recall from [Wan24b] (i.e., [Fre07, Theorem 6.2.1]) that the affine analog of the homomorphism
U(g) → D(N+)⊗ U(h) constructed in [Kiy24] is a map of vertex algebras

(1.18) wκ : Vκ+κc(g) → Mg ⊗ Vκ|h(h),

where Mg = IndΓ̂
g

Γ̂g
+⊕C1

C|0⟩ is the Fock representation of the Weyl algebra Γ̂g and a vertex algebra,

i.e., it is generated by a vector |0⟩ such that

(1.19) aα,n|0⟩ = 0 for n ≥ 0, a∗α,n|0⟩ = 0 for n > 0, and 1|0⟩ = |0⟩.
Later, we will use the explicit formula for wκc , as stated in [Wan24b, §4] and [Fre07, Theorem 6.2.1]:

Theorem 1.20. The homomorphism of vertex algebras wκc : Vκc(g) → Mg ⊗ V0(h) is explicitly,

wκc(ei(z)) = aαi(z) +
∑

β∈∆+

:P i
β(a
∗(z))aβ(z) :(1.21)

wκc(hi(z)) = −
∑

β∈∆+

β(hi) :a
∗
β(z)aβ(z) :+bi(z)(1.22)

wκc(fi(z)) =
∑

β∈∆+

:Qi
β(a
∗(z))aβ(z) :+bi(z)a

∗
αi
(z) + ci∂za

∗
αi
(z),(1.23)

for some constants ci ∈ C, where P i
β and Qi

β are explicit polynomials defined in [Fre07, §5.2].

By the isomorphism Ũ(Vκ(g)) ≃ Ũκ(ĝ) from [Wan24a, §2.3], the homomorphism wκ induces a
map on the completed universal enveloping algebras

(1.24) Ũκ+κc(ĝ) → Ã g⊗̂Ũκ|h(ĥ).
7

We hope to generalize the homomorphism wκ to arbitrary parabolics. Our goal is to prove the
following, which is the affine analog of the homomorphism (1.9):

Theorem 1.25. Let κ be an invariant symmetric bilinear form on g, and let p ⊂ g be a parabolic
subalgebra. Then there exists a map of vertex algebras

wp
κ : Vκ+κc(g) → Mg,p ⊗ Vκ|m+κc(m)(m).

Here, Mg,p is also a Weyl vertex algebra, but for a smaller nilpotent Lie algebra than n+. We
small make this precise below.

Remark 1.26. When p = b+, we have wp
κ = wκ from (1.18).

Let us first define all the notation in the theorem statement.
Let ∆′+ be the set of positive roots of g occurring in u+, or, equivalently, not occuring in p−.

The following is the generalization of Γ̂g to the parabolic setting:

Definition 1.27. Let Γ̂g,p = C1 ⊕ u+((t)) ⊕ u∗+((t))dt with Lie bracket as in (1.15). Explicitly, it
has topological basis 1, aα,n, a

∗
α,n for α ∈ ∆′+ and n ∈ Z, with brackets

[aα,n, a
∗
β,m] = δα,βδm+n,01 and [aα,n, aβ,m] = [a∗α,n, a

∗
β,m] = 0.

There is a sub-Lie algebra Γ̂g,p
+ := u+[[t]] ⊕ u∗+[[t]]dt. Let the Fock representation be Mg,p =

IndΓ̂
g,p

Γ̂g,p
+ ⊕C1

C|0⟩.

7Recall that Ã g := Ũ(Γ̂g)/(1− 1).
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The Fock representation Mg,p can be given a vertex algebra structure by the same formula used
for Mg. It is related to Mg as follows:

Exercise 1.28. There is a vertex algebra isomorphism

Mg,p ⊗Mm ≃ Mg,

sending:

aα,n|0⟩ ⊗ |0⟩ 7→ aα,n|0⟩, a∗α,n|0⟩ ⊗ |0⟩ 7→ a∗α,n|0⟩ for α ∈ ∆′+, and

|0⟩ ⊗ aβ,n|0⟩ 7→ aβ,n|0⟩, |0⟩ ⊗ a∗β,n|0⟩ 7→ a∗β,n|0⟩ for α ∈ ∆+\∆′+.

The proof of Theorem 1.25 follows the same strategy as [Fre07, Theorem 6.2.1], explained by
[Wan24b], so we will not repeat it here.

Now Theorem 1.25 gives a homomorphism analogous to (1.24):

Ũκ+κc(ĝ) → Ã g,p⊗̂Ũκ|m+κc(m)(m̂),

which allows us to define generalized Wakimoto modules:

Definition 1.29. Let R be a smooth m̂κ|m+κc(m)-module. Then Mg,p ⊗R carries a smooth ĝκ+κc-
module structure, called the generalized Wakimoto module corresponding to R. We denote it by
WakgpR.

Now we have the following analog of Lemma 1.7, which finally accomplishes Goal 1.5 (see [Los24b]
for a proof sketch):

Proposition 1.30. There is a commutative diagram:

Vκ+κc(g) Mg ⊗ Vκ|h(h)

Mg,p ⊗ Vκ|m+κc(m)(m) Mg,p ⊗Mm ⊗ Vκ|h(h),

wp
κ

wκ

≃
1⊗wκ|m

where the vertical isomorphism was defined in Exercise 1.28. Thus, for any λ ∈ h∗ there is an
isomorphism

Wakgp(Wλ,κ|m+κc(m)) ≃ Wλ,κ+κc .

2. Comparing affine Verma modules to Wakimoto modules

Let g be a finite-dimensional simple Lie algebra now. Let b̃+ := b+ + tg[[t]] and ñ+ := n+ + tg[[t]]
be the pre-images of b+ and n+, respectively, under the quotient map g[[t]] → g evaluating at t = 0.

The subalgebra b̃+ is called the Iwahori subalgebra, and ñ+ is its topological nilpotent radical. Now

for a weight λ ∈ h∗ let Cλ be the one-dimensional representation of b̃+ ⊕ C1 such that n̂+ acts by
zero, h acts by λ, and 1 acts as the identity.

Definition 2.1. The Verma module Mλ,κ of level κ and highest weight λ is

Mλ,κ := Indĝκ
b̃+⊕C1

Cλ.

Denote the highest-weight vector, 1⊗ 1, as vλ,κ.

We hope to compare the Wakimoto module W0,κc with the Verma module M0,κc . There is a
homomorphism

(2.2) M0,κc ↠ Vκc(g)
wκc−−→ W0,κc
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which sends the highest-weight vector v0,κc to |0⟩⊗|0⟩, since by construction wκc is ĝκc-equivariant.
Here, the first homomorphism is by the transitivity of induction:

M0,κc = Indĝ
b̃+

C0 = Indĝg[[t]]⊕C1 Ind
g
bC0 ↠ Ind

ĝκc
g[[t]]⊕C1C = Vκc(g).

However, (2.2) cannot be an isomorphism; indeed, the energy zero component of Mλ,κc is the Verma
module IndgbC0 while the energy zero component of W0,κc is the dual Verma module (IndgbC0)

∨, so

they cannot be isomorphic. Thus, we modify the Wakimoto modules Wλ,κ to W+
λ,κ to be defined

below, so that the following holds:

Theorem 2.3 ([Fre07, Proposition 6.3.3]). The Wakimoto module W+
0,κc

is isomorphic to the Verma
module M0,κc.

To define W+
λ,κ, the Fock representation of Γ̂g, defined as Mg := IndΓ̂

g

Γ̂g
+⊕C1

C|0⟩, is modified to

the module with the following modification of (1.19):

aα,n|0⟩′ = 0 for n > 0, a∗α,n|0⟩′ = 0 for n ≥ 0, and 1|0⟩′ = |0⟩′.
Now let

(2.4) W+
λ,κ := M ′g ⊗ πκ−κc

−2ρ−λ,

where πκ−κc
−2ρ−λ was defined in [Wan24b, §0]:

πκ−κc
−2ρ−λ := Ind

ĥκ−κc

h[[t]]⊕C1C| − 2ρ− λ⟩.

Denote the vector |0⟩′ ⊗ | − 2ρ− λ⟩ in W+
λ,κ as |0⟩′. The shift by 2ρ in (2.4) is explained in §2.2; it

is necessary for |0⟩′ ∈ W+
λ,κ to be a highest weight vector of weight λ.

We may modify the formulas in Theorem 1.20 to obtain a homomorphism ĝκ-module structure
on W+

λ,κ. We will give explicit formulas at the critical level:

Theorem 2.5. The module W+
λ,κ has a ĝκc-module structure given by

w′κc
(fi(z)) = aαi(z) +

∑
β∈∆+

:P i
β(a
∗(z))aβ(z) :(2.6)

w′κc
(hi(z)) =

∑
β∈∆+

β(hi) :a
∗
β(z)aβ(z) :−bi(z)(2.7)

w′κc
(ei(z)) =

∑
β∈∆+

:Qi
β(a
∗(z))aβ(z) :+bi(z)a

∗
αi
(z) + ci∂za

∗
αi
(z),(2.8)

for some constants ci ∈ C and where polynomials P i
β and Qi

β are defined in [Fre07, §5.2].

In fact, there are formulas for w′κc
(fα(z)) for arbitrary α ∈ ∆+, not just for simple roots:

(2.9) w′κc
(fα(z)) = aα(z) +

∑
β∈∆+;β>α

:Pα
β (a

∗(z))aβ(z) :

for some polynomials Pα
β . See [Fre07, equation (6.1-2)].

We prove Theorem 2.3 in three steps:

(a) comparing the formal characters;
(b) constructing a homomorphism M0,κc → W+

0,κc
; and

(c) proving the surjectivity of the homomorphism.

From the three steps, the isomorphism is clear: the character of the kernel of M0,κc → W+
0,κc

must

be zero by (a). Step (b) is accomplished in exactly the same way the homomorphism M0,κc → W0,κc

was constructed in (2.2), by sending the highest vector v0,κc to the vacuum vector |0⟩′ ⊗ | − 2ρ⟩.
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2.1. Formal characters of Ũκ(ĝ)-modules. To check (a), let us recall what the character of

a Ũκ(ĝ)-module is. For a Ũκ(ĝ)-module M , suppose there is a grading operator d : M → M
compatible with the ĝκ-action, i.e., such that [d, xtn] = nxtn−1. Let h′ = h⊕Cd, so the characters
are of the form λ′ = (λ, ϕ) where λ ∈ h∗ and ϕ ∈ C, so d acts by ϕ.

Now, we can define the character of a Ũκ(ĝ)-module:

Definition 2.10. Let M be a smooth ĝ′κ-module, such that 1 acts by identity and the Cartan
h⊕ Cd⊕ C1 acts semi-simply on M with finite-dimensional weight spaces:

M =
⊕

λ′∈(h′)∗
M(λ′).

Then the character of M is

chM =
∑

λ′∈(h′)∗
dimM(λ′) · eλ′

.

Letting δ := (0, 1) ∈ h̃∗, the set of positive roots of ĝ′ is:

(2.11) ∆̂+ = (∆+ + Z≥0δ) ⊔
(
(∆− ∪ {0}) + Z>0δ

)
.

The positive roots define a partial order on h̃∗:

Definition 2.12. Let λ′ > µ′ if λ′ − µ′ =
∑

i β
′
i for some β′i ∈ ∆̂+.

The Verma module Mλ,κ over ĝκ, as defined in Definition 2.1, can be extended to ĝ′κ, which we
denote by Mλ′,κ where λ′ = (λ, 0):

Mλ′,κ := Ind
ĝ′κ
b̃+⊕C1⊕Cd

Cλ′ .

Now by the PBW theorem, as a vector space Mλ,κ ≃ U(ñ−), where ñ− = n− ⊕ t−1g[t−1], so

(2.13) chMλ′,κ = eλ
′ ∏
α′∈∆̂+

(1− e−α
′
)−multα′

,

where multα′ is the dimension of the weight space ĝ′κc,α′ .

Since W+
0,κc

has a basis in the monomials

(2.14) aα,n, α ∈ ∆+, n < 0; a∗α,n, α ∈ ∆+, n ≤ 0; and bi,n, i = 1, . . . , ℓ, n < 0,

to compute the character of the ĝ′κ-module W+
0,κc

, we must compute the h′-action on aα,n, a
∗
α,n, and

bi,n.
Since d simply acts by L0 = −t∂t on Mg ⊗ V0(h),

(2.15) [d, aα,n] = −naα,n, [d, a∗α,n] = −na∗α,n, [d, bi,n] = −nbi,n,

where aα,n, a
∗
α,n ∈ Mg, and bi,n ∈ Ũ0

(
h∗((t))

)
. The h-action on W+

0,κc
is given by, for h ∈ h,

(2.16) [h, aα,n] = α(h)aα,n, [h, a∗α,n] = α(h)a∗α,n, [h, bi,n] = 0.

Formula (2.16) follows from (1.22):

Exercise 2.17. Deduce formula (2.16) from (1.22).

Now (2.15) and (2.16) together show that the character of W+
0,κc

equals (2.13).
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2.2. Constructing the homomorphism. Let us compute the action of h on |0⟩′:

Exercise 2.18. For any λ ∈ h∗ and h ∈ h, then h · |0⟩′ = λ(h)|0⟩′ in W+
0,κc

.

The Exercise shows why the shift by 2ρ was necessary in (2.4). The classical analog is the
following: C[x] and C[δ0] are both D(A1) ≃ C[x, ∂x]-modules, where δ0 is the delta function
supported on 0.8 Then L0 = −x∂x acts as 0 on 1 ∈ C[x], but acts instead as

−x∂x · 1 = (1− ∂xx)1 = 1.

Solution to Exercise 2.18. The constant term in (2.7) is (by definition of the normally ordered
product)

wκc(hi,0|0⟩) =
∑

β∈∆+

β(hi)

(∑
n≥0

a∗β,−naβ,n +
∑
n<0

aβ,na
∗
β,−n

)
|0⟩′ − bi,0|0⟩′

=
∑

β∈∆+

β(hi)a
∗
β,0aβ,0|0⟩′ − (−2ρ− λ)(hi)|0⟩′

=
∑

β∈∆+

β(hi)(aβ,0a
∗
β,0 − 1)|0⟩′ + (2ρ+ λ)(hi)|0⟩′

= −
∑

β∈∆+

β(hi)|0⟩′ + (2ρ+ λ)(hi)|0⟩′

= λ(hi)|0⟩′. □

Now, by the character formula in §2.1 the weight spaces of λ′ > 0 are zero, i.e., |0⟩′ ∈ W+
0,κc

is

annihilated by ñ+. Thus there is a homomorphism M0,κc → W+
0,κc

.

2.3. Proving the surjectivity of the homomorphism.

The remainder of the proof of Theorem 2.3. We need to check that M0,κc → W+
0,κc

is surjective,

i.e., that W+
0,κc

is generated as a ĝκc-module by |0⟩′. Consider the coinvariants of W+
0,κc

with

respect to ñ− = n− ⊕ t−1g[t−1]:

(W+
0,κc

)ñ− := C0 ⊗U(ñ−) W
+
0,κc

,

which is a h′-representation since ñ− ⊂ ĝκc is h′-stable. If M0,κc → W+
0,κc

were not surjective, then

there is an exact sequence of ĝ′κc
-modules

M0,κc → W+
0,κc

→ V → 0,

for some non-zero V , which induces an exact sequence of h′-modules

(2.19) (M0,κc)ñ− = C → (W+
0,κc

)ñ− → Vñ− → 0,

where Vñ− ̸= 0. But (M0,κc)ñ− → (W+
0,κc

)ñ− is an isomorphism on the (0, 0)-weight space, so

(W+
0,κc

)ñ− must have a nonzero weight µ′. In other words W+
0,κc

has an irreducible quotient Lµ′,κc

with highest weight µ′. Since M0,κc and W+
0,κc

have the same characters, they define the same class
in the Grothendieck group and hence must have the same irreducible subquotients. Now we shall:

(1) observe restrictions on µ′ ∈ (h′)∗ coming from Lµ′,κc being a subquotient of W+
0,κc

; and

(2) observe restrictions on µ′ ∈ (h′)∗ coming from Lµ′,κc being a subquotient of M0,κc .

8They are Fourier transforms of each other.
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We will show the two restrictions on µ′ are incompatible, and hence our assumption, that V ̸= 0,
must have been wrong.

First, however, there is a sublety : M0,κc and W+
0,κc

have infinite length, so chM0,κc = chW+
0,κc

does not imply they have the same irreducible subquotients in the näıve way. The correct statement
is as follows:

Exercise 2.20. Let M and N be category O-modules for ĝ′κ. Then chM = chN if and only if M

and N define the same class in the completed Grothendieck group K̂0(Oĝ′κ
), which is the inverse

limit

K̂0(Oĝ′κ
) := lim←−

λ′∈(h′)∗
K0(Oĝ′κ

/Oĝ′κ,≤λ′),

over the partial order on (h′)∗ defined in (2.12) where Oĝ′κ,≤λ′ is the Serre subcategory of Oĝ′κ
consisting of modules with weights≤ λ′. Moreover when this holds, if L is an irreducible subquotient
of M , then L is also an irreducible subquotient of N .

For (1), note that by the explicit formulas for fα(z) and hi(z)-actions on W+
0,κc

in (2.7) and (2.9),
respectively, the lexicographically ordered monomials

(2.21)
∏
ℓα<0

biα,ℓα
∏

mb≤0
fαb,mb

∏
nc<0

a∗βc,nc
|0⟩′ where 1 ≤ iα ≤ ℓ, αb ∈ ∆s, and βc ∈ ∆+

form a basis of W+
0,κc

. The weights appearing in the coinvariants must be of the form

(2.22) µ′ = −
∑
j

(njδ − βj)

where nj > 0 and βj ∈ ∆+. Indeed, by the description of the basis of W+
0,κc

in (2.21), there is an

isomorphism of h̃-modules

(W+
0,κc

)n−[t−1]⊕t−1h[t−1] ≃ C[a∗α,n]α∈∆+,n<0,

and (W+
0,κc

)ñ− is a quotient.

For (2) note that [KK79, Theorem 2] (also see [Fre07, §6.3.3]) gives a characterization of possible
irreducible subquotient of Verma modules:

Proposition 2.23. A weight µ′ = (µ, n) appears as the highest weight of an irreducible subquotient
of M(λ,0),κc

if and only if n ≤ 0 and µ = w(ρ)− ρ for some w ∈ W .

Note that for any w ∈ W the weight w(ρ) − ρ equals the linear combination of simple roots of
g with non-positive coefficients, hence the weight of any irreducible subquotient of M0,κc has the
form

(2.24) µ′ = −nδ −
∑
i

miαi

for some n ≥ 0 and mi ≥ 0. Finally, note that (2.22) and (2.24) cannot simultaneously hold, a
contradiction, and hence V = 0. We have thus completed (a), (b), and (c), which together prove
that M0,κc ≃ W+

0,κc
. □

Next, we characterize all the endomorphisms of our module M0,κc ≃ W+
0,κc

. In other words, we

hope to characterize all ĝ′κc
-homomorphisms M0,κc → W+

0,κc
. By adjunction, this is equivalent to

characterize the vectors in W+
0,κc

annihilated by b̃+.

Lemma 2.25 ([Fre07, Lemma 6.3.4]). The space of b̃+-invariants of W
+
0,κc

is equal to π−2ρ ⊂ W+
0,κc

.
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Proof. The formulas in Theorem 2.5 shows the vectors of π−2ρ are annihilated by b̃+. To prove the
converse, note that W+

0,κc
has another basis∏

ℓα<0

biα,ℓα
∏

mb≤0
fR
αb,mb

∏
nc<0

a∗αc,nc
|0⟩′,

by the same argument as for (2.21). Here the fR
α,n generate an action of tn−[[t]] as defined in

[Los24a], which we now briefly recall. There is an isomorphism of the Fock representation of Γ̂g

with the vertex algebra of chiral differential operators on N−:

Mg ≃ CDO(N−).

Now viewing J n− = n−[[t]] as the right-invariant vector fields on JN− defines a left n−[[t]]-action
on CDO(N−), which induces the restriction of the ĝ′κc

-action on W+
0,κc

. On the other hand, viewing

n−[[t]] as the left-invariant vector fields on JN− defines a right n−[[t]]-action which are the fR
α,n.

Thus there is a tensor product decomposition

W+
0,κc

= W
+
0,κc

⊗W+,∗
0,κc

,

where W+,∗
0,κc

(resp., W
+
0,κc

) is the span of monomials in a∗α,n (resp., in bi,ℓ and fR
α.m). Since the left

action of tn−[[t]] commutes with bi,ℓ and fR
α,m, we conclude tn−[[t]] acts by zero on W

+
0,κc

. In fact, it

is isomorphic to the restricted dual of the free Ũ(n−[[t]])-module with one generator. Thus

(W+
0,κc

)tn−[[t]] = W
+
0,κc

⊗ (W+,∗
0,κc

)tn−[[t]] = W
+
0,κc

.

Furthermore, for h ∈ h since

[h, a∗α,n] = α(h)a∗α,n,

a vector in W
+
0,κc

is annihilated by h if and only if it belongs to π−2ρ. □

3. Proof of the Kac-Kazhdan conjecture

The Verma module Mλ′,κ over ĝ′κ has a unique irreducible quotient Lλ′,κ. The Kac-Kazhdan
conjecture computes the character of Mλ′,κ for generic λ′.

First, recall that the roots ∆̂+ from (2.11) has a subset of real roots

∆̂re
+ := (∆+ + Z≥0δ) ⊔ (∆− + Z>0δ),

i.e., the roots (λ, ϕ) ∈ ∆̂+ such that λ ̸= 0.

Theorem 3.1. For a generic weight λ ∈ h∗ of critical level,

chLλ′,κc = eλ
′ ∏
α′∈∆̂re

+

(1− e−α
′
)−1.

Here, a weight λ is generic when λ /∈
⋃

β∈∆̂re
+ ,m>0

Hκc
β,m where Hκc

β,m are certain hyperplanes in h∗

defined in [KK79].

Proof. For λ ∈ h∗ the Wakimoto module of critical level Wλ/t is a ĝ′κc
-module since Mg is graded,

and the h((t))-module Cλ/t is graded, and hence Wλ/t := Mg ⊗ Cλ/t inherits a grading. The ĝ′κc
-

module Wλ/t has character

chWλ/t = eλ
′ ∏
α′∈∆̂re

+

(1− e−α
′
)−1,

where λ′ = (λ, 0), from a similar argument as in (a) in the proof of Theorem 2.3. Moreover, the
same argument as in (b) in the proof of Theorem 2.3 shows there is a homomorphism Mλ′,κc → Wλ/t
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sending the highest weight vector to |0⟩. It thus suffices to check that if λ is a generic weight of
critical level, then Wλ/t is irreducible, since then Lλ′,κc ≃ Wλ/t. If Wλ/t is not irreducible, either:

• Wλ/t is not generated by its highest vector, i.e., the homomorphism Mλ′,κc → Wλ/t is not
surjective; or

• Wλ/t is generated by its highest vector, in which Mλ′,κc → Wλ/t is surjective and the image
of a highest weight of the maximal sub-module of Mλ′,κc is a non-zero singular vector in
Wλ/t not in C|0⟩.

If Wλ/t contains a singular vector not in C|0⟩ then it must be annihilated by n+[[t]]. We know that∏
na<0

eRαa,na

∏
mb≤0

a∗αb,mb
|0⟩

forms a basis ofMg, where the e
R
αa,na

are defined as in the proof of Lemma 2.25, using the description
of Mg ≃ CDO(N+), as in the proof of Lemma 2.25. By the same method as in Lemma 2.25,

the n+[[t]]-invariants of W0,κc equals the subspace W 0,κc spanned by all monomials of eRαa,na
. In

particular, the weight of any singular vector of Wλ/t is of the form λ′−
∑

j(njδ− βj) where nj > 0
and βj ∈ ∆+. Thus Wλ/t contains an irreducible subquotient of that highest weight. Now, since

for α′ ∈ ∆̂+,

multα′ =

{
1 if α′ ∈ ∆̂re

+

ℓ otherwise,

we have

(3.2) chMλ′,κc =
∏
n>0

(1− e−nδ)−ℓ chWλ/t,

where ℓ is the rank of g. Thus if an irreducible module Lµ′,κc appears as a subquotient of Wλ/t,
it must also appear as a subquotient of chMλ′,κc : only look at the part of (3.2) with energy zero.
But our contradicts the assumption that λ is generic: irreducible subquotients of Verma modules
are controlled by hyperplanes by [KK79]. Thus Wλ/t does not contain any singular vectors other
than the highest weight.

Next, if Wλ/t is not generated by its highest vector, then by the same argument as above there is
an irreducible subquotient of Wλ/t with highest weight λ′−

∑
j(njδ+βj) with nj ≥ 0 and βj ∈ ∆+.

This again contradicts λ being a generic weight. □
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