PARABOLIC WAKIMOTO MODULES AND APPLICATIONS

KENTA SUZUKI

We will define generalized Wakimoto modules, which gives a functorial way of constructing g-
modules from m-modules for parabolic subalgebras p = m x u C g. We will give applications
of Wakimoto modules, including the Kac-Kazhdan conjecture, which computes the characters of
Verma modules M), ... on the critical level for A € h* generic, i.e., not lying in a countable union of
hyperplanes.

1. SEMI-INFINITE PARABOLIC INDUCTION

Let g be a finite-dimensional reductive Lie algebra with Borel subalgebra b, and Cartan subal-
gebra b (we work in this generality since we want to apply our construction to Levi subalgebras of
simple Lie algebras).

Wakimoto modules, constructed in [Wan24b], are the images of Fock modules under a functor
Ue(h)—mod — Uy p.(g)—mod." We want to generalize the construction by replacing the Borel
subalgebra b with an arbitrary parabolic subalgebra p and replacing the Cartan subalgebra h with
the Levi component m of p. Let us first recall what a parabolic subalgebra is:

Definition 1.1. A parabolic subalegbra is a subalgebra p C g such that one of the following
equivalent conditions hold:

e p contains a Borel subalgebra of g; or
e the orthogonal complement of p with respect to an invariant orthogonal form? is its nilrad-
ical.

Example 1.2. b, and g are parabolic subalgebras of g.

Each conjugacy class of parabolic subalgebras has a unique representative containing b: we call
those parabolic subalgebras standard. Let Ag be the set of simple roots corresponding to by C g.
Then standard parabolic subalgebras of g are classified by subsets of Ag: so by corresponds to @
and g corresponds to As. More generally, for a subset S C Ag, the corresponding standard parabolic
subalgebra ps C g is

ps :=by @ @ Ya-

a>0
a€Espan Ag

The Levi component is then given by:
mg:=hd @ Ja-
acspan Ag
Analogous to the opposite Borel subalgebra, let

pS,— =b_ @ Ja

a<0
aEspan Ag

be the opposite parabolic.

IThese are categories of smooth modules.

2When g is semisimple we can use the Killing form, but for arbitrary reductive Lie algebras the Killing form may
be degenerate.
1
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Example 1.3. When g = sl,, let S be a subset of A; = {aq,...,a,—1} such that A \S =

{aay, .., 0q,}. The corresponding parabolic subalgebras are
Mg, xa, * * *
0 M(az—al)x(ag—al) * *
ps =sl, N .
0 0 0 Men—ap)x(n-ay)
and
Ma1 Xai
psy_ _ 5[n ﬂ * M(ag—a1)><(a2—a1)
* *
* * * Mgy x(n-ay)

The Levi component is
mg = {(zo,...,xx) € gly, X - xgl,_,, :tr(zo) + - +tr(zx) =0}
~ sly, X o X 8ly_g, x COF.

First, we must extend relevant definitions from simple Lie algebras to reductive Lie algebras.
The following is the generalization of the critical level:

Definition 1.4. Let g be a reductive Lie algebra, which decomposes as g = @;_; g; b go for some
simple Lie algebras gi,...,0s and an abelian Lie algebra go. Then the critical level is k.(g) =
(Kic)i_g, where ko = 0 and k; . is the critical level for the simple Lie algebra g; for 1 <1i <'s.

Given an invariant symmetric bilinear form « on g, let g, be the corresponding affine Kac-Moody
algebra, as in [KL24]: it is the central extension

0—-Cl—g.—g(t)—0
with commutation relation
[A® f(t),B®g(t)] = [A, B] @ f(t)g(t) — (k(A, B)Resfdg)1.
Let us now formally re-state our goal:

Goal 1.5. Let g be a reductive Lie algebra, let x be an invariant symmetric bilinear form on g,
and let p = m x u C g be a parabolic subalgebra. Define an exact functor

Tj',i‘ﬁ,ﬁc(a) (m)—mod — U,ﬁ,% (g)—mod

such that the Wakimoto module with highest weight \ is sent to the Wakimoto module with highest
weight A.

1.1. Finite-dimensional analog. Let us first describe the finite-dimensional analog of Goal 1.5.

Definition 1.6. Let g be a simple Lie algebra with standard parabolic subalgebra p = m x u.
There is an exact functor, the parabolic induction functor

Indp: m—mod — g—mod.

Given a m-module V', we may view it as a p-module by extension by zero, i.e., by making u act by
zero, and we let

IndgV = U(g) ®U(p) V.
Now the Indfjl sends Verma modules to Verma modules:

Lemma 1.7. For a weight X\ € b*, let Viu(X\) and V4(X) be the Verma modules with highest weight
A of the Lie algebras m and g, respectively. Then

IndpVin(A) ~ V5(A).
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Proof. Follows from observing that U(p) ® (s, ) Cy is isomorphic to the inflation of the m-module
Vin(A) to p, and because induction is transitive. O

Remark 1.8. When p = b, the above recovers the construction of Verma modules (i.e., V4(A) =
Ind% C)\)
+

Recall that [Kiy24] gives a geometric construction of dual Verma modules using vector fields on
G/N_, where N_ is the unipotent radical of the opposite Borel subalgebra B_. The construction
admits a straightforward generalization to the parabolic setting: let P = M xUy C G be subgroups
whose Lie algebras are px = m x uyx C g. Then analogously to [Kiy24, §2] there is a map of Lie
algebras

g — Vect(G/U_)Mr,
where M, acts on G/U_ from the right.> Now as in Daishi’s talk, P,U_/U_ C G/U_ is Zariski
open, and restricting to the locus gives a homomorphism of algebras

(1.9) G Ulg) = D(P)M = D(U.) & U(m),
where the second isomorphism follows from the isomorphism of varieties P, ~ U, x M. Now:

Lemma 1.10. Let V be a m-module, with structure morphism ¢: U(m) — End(V). Then the
modified g-module structure on C[U4] ® V is defined by

U(g) — D(U,) ® U(m) ~=% D(U,) ® End(V) — End(C[U,] ® V),

noting that C[U4] is naturally a D(Uy)-module. Then the g-module ClUL] ® V'V is isomorphic to
the dual parabolic induction (Indj V)V

We hope to see Lemma 1.7 from the geometric perspective:

Proposition 1.11. Let Py = M x Uy C G be a standard parabolic subgroup. There is a commu-
tative diagram

G
<PB+

Ulg)

G

D(Ny) @ U(b)
D(U4)® (D(Ny N M) @ U(b)).
Here, the homomorphisms U(g) — D(N4+)@U(h) and U(g) — D(Us) @ U(m) are as in (1.9), and

=

the right vertical isomorphism follows from the multiplication isomorphism® Uy x (Ny N M) ~ N.

. M
dpw,)®¢p, Am

Proof. Indeed, the following diagram commutes:

D(G)¢r —— D(G/U_)Mr «————— D(G/N_)H"

(1.12) l l

D(Py)Mr ——— D(Py/(Py N N_))H

where the vertical homomorphisms are restricting along open immersions Py C G/U_ and Py /(P+N
N_) C G/N_. The first horizontal homomorphism D(G)¢" < D(G/U_)Mr is obtained as follows:
any ¢ € D(G)%" is an operator o: C[G] — C[G] which is G,-invariant, hence it sends (U_),-
invariant functions to (U_),-invariant functions. In fact, for any (U_),-invariant open subset X of

3the action is well-defined because M normalizes U-_.

4Here, as usual, letting 7: g — g be the Cartan involution and given M = @, M, we let M = @u M, with
(x-n,m) = (n,—7(x)m) for n € MY, m € M. Alternatively, it is the parabolic co-induction, the right adjoint to
restriction.

5An isomorphism of varieties; not of groups!
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G, there is an operator o: C[X]Y-+ — C[X]Y-". In other words, since C[X/U_] = C[X]V-r, it
defines an endomorphism of sheaves 0: Og/y_ — Og/y_, which can be shown to be a differential
operator. Note that we need & to be an endomorphism of the sheaf Og/;;_, and not just C[G/U_],
since G/U_ may not be affine, e.g., SLa/N_ ~ A%\{(0,0)}. Moreover o is G,-invariant so & must
be M,-invariant, i.e., ¢ € D(G/U_)r. All other horizontal maps are constructed in a similar
fashion.

Now we have the isomorphisms U(g) ~ D(G)%" and D(P.)Mr ~ D(U,) ® U(m), so (1.12) can
be re-written as

G
‘PB+

Ule) — BT s DN % D(N,) & Uh)

hl | |

D(U) @ Um) == D(Py /(P 1N — D(UL) ® DNy 1 M) & U (D).

M
1®¢E, Am

which is the desired commtativity. Here the homomorphism D(G/N_)"r — D(N,) ® U(h) is the
composition of the restriction to the open Bruhat cell D(G/N_)r — D(B, )" together with the
standard isomorphism D(B, ) ~ D(N,) ® U(h) from [Kiy24]. O

Remark 1.13. Proposition 1.11 implies Lemma 1.7.

1.2. Back to affine Lie algebras. Recall the definition of the Weyl algebra I (denoted simply
as T in [Wan24b])®:

Definition 1.14. Let I'9 = C1 ® ny((¢)) ® 0% (¢))dt with Lie bracket

(1.15) [wf, yu] = (2, y) Res(fuw) - 1

for v € ny, y € ni, and f € C((t)), w € C((t))dt. More concretely, it has a topological basis 1,
Aan = Taol", and ag, ,, = zit"ldt for « € Ay and n € Z with relations

[@a,ns ag,m] = 0a,30m4n,01 and [aan, agm] = [ag ag,m] =0.

Let fi = n[t] @ n’ [t]dt, i.e., the abelian subalgebra with topological basis aq,, for n > 0 and
ay, ,, for n > 0.

Given a invariant symmetric bilinear form x on g, define the affine vertex algebra Vi(g) =

Indg[[t]]@m Cx by the same formulas as in [Dum24]: for z € g,
(1.16) Y(xt™0),z) = attz !
nez
and [T, zt"] = —nat™ 1. When g decomposes as a direct sum, the affine vertex algebra decomposes

as a tensor product:

Lemma 1.17. Let g = ®]_,9; Dgo where g1,...,9s are simple Lie algebras and go is abelian. Then

there is an isomorphism
S
Vie(8) = Q) Vi, (4),
i=0

where:

6[F1reO77 §5.3.3] denotes this Lie algebra as 7%, but we avoid this notation since in [Kiy24] it denotes an associative
algebra. In our notes, &7 denotes an associative algebra with the same relations as I'?.
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o V(o) =Tnd% )

given as in [Dum24].

C|0) is the vacuum module over §; ., with the vertex algebra structure

e Vi (g0) = Indﬁﬁ[{ﬂ]@m C|0) is the Fock representation of the Heisenberg algebra go.

Recall from [Wan24b] (i.e., [Fre07, Theorem 6.2.1]) that the affine analog of the homomorphism
U(g) > D(N4) @ U(h) constructed in [Kiy24] is a map of vertex algebras

(1.18) Wit Vieyr.(9) = Mg @ Vil (h),

where My = Ind?ﬁ oC1 C|0) is the Fock representation of the Weyl algebra % and a vertex algebra,
ie., it is generated by a vector |0) such that

(1.19) @an|0) = 0 for n >0, a, ,|0) = 0 for n > 0, and 1/0) = |0).

Later, we will use the explicit formula for wy,, as stated in [Wan24b, §4] and [Fre07, Theorem 6.2.1]:
Theorem 1.20. The homomorphism of vertex algebms Wi, Vi (8) = Mg @ Viy(h) is explicitly,

(1.21) Wy, (€i(2)) = an, (2 Z PB ag(z):

BeEA
(1.22) w, (hi(2)) = = Y Blhi):aj(2)ap(z):+bi(z)
BEAL
(1.23) we, (fi(2)) = Y 1Q5(a"(2)ag(2): +bi(2)ah, (2) + cidal, (2),
BeEA

for some constants ¢; € C, where Pé and Qiﬁ are explicit polynomials defined in [Fre07, §5.2].

By the isomorphism U(Vi(g)) ~ U,(g) from [Wan24a, §2.3], the homomorphism w, induces a
map on the completed universal enveloping algebras

(1.24) Us i, (@) = 78U, (h).”

We hope to generalize the homomorphism w, to arbitrary parabolics. Our goal is to prove the
following, which is the affine analog of the homomorphism (1.9):

Theorem 1.25. Let k be an invariant symmetric bilinear form on g, and let p C g be a parabolic
subalgebra. Then there exists a map of vertex algebras

w2 Vieyro(9) = Mgy @ Vi) tre(m) (m).

Here, Mg, is also a Weyl vertex algebra, but for a smaller nilpotent Lie algebra than n.. We
small make this precise below.

Remark 1.26. When p = b, we have w}, = w,, from (1.18).

Let us first define all the notation in the theorem statement.
Let A/, be the set of positive roots of g occurring in u, or, equivalently, not occuring in p_.

The following is the generalization of 9 to the parabolic setting:

Definition 1.27. Let T% = C1 & u, (¢) & u’ ((t))dt with Lie bracket as in (1.15). Explicitly, it
has topological basis 1, aqn, ay, ,, for a € A, and n € Z, with brackets

[aam, a:/g,m] = 504756m+n,01 and [aamyaﬁ,m] = [a’z,nﬂ a:/g,m] =0.
There is a sub-Lie algebra fi’p = uy[t] ® vl [t]dt. Let the Fock representation be My, =

dgi,’i@mcmy

"Recall that &% := U(T?)/(1 — 1).
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The Fock representation Mg, can be given a vertex algebra structure by the same formula used
for My. It is related to Mj as follows:

Exercise 1.28. There is a vertex algebra isomorphism
Mgy @ My ~ My,
sending:
aon|0) @ |0) — aq.n|0), g 10) ®10) = a, ,]0) for a € A’ and
10) ® agn|0) = asn|0), 0) ® a3 ,0) = af,|0) for a € AL\A,.

The proof of Theorem 1.25 follows the same strategy as [Fre07, Theorem 6.2.1], explained by
[Wan24b], so we will not repeat it here.
Now Theorem 1.25 gives a homomorphism analogous to (1.24):

ﬁfﬂ"% (/g\) - dg’p(/gﬁn\m—&-ﬁc(m) (t/ﬁ)v
which allows us to define generalized Wakimoto modules:

Definition 1.29. Let R be a smooth My, 4. (m)-module. Then My, ® R carries a smooth g -

module structure, called the generalized Wakimoto module corresponding to R. We denote it by
Wak R.
p

Now we have the following analog of Lemma 1.7, which finally accomplishes Goal 1.5 (see [Los24b]
for a proof sketch):

Proposition 1.30. There is a commutative diagram:

Vitne(0) » Mg @ Vg, (b)

- 1:

1®wn‘m
Mgm ® Vﬁ|m+l€c(m) (m) e Mg7p ® Mm ® Vﬁ‘h(h),

Wk

where the vertical isomorphism was defined in Exercise 1.28. Thus, for any A € h* there is an
isomorphism

Wak!g?(WA,Hlm—i-nc(m)) = WA,m+mc~

2. COMPARING AFFINE VERMA MODULES TO WAKIMOTO MODULES

Let g be a finite-dimensional simple Lie algebra now. Let by := b, + tg[t] and 7y := n, + tg[{]
be the pre-images of by and n,, respectively, under the quotient map g[t] — g evaluating at t = 0.
The subalgebra b is called the Iwahori subalgebra, and ny is its topological nilpotent radical. Now

for a weight A € h* let C, be the one-dimensional representation of b, @ C1 such that n . acts by
zero, h acts by A, and 1 acts as the identity.

Definition 2.1. The Verma module M) , of level x and highest weight X is

M, ,. := Ind2" C.
W b @C1 A

Denote the highest-weight vector, 1 ® 1, as v) x.

We hope to compare the Wakimoto module W .. with the Verma module My ... There is a
homomorphism

Wk

(22) Moyﬂc - Vﬁc(g) — Wo,ﬂc
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which sends the highest-weight vector vg ., to |0) ®]0), since by construction wy, is gy, -equivariant.
Here, the first homomorphism is by the transitivity of induction:

Mo, =Indd Co =TndSp,, o, Tnd Co — IndSss
+

glt]eC1 g[tjeC C = Vi.(9).

However, (2.2) cannot be an isomorphism; indeed, the energy zero component of M, ,_ is the Verma
module Indj Cy while the energy zero component of W, is the dual Verma module (Ind Co)", so
they cannot be isomorphic. Thus, we modify the Wakimoto modules W) , to W; .. to be defined
below, so that the following holds: 7

Theorem 2.3 ([Fre07, Proposition 6.3.3]). The Wakimoto module ngﬁc is 1somorphic to the Verma
module M ...

To define I/V)\+ ..» the Fock representation of fg, defined as M := Indgﬁ aC1 C|0), is modified to

' +
the module with the following modification of (1.19):
Ga,n|0)" = 0 for n > 0, a}, ,[0)" = 0 for n. > 0, and 1[0)" = |0)".

Now let
(2.4) Wy, = My@n",re

—2p—X\
where 7,7 | was defined in [Wan24b, §0}:

—hRe o— ’h\m—mc
WEQ;L)\ = Indh[t]]@@l Cl—2p—\).
Denote the vector |0)' ® | —2p — A) in Wy as [0)’. The shift by 2p in (2.4) is explained in §2.2; it
is necessary for |0)" € W;rﬁ to be a highest weight vector of weight A.

We may modify the formulas in Theorem 1.20 to obtain a homomorphism g,-module structure
on W;r .- We will give explicit formulas at the critical level:

Theorem 2.5. The module W;‘H has a @, -module structure given by

(2.6) wy, (fi(2)) = aa,(2) + Y Phla’(2))as(2):

BEAL
(2.7) wy,_(hi(2)) = Z B(hi):aj(2)ag(z):—bi(2)
BeEA
(2.8) wy (i(2)) = D :Qh(a"(2)ap(2):+bi(2)ah, (2) + cidza, (),
BeAL

or some constants ¢; € C and where polynomials P, and Q% are defined in [Fre07, §5.2].
B B

In fact, there are formulas for w/, (fa(z)) for arbitrary o € A, not just for simple roots:

(2.9) wy, (fa(2)) = aa(z) + Y P§(a"(2)ag(2):
BEA ;B>
for some polynomials Pg. See [Fre07, equation (6.1-2)].
We prove Theorem 2.3 in three steps:
(a) comparing the formal characters;
(b) constructing a homomorphism M ., — W&' s and
(¢) proving the surjectivity of the homomorphism.
From the three steps, the isomorphism is clear: the character of the kernel of Mg ., — Wdf x, ust

be zero by (a). Step (b) is accomplished in exactly the same way the homomorphism M .., — W s,
was constructed in (2.2), by sending the highest vector vg . to the vacuum vector |0)’ ® | — 2p).
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2.1. Formal characters of U, (§)-modules. To check (a), let us recall what the character of
a U,(g)-module is. For a U,(§)-module M, suppose there is a grading operator d: M — M
compatible with the g.-action, i.e., such that [d, zt"] = nxt""!. Let h’ = h @ Cd, so the characters
are of the form X' = (\, ¢) where X € h* and ¢ € C, so d acts by ¢.

Now, we can define the character of a Uy (§)-module:

Definition 2.10. Let M be a smooth g/ .-module, such that 1 acts by identity and the Cartan
h @& Cd @ C1 acts semi-simply on M with finite-dimensional weight spaces:

M= @ MWN).
Ale(b/)*
Then the character of M is
chM = Z dim M (X) - V.
)\le(h/)*

Letting § := (0,1) € b*, the set of positive roots of g’ is:
(2.11) Ay = (Ap + Z508) U ((A- U {0}) + Z=0d).
The positive roots define a partial order on 5*:
Definition 2.12. Let A" > g/ if N — ¢/ = >, 5/ for some f3] € A,

The Verma module M, ,; over g, as defined in Definition 2.1, can be extended to g, which we
denote by My, where X" = (X, 0):

=~/
M := Ind%* Cy.
Xyt bLaCLOCd N

Now by the PBW theorem, as a vector space M , ~ U(n_), where n_ =n_ @t 'g[t1], so
(2'13) ChMX,R _ e/\/ H (1 _ e_a/)_m‘ﬂta”
Oé’EEJr

where mult o is the dimension of the weight space g}, -
Since Wo+, «. has a basis in the monomials

(2.14) Ao, @ € Ap,n <0505 ., € Ayp,n <05 and biy,i=1,...,4,n <0,
to compute the character of the gl.-module WJ x> We must compute the h’-action on Qo a;n, and

bl’nS'ince d simply acts by Lo = —td; on My ® Vy(h),

(2.15) d,a0n) = —naan, [d, a;n} = fna:;’n, [d,bin] = —nbjp,

where aq n,ay;, , € My, and b; , € ﬁo(h*((t))). The h-action on WJKC is given by, for h € b,
(2.16) [P, aan] = a(h)aan, [h ay,]=a(h)ay,, [hbin]=0.

Formula (2.16) follows from (1.22):

Exercise 2.17. Deduce formula (2.16) from (1.22).

Now (2.15) and (2.16) together show that the character of W()anc equals (2.13).
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2.2. Constructing the homomorphism. Let us compute the action of § on |0):
Exercise 2.18. For any A € h* and h € b, then h - |0)’ = A(h)|0)’ in W(;,an'

The Exercise shows why the shift by 2p was necessary in (2.4). The classical analog is the
following: C[z] and C[§y] are both D(A') ~ C[z,d,]-modules, where o is the delta function
supported on 0.8 Then Lo = —z0, acts as O on 1 € C[x], but acts instead as

—20y -1 =(1—0y2)l = 1.

Solution to Ezercise 2.18. The constant term in (2.7) is (by definition of the normally ordered
product)

wr, (hiol0)) = > B(ha) ( > ah nasn+ Y %nag,_n) 10) — bi 0|0’

Beny n>0 n<0

_ 5§+ B(hi)ak ag0l0) — (—2p — A)(hi)|0)’

- BEZA: B(hi)(agoabo — 1)10) + (20 + A)(hs)]0)

. Z B(h)I0Y + (204 A)(h)0)

- A(Zj)AySy. -

Now, by the character formula in §2.1 the weight spaces of X > 0 are zero, i.e., |0) € WJEC is
annihilated by n;.. Thus there is a homomorphism Mg ., — WJ fo

2.3. Proving the surjectivity of the homomorphism.

The remainder of the proof of Theorem 2.3. We need to check that Mg .. — Woj,an is surjective,
i.e., that WOJf x. 18 generated as a gr.-module by |0)’. Consider the coinvariants of WOJT . With
respect to n_ =n_ dt 1g[t!]:

(Wi = Co Qua_) Wi,

which is a b’-representation since i_ C gy, is h’-stable. If M . — W, .. Were not surjective, then
there is an exact sequence of ﬁf{c—modules

Mo o, — WJKC -V =0,
for some non-zero V, which induces an exact sequence of h’-modules
(2.19) Mok )i =C— Wy s — Vi =0,

where V5 # 0. But Moy, )z. — (I/VO+ «.)i_ is an isomorphism on the (0,0)-weight space, so
(W(f «.)i_ must have a nonzero weight y'. In other words W&r .. has an irreducible quotient L, x,
with highest weight 1. Since M ,, and W&r «, have the same characters, they define the same class
in the Grothendieck group and hence must have the same irreducible subquotients. Now we shall:
(1) observe restrictions on ' € (h')* coming from L, . being a subquotient of W(ir x.; and
(2) observe restrictions on x’ € (h’)* coming from L, .. being a subquotient of My, .

8They are Fourier transforms of each other.
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We will show the two restrictions on y are incompatible, and hence our assumption, that V' # 0,
must have been wrong.

First, however, there is a sublety: My ., and VVOJr e have infinite length, so chMj .. = ch Wo e
does not imply they have the same irreducible subquotlents in the naive way. The correct statement
is as follows:

Exercise 2.20. Let M and N be category O-modules for g/,. Then ch M = ch N if and only if M
and N define the same class in the completed Grothendieck group IA(O((’)@H ), which is the inverse
limit
Ko(Og,) == lim Ko(Og /Og <x),
Ne(n')*

over the partial order on (h')* defined in (2.12) where Oy <\ is the Serre subcategory of Oy
consisting of modules with weights < ). Moreover when this holds, if L is an irreducible subquotient
of M, then L is also an irreducible subquotient of V.

For (1), note that by the explicit formulas for f(z) and h;(z)-actions on WOJ,FNC in (2.7) and (2.9),
respectively, the lexicographically ordered monomials

(2.21) H bio b H faw.ma H 50 e "where 1 < i, </, ap € Ay, and B. € Ay
£6,<0 mp<0 ne<0

form a basis of WJ“ x.- Lhe weights appearing in the coinvariants must be of the form

(2.22) W==Y (njo—p)
J
where n; > 0 and 3; € Ay. Indeed, by the description of the basis of WJKC in (2.21), there is an

isomorphism of H—modules
(WS:F»C)L [t=1ot—tp[t—1] = C[GZ,H]QEA+77’L<07

and (VVOJr «.Ji_ 18 a quotient.
For (2) note that [KK79, Theorem 2] (also see [Fre07, §6.3.3]) gives a characterization of possible
irreducible subquotient of Verma modules:

Proposition 2.23. A weight i/ = (u,n) appears as the highest weight of an irreducible subquotient
of Mi(x0),k. if and only if n <0 and p = w(p) — p for some w € W.

Note that for any w € W the weight w(p) — p equals the linear combination of simple roots of
g with non-positive coefficients, hence the weight of any irreducible subquotient of My ,. has the
form

(2.24) W =-nd— Zmiai

for some n > 0 and m; > 0. Finally, note that (2.22) and (2.24) cannot simultaneously hold, a
contradiction, and hence V' = 0. We have thus completed (a), (b), and (c), which together prove
that Mo, ~ W, . O

Next, we characterize all the endomorphisms of our module M ,, ~ Wdf x.- 10 other words, we
hope to characterize all ﬁ;c—homomorphisms Mo k., — W&“ x.- By adjunction, this is equivalent to

characterize the vectors in W, «. annihilated by E+.

Lemma 2.25 ([Fre07, Lemma 6.3.4]). The space ofEJr—mvariants ofW&“HC is equal to m_g, C WJKC.
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Proof. The formulas in Theorem 2.5 shows the vectors of 7_5, are annihilated by EJF. To prove the
converse, note that WOJf «, has another basis

R * /
H bioz ,ea H fab,mb H a’ac,nc ‘0> ’
L6, <0 mp<0 ne<0

by the same argument as for (2.21). Here the folfn generate an action of tn_[t] as defined in

[Los24a], which we now briefly recall. There is an isomorphism of the Fock representation of I
with the vertex algebra of chiral differential operators on N_:

My ~ CDO(N-).

Now viewing Jn_ = n_[t] as the right-invariant vector fields on JN_ defines a left n_[t]-action
on CDO(N_), which induces the restriction of the gj, -action on VVOJ’r «.- On the other hand, viewing

n_[t] as the left-invariant vector fields on JN_ defines a right n_[t]-action which are the fZ, .
Thus there is a tensor product decomposition

+ — ST +,%
W = Wok @ Wy

7,{C’
where W07,:Z (resp., Waf,{c) is the span of monomials in a, ,, (resp., in b; ¢ and fE ). Since the left
action of tn_[t] commutes with b;p and fZ, . we conclude tn_[t] acts by zero on WS: x. In fact, it

is isomorphic to the restricted dual of the free (7(11_ [t])-module with one generator. Thus

(WJr )tn, [l — W(‘)",KC ® (W(]J’r;;)tn, [l — W(‘{KC.

0,kc
Furthermore, for h € b since
[h,a} ] = a(h)al

' Yayn a,n’

a vector in Wg’ x. is annihilated by b if and only if it belongs to m_2,. O

3. PrROOF OF THE KAC-KAZHDAN CONJECTURE

The Verma module M) ,, over g, has a unique irreducible quotient Ly ,. The Kac-Kazhdan
conjecture computes the character of My ,, for generic X'

First, recall that the roots A from (2.11) has a subset of real roots
A% = (A4 + Z>00) U (A + Zso0),
i.e., the roots (A, ¢) € A such that A # 0.

Theorem 3.1. For a generic weight A € b* of critical level,
chLy . = e H (1—e )"
a’Eﬁff
H jght X\ 4 ic when \ ~re
ere, a weig is generic when \ ¢ U5€A+
defined in [KKT79].

>0 Hg“m where Hgfm are certain hyperplanes in b*

Proof. For A € h* the Wakimoto module of critical level W /; is a ﬁ;c—module since My is graded,
and the h((t))-module C,, is graded, and hence W)/, := My ® Cy; inherits a grading. The gj, -
module W) ; has character

ch Wy, = e H (1—e ),
o' eﬁ{f
where A = (A,0), from a similar argument as in (a) in the proof of Theorem 2.3. Moreover, the
same argument as in (b) in the proof of Theorem 2.3 shows there is a homomorphism My ., — W),
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sending the highest weight vector to |0). It thus suffices to check that if A is a generic weight of
critical level, then W) ; is irreducible, since then Ly ., >~ W) ;. If W) ; is not irreducible, either:
e W)/ is not generated by its highest vector, i.e., the homomorphism My ,, — W), is not
surjective; or
e W), is generated by its highest vector, in which My ., — W) ; is surjective and the image
of a highest weight of the maximal sub-module of My, is a non-zero singular vector in
W) ¢ not in C|0).
If Wy, contains a singular vector not in C|0) then it must be annihilated by n, [¢t]. We know that

Conma L1 @opm,|O)

Na<0 mp<0

forms a basis of My, where the egmna are defined as in the proof of Lemma 2.25, using the description

of My ~ CDO(Ny4), as in the proof of Lemma 2.25. By the same method as in Lemma 2.25,
the n, [t]-invariants of Wy .. equals the subspace Wy . spanned by all monomials of ef{hna. In

particular, the weight of any singular vector of W) /; is of the form \' — 37 y (n;0 — Bj) where n; >0
and 3; € A;. Thus W)/, contains an irreducible subquotient of that highest weight. Now, since

for o/ € Ay,
N AN
mult o/ = L itale 'A+
f otherwise,
we have
(3.2) chMyw, = [J(L =€) bWy,

n>0

where £ is the rank of g. Thus if an irreducible module L,/ ., appears as a subquotient of W),
it must also appear as a subquotient of ch My . : only look at the part of (3.2) with energy zero.
But our contradicts the assumption that A is generic: irreducible subquotients of Verma modules
are controlled by hyperplanes by [KK79]. Thus W) st does not contain any singular vectors other
than the highest weight.

Next, if W) /4 is not generated by its highest vector, then by the same argument as above there is
an irreducible subquotient of W) ;, with highest weight \" — Zj (nj0o+pB;) withn; > 0 and 8 € AL.
This again contradicts A being a generic weight. 0
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