PARABOLIC WAKIMOTO MODULES AND APPLICATIONS

KENTA SUZUKI

We will define generalized Wakimoto modules, which gives a functorial way of constructing $\hat{\mathfrak{g}}$ modules from $\hat{\mathfrak{m}}$ -modules for parabolic subalgebras $\mathfrak{p} = \mathfrak{m} \ltimes \mathfrak{u} \subset \mathfrak{g}$. We will give applications of Wakimoto modules, including the Kac-Kazhdan conjecture, which computes the characters of Verma modules $\mathbb{M}_{\lambda,\kappa_c}$ on the critical level for $\lambda \in \mathfrak{h}^*$ generic, i.e., not lying in a countable union of hyperplanes.

1. Semi-infinite parabolic induction

Let \mathfrak{g} be a finite-dimensional reductive Lie algebra with Borel subalgebra \mathfrak{b}_+ and Cartan subalgebra \mathfrak{h} (we work in this generality since we want to apply our construction to Levi subalgebras of simple Lie algebras).

Wakimoto modules, constructed in [Wan24b], are the images of Fock modules under a functor $\widetilde{U}_{\kappa}(\mathfrak{h})-\mathrm{mod} \to \widetilde{U}_{\kappa+\kappa_c}(\mathfrak{g})-\mathrm{mod}.^1$ We want to generalize the construction by replacing the Borel subalgebra \mathfrak{b} with an arbitrary parabolic subalgebra \mathfrak{p} and replacing the Cartan subalgebra \mathfrak{h} with the Levi component \mathfrak{m} of \mathfrak{p} . Let us first recall what a parabolic subalgebra is:

Definition 1.1. A *parabolic subalegbra* is a subalgebra $\mathfrak{p} \subset \mathfrak{g}$ such that one of the following equivalent conditions hold:

- \mathfrak{p} contains a Borel subalgebra of \mathfrak{g} ; or
- the orthogonal complement of \mathfrak{p} with respect to an invariant orthogonal form² is its nilradical.

Example 1.2. \mathfrak{b}_+ and \mathfrak{g} are parabolic subalgebras of \mathfrak{g} .

Each conjugacy class of parabolic subalgebras has a unique representative containing \mathfrak{b}_+ : we call those parabolic subalgebras *standard*. Let Δ_s be the set of simple roots corresponding to $\mathfrak{b}_+ \subset \mathfrak{g}$. Then standard parabolic subalgebras of \mathfrak{g} are classified by subsets of Δ_s : so \mathfrak{b}_+ corresponds to \varnothing and \mathfrak{g} corresponds to Δ_s . More generally, for a subset $S \subset \Delta_s$, the corresponding *standard parabolic* subalgebra $\mathfrak{p}_S \subset \mathfrak{g}$ is

$$\mathfrak{p}_S := \mathfrak{b}_+ \oplus igoplus_{lpha > 0} lpha_{lpha \in \operatorname{span} \Delta_s} \mathfrak{g}_lpha.$$

The Levi component is then given by:

$$\mathfrak{m}_S := \mathfrak{h} \oplus \bigoplus_{lpha \in \operatorname{span} \Delta_s} \mathfrak{g}_lpha.$$

Analogous to the opposite Borel subalgebra, let

$$\mathfrak{p}_{S,-} \mathrel{\mathop:}= \mathfrak{b}_- \oplus igoplus_{lpha \leqslant 0} igoplus_{lpha \leqslant 0} \mathfrak{g}_lpha$$

be the opposite parabolic.

¹These are categories of smooth modules.

²When \mathfrak{g} is semisimple we can use the Killing form, but for arbitrary reductive Lie algebras the Killing form may be degenerate.

Example 1.3. When $\mathfrak{g} = \mathfrak{sl}_n$, let S be a subset of $\Delta_s = \{\alpha_1, \ldots, \alpha_{n-1}\}$ such that $\Delta_s \setminus S = \{\alpha_{a_1}, \ldots, \alpha_{a_k}\}$. The corresponding parabolic subalgebras are

$$\mathfrak{p}_{S} = \mathfrak{sl}_{n} \cap \begin{pmatrix} M_{a_{1} \times a_{1}} & * & * & * & * \\ 0 & M_{(a_{2}-a_{1}) \times (a_{2}-a_{1})} & * & * & * \\ 0 & 0 & \ddots & * & \\ 0 & 0 & 0 & M_{(n-a_{k}) \times (n-a_{k})} \end{pmatrix}$$

and

$$\mathfrak{p}_{S,-} = \mathfrak{sl}_n \cap \begin{pmatrix} M_{a_1 \times a_1} & & & \\ * & M_{(a_2 - a_1) \times (a_2 - a_1)} & & \\ & * & * & \ddots & \\ * & * & * & M_{(n - a_k) \times (n - a_k)} \end{pmatrix}$$

The Levi component is

$$\mathfrak{m}_{S} = \{ (x_{0}, \dots, x_{k}) \in \mathfrak{gl}_{a_{1}} \times \dots \times \mathfrak{gl}_{n-a_{k}} : \operatorname{tr}(x_{0}) + \dots + \operatorname{tr}(x_{k}) = 0 \}$$
$$\simeq \mathfrak{sl}_{a_{1}} \times \dots \times \mathfrak{sl}_{n-a_{k}} \times \mathbb{C}^{\oplus k}.$$

First, we must extend relevant definitions from simple Lie algebras to reductive Lie algebras. The following is the generalization of the critical level:

Definition 1.4. Let \mathfrak{g} be a reductive Lie algebra, which decomposes as $\mathfrak{g} = \bigoplus_{i=1}^{s} \mathfrak{g}_i \oplus \mathfrak{g}_0$ for some simple Lie algebras $\mathfrak{g}_1, \ldots, \mathfrak{g}_s$ and an abelian Lie algebra \mathfrak{g}_0 . Then the *critical level* is $\kappa_c(\mathfrak{g}) := (\kappa_{i,c})_{i=0}^s$, where $\kappa_{0,c} = 0$ and $\kappa_{i,c}$ is the critical level for the simple Lie algebra \mathfrak{g}_i for $1 \le i \le s$.

Given an invariant symmetric bilinear form κ on \mathfrak{g} , let $\hat{\mathfrak{g}}_{\kappa}$ be the corresponding affine Kac-Moody algebra, as in [KL24]: it is the central extension

$$0 \to \mathbb{C}\mathbf{1} \to \widehat{\mathfrak{g}}_{\kappa} \to \mathfrak{g}((t)) \to 0$$

with commutation relation

$$[A \otimes f(t), B \otimes g(t)] = [A, B] \otimes f(t)g(t) - (\kappa(A, B)\operatorname{Res} fdg)\mathbf{1}$$

Let us now formally re-state our goal:

Goal 1.5. Let \mathfrak{g} be a reductive Lie algebra, let κ be an invariant symmetric bilinear form on \mathfrak{g} , and let $\mathfrak{p} = \mathfrak{m} \ltimes \mathfrak{u} \subset \mathfrak{g}$ be a parabolic subalgebra. Define an exact functor

$$\widetilde{U}_{\kappa|_{\mathfrak{m}}+\kappa_{c}(\widehat{\mathfrak{m}})}(\mathfrak{m})-\mathrm{mod}\to\widetilde{U}_{\kappa+\kappa_{c}}(\widehat{\mathfrak{g}})-\mathrm{mod}$$

such that the Wakimoto module with highest weight λ is sent to the Wakimoto module with highest weight λ .

1.1. Finite-dimensional analog. Let us first describe the finite-dimensional analog of Goal 1.5.

Definition 1.6. Let \mathfrak{g} be a simple Lie algebra with standard parabolic subalgebra $\mathfrak{p} = \mathfrak{m} \ltimes \mathfrak{u}$. There is an exact functor, the *parabolic induction functor*

$$\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}} \colon \mathfrak{m} - \operatorname{mod} \to \mathfrak{g} - \operatorname{mod}.$$

Given a \mathfrak{m} -module V, we may view it as a \mathfrak{p} -module by extension by zero, i.e., by making \mathfrak{u} act by zero, and we let

$$\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}V := U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} V.$$

Now the $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}$ sends Verma modules to Verma modules:

Lemma 1.7. For a weight $\lambda \in \mathfrak{h}^*$, let $V_{\mathfrak{m}}(\lambda)$ and $V_{\mathfrak{g}}(\lambda)$ be the Verma modules with highest weight λ of the Lie algebras \mathfrak{m} and \mathfrak{g} , respectively. Then

$$\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}V_{\mathfrak{m}}(\lambda) \simeq V_{\mathfrak{g}}(\lambda).$$

Proof. Follows from observing that $U(\mathfrak{p}) \otimes_{U(\mathfrak{b}_+)} \mathbb{C}_{\lambda}$ is isomorphic to the inflation of the \mathfrak{m} -module $V_{\mathfrak{m}}(\lambda)$ to \mathfrak{p} , and because induction is transitive. \Box

Remark 1.8. When $\mathfrak{p} = \mathfrak{b}_+$, the above recovers the construction of Verma modules (i.e., $V_{\mathfrak{g}}(\lambda) = \operatorname{Ind}_{\mathfrak{b}_+}^{\mathfrak{g}} \mathbb{C}_{\lambda}$).

Recall that [Kiy24] gives a geometric construction of dual Verma modules using vector fields on G/N_{-} , where N_{-} is the unipotent radical of the opposite Borel subalgebra B_{-} . The construction admits a straightforward generalization to the parabolic setting: let $P_{\pm} = M \ltimes U_{\pm} \subset G$ be subgroups whose Lie algebras are $\mathfrak{p}_{\pm} = \mathfrak{m} \ltimes \mathfrak{u}_{\pm} \subset \mathfrak{g}$. Then analogously to [Kiy24, §2] there is a map of Lie algebras

$$\mathfrak{g} \to \operatorname{Vect}(G/U_{-})^{M_r}$$

where M_r acts on G/U_- from the right.³ Now as in Daishi's talk, $P_+U_-/U_- \subset G/U_-$ is Zariski open, and restricting to the locus gives a homomorphism of algebras

(1.9)
$$\varphi_{P_+}^G \colon U(\mathfrak{g}) \to D(P_+)^M \simeq D(U_+) \otimes U(\mathfrak{m}),$$

where the second isomorphism follows from the isomorphism of varieties $P_+ \simeq U_+ \times M$. Now:

Lemma 1.10. Let V be a \mathfrak{m} -module, with structure morphism $\varphi \colon U(\mathfrak{m}) \to \operatorname{End}(V)$. Then the modified \mathfrak{g} -module structure on $\mathbb{C}[U_+] \otimes V$ is defined by

$$U(\mathfrak{g}) \to D(U_+) \otimes U(\mathfrak{m}) \xrightarrow{1 \otimes \varphi} D(U_+) \otimes \operatorname{End}(V) \to \operatorname{End}(\mathbb{C}[U_+] \otimes V),$$

noting that $\mathbb{C}[U_+]$ is naturally a $D(U_+)$ -module. Then the \mathfrak{g} -module $\mathbb{C}[U_+] \otimes V^{\vee}$ is isomorphic to the dual parabolic induction $(\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}V)^{\vee}$.

We hope to see Lemma 1.7 from the geometric perspective:

Proposition 1.11. Let $P_+ = M \ltimes U_+ \subset G$ be a standard parabolic subgroup. There is a commutative diagram

$$U(\mathfrak{g}) \xrightarrow{\varphi_{B_{+}}^{G}} D(N_{+}) \otimes U(\mathfrak{h})$$

$$\downarrow^{\varphi_{P_{+}}^{G}} \qquad \qquad \downarrow^{\simeq}$$

$$D(U_{+}) \otimes U(\mathfrak{m}) \xrightarrow{\operatorname{id}_{D(U_{+})} \otimes \varphi_{B_{+}\cap M}^{M}} D(U_{+}) \otimes \left(D(N_{+}\cap M) \otimes U(\mathfrak{h})\right).$$

Here, the homomorphisms $U(\mathfrak{g}) \to D(N_+) \otimes U(\mathfrak{h})$ and $U(\mathfrak{g}) \to D(U_+) \otimes U(\mathfrak{m})$ are as in (1.9), and the right vertical isomorphism follows from the multiplication isomorphism⁵ $U_+ \times (N_+ \cap M) \simeq N_+$.

Proof. Indeed, the following diagram commutes:

where the vertical homomorphisms are restricting along open immersions $P_+ \subset G/U_-$ and $P_+/(P_+\cap N_-) \subset G/N_-$. The first horizontal homomorphism $D(G)^{G_r} \hookrightarrow D(G/U_-)^{M_r}$ is obtained as follows: any $\sigma \in D(G)^{G_r}$ is an operator $\sigma \colon \mathbb{C}[G] \to \mathbb{C}[G]$ which is G_r -invariant, hence it sends $(U_-)_r$ -invariant functions to $(U_-)_r$ -invariant functions. In fact, for any $(U_-)_r$ -invariant open subset X of

³the action is well-defined because M normalizes U_{-} .

⁴Here, as usual, letting $\tau : \mathfrak{g} \to \mathfrak{g}$ be the Cartan involution and given $M = \bigoplus_{\mu} M_{\mu}$, we let $M^{\vee} = \bigoplus_{\mu} M_{\mu}^*$ with $\langle x \cdot n, m \rangle = \langle n, -\tau(x)m \rangle$ for $n \in M^{\vee}, m \in M$. Alternatively, it is the *parabolic co-induction*, the right adjoint to restriction.

⁵An isomorphism of varieties; not of groups!

KENTA SUZUKI

G, there is an operator $\sigma \colon \mathbb{C}[X]^{U_{-,r}} \to \mathbb{C}[X]^{U_{-,r}}$. In other words, since $\mathbb{C}[X/U_{-}] = \mathbb{C}[X]^{U_{-,r}}$, it defines an endomorphism of sheaves $\tilde{\sigma} \colon \mathcal{O}_{G/U_{-}} \to \mathcal{O}_{G/U_{-}}$, which can be shown to be a differential operator. Note that we need $\tilde{\sigma}$ to be an endomorphism of the sheaf $\mathcal{O}_{G/U_{-}}$, and not just $\mathbb{C}[G/U_{-}]$, since G/U_{-} may not be affine, e.g., $\mathrm{SL}_2/N_{-} \simeq \mathbb{A}^2 \setminus \{(0,0)\}$. Moreover σ is G_r -invariant so $\tilde{\sigma}$ must be M_r -invariant, i.e., $\tilde{\sigma} \in D(G/U_{-})^{M_r}$. All other horizontal maps are constructed in a similar fashion.

Now we have the isomorphisms $U(\mathfrak{g}) \simeq D(G)^{G_r}$ and $D(P_+)^{M_r} \simeq D(U_+) \otimes U(\mathfrak{m})$, so (1.12) can be re-written as

which is the desired commutativity. Here the homomorphism $D(G/N_{-})^{H_r} \to D(N_{+}) \otimes U(\mathfrak{h})$ is the composition of the restriction to the open Bruhat cell $D(G/N_{-})^{H_r} \to D(B_{+})^{H_r}$, together with the standard isomorphism $D(B_{+})^{H_r} \simeq D(N_{+}) \otimes U(\mathfrak{h})$ from [Kiy24].

Remark 1.13. Proposition 1.11 implies Lemma 1.7.

1.2. Back to affine Lie algebras. Recall the definition of the Weyl algebra $\widehat{\Gamma}^{\mathfrak{g}}$ (denoted simply as $\widehat{\Gamma}$ in [Wan24b])⁶:

Definition 1.14. Let $\widehat{\Gamma}^{\mathfrak{g}} = \mathbb{C} \mathbf{1} \oplus \mathfrak{n}_+((t)) \oplus \mathfrak{n}^*_+((t))dt$ with Lie bracket

(1.15)
$$[xf, yw] = \langle x, y \rangle \operatorname{Res}(fw) \cdot \mathbf{1}$$

for $x \in \mathfrak{n}_+$, $y \in \mathfrak{n}_+^*$, and $f \in \mathbb{C}((t))$, $w \in \mathbb{C}((t))dt$. More concretely, it has a topological basis $\mathbf{1}$, $a_{\alpha,n} := x_{\alpha}t^n$, and $a_{\alpha,n}^* := x_{\alpha}^*t^{n-1}dt$ for $\alpha \in \Delta_+$ and $n \in \mathbb{Z}$ with relations

$$[a_{\alpha,n}, a_{\beta,m}^*] = \delta_{\alpha,\beta} \delta_{m+n,0} \mathbf{1}$$
 and $[a_{\alpha,n}, a_{\beta,m}] = [a_{\alpha,n}^*, a_{\beta,m}^*] = 0$

Let $\widehat{\Gamma}_{+}^{\mathfrak{g}} = \mathfrak{n}_{+}\llbracket t \rrbracket \oplus \mathfrak{n}_{+}^{*}\llbracket t \rrbracket dt$, i.e., the abelian subalgebra with topological basis $a_{\alpha,n}$ for $n \geq 0$ and $a_{\alpha,n}^{*}$ for n > 0.

Given a invariant symmetric bilinear form κ on \mathfrak{g} , define the affine vertex algebra $V_{\kappa}(\mathfrak{g}) = \operatorname{Ind}_{\mathfrak{all} \oplus \mathbb{C}_1}^{\widehat{\mathfrak{g}}} \mathbb{C}_{\kappa}$ by the same formulas as in [Dum24]: for $x \in \mathfrak{g}$,

(1.16)
$$\mathcal{Y}(xt^{-1}|0\rangle, z) = \sum_{n \in \mathbb{Z}} xt^n z^{-n-1}$$

and $[T, xt^n] = -nxt^{n-1}$. When \mathfrak{g} decomposes as a direct sum, the affine vertex algebra decomposes as a tensor product:

Lemma 1.17. Let $\mathfrak{g} = \bigoplus_{i=1}^{s} \mathfrak{g}_i \oplus \mathfrak{g}_0$ where $\mathfrak{g}_1, \ldots, \mathfrak{g}_s$ are simple Lie algebras and \mathfrak{g}_0 is abelian. Then there is an isomorphism

$$V_{\kappa}(\mathfrak{g}) \simeq \bigotimes_{i=0}^{\circ} V_{\kappa_i}(\mathfrak{g}_i),$$

where:

⁶[Fre07, §5.3.3] denotes this Lie algebra as $\mathscr{A}^{\mathfrak{g}}$, but we avoid this notation since in [Kiy24] it denotes an associative algebra. In our notes, $\widetilde{\mathscr{A}^{\mathfrak{g}}}$ denotes an associative algebra with the same relations as $\Gamma^{\mathfrak{g}}$.

- V_{κi}(g_i) = Ind^{ĝi}_{gi[t]⊕C1} C|0⟩ is the vacuum module over ĝ_{i,κi} with the vertex algebra structure given as in [Dum24].
- $V_{\kappa_0}(\mathfrak{g}_0) = \operatorname{Ind}_{\mathfrak{g}_0[\![t]\!] \oplus \mathbb{C}\mathbf{1}}^{\widehat{\mathfrak{g}}_0} \mathbb{C}|0\rangle$ is the Fock representation of the Heisenberg algebra $\widehat{\mathfrak{g}}_0$.

Recall from [Wan24b] (i.e., [Fre07, Theorem 6.2.1]) that the affine analog of the homomorphism $U(\mathfrak{g}) \to D(N_+) \otimes U(\mathfrak{h})$ constructed in [Kiy24] is a map of vertex algebras

(1.18)
$$w_{\kappa} \colon V_{\kappa+\kappa_c}(\mathfrak{g}) \to M_{\mathfrak{g}} \otimes V_{\kappa|_{\mathfrak{h}}}(\mathfrak{h}),$$

where $M_{\mathfrak{g}} = \operatorname{Ind}_{\widehat{\Gamma}^{\mathfrak{g}}_{+} \oplus \mathbb{C}\mathbf{1}}^{\widehat{\Gamma}^{\mathfrak{g}}} \mathbb{C}|0\rangle$ is the Fock representation of the Weyl algebra $\widehat{\Gamma}^{\mathfrak{g}}$ and a vertex algebra, i.e., it is generated by a vector $|0\rangle$ such that

(1.19)
$$a_{\alpha,n}|0\rangle = 0 \text{ for } n \ge 0, \ a_{\alpha,n}^*|0\rangle = 0 \text{ for } n > 0, \text{ and } \mathbf{1}|0\rangle = |0\rangle.$$

Later, we will use the explicit formula for w_{κ_c} , as stated in [Wan24b, §4] and [Fre07, Theorem 6.2.1]:

Theorem 1.20. The homomorphism of vertex algebras $w_{\kappa_c} \colon V_{\kappa_c}(\mathfrak{g}) \to M_{\mathfrak{g}} \otimes V_0(\mathfrak{h})$ is explicitly,

(1.21)
$$w_{\kappa_c}(e_i(z)) = a_{\alpha_i}(z) + \sum_{\beta \in \Delta_+} :P^i_{\beta}(\underline{a}^*(z))a_{\beta}(z):$$

(1.22)
$$w_{\kappa_c}(h_i(z)) = -\sum_{\beta \in \Delta_+} \beta(h_i) : a_{\beta}^*(z) a_{\beta}(z) : +b_i(z)$$

(1.23)
$$w_{\kappa_c}(f_i(z)) = \sum_{\beta \in \Delta_+} : Q^i_\beta(\underline{a}^*(z))a_\beta(z) : +b_i(z)a^*_{\alpha_i}(z) + c_i\partial_z a^*_{\alpha_i}(z),$$

for some constants $c_i \in \mathbb{C}$, where P^i_β and Q^i_β are explicit polynomials defined in [Fre07, §5.2].

By the isomorphism $\widetilde{U}(V_{\kappa}(\mathfrak{g})) \simeq \widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$ from [Wan24a, §2.3], the homomorphism w_{κ} induces a map on the completed universal enveloping algebras

(1.24)
$$\widetilde{U}_{\kappa+\kappa_c}(\widehat{\mathfrak{g}}) \to \widetilde{\mathscr{A}^{\mathfrak{g}}} \widehat{\otimes} \widetilde{U}_{\kappa|_{\mathfrak{h}}}(\widehat{\mathfrak{h}}).^7$$

We hope to generalize the homomorphism w_{κ} to arbitrary parabolics. Our goal is to prove the following, which is the affine analog of the homomorphism (1.9):

Theorem 1.25. Let κ be an invariant symmetric bilinear form on \mathfrak{g} , and let $\mathfrak{p} \subset \mathfrak{g}$ be a parabolic subalgebra. Then there exists a map of vertex algebras

$$w^{\mathfrak{p}}_{\kappa} \colon V_{\kappa+\kappa_c}(\mathfrak{g}) \to M_{\mathfrak{g},\mathfrak{p}} \otimes V_{\kappa|_{\mathfrak{m}}+\kappa_c(\mathfrak{m})}(\mathfrak{m}).$$

Here, $M_{\mathfrak{g},\mathfrak{p}}$ is also a Weyl vertex algebra, but for a smaller nilpotent Lie algebra than \mathfrak{n}_+ . We small make this precise below.

Remark 1.26. When $\mathfrak{p} = \mathfrak{b}_+$, we have $w_{\kappa}^{\mathfrak{p}} = w_{\kappa}$ from (1.18).

Let us first define all the notation in the theorem statement.

Let Δ'_+ be the set of positive roots of \mathfrak{g} occurring in \mathfrak{u}_+ , or, equivalently, not occuring in \mathfrak{p}_- . The following is the generalization of $\widehat{\Gamma}^{\mathfrak{g}}$ to the parabolic setting:

Definition 1.27. Let $\widehat{\Gamma}^{\mathfrak{g},\mathfrak{p}} = \mathbb{C}\mathbf{1} \oplus \mathfrak{u}_+((t)) \oplus \mathfrak{u}_+^*((t))dt$ with Lie bracket as in (1.15). Explicitly, it has topological basis $\mathbf{1}, a_{\alpha,n}, a_{\alpha,n}^*$ for $\alpha \in \Delta'_+$ and $n \in \mathbb{Z}$, with brackets

$$[a_{\alpha,n}, a_{\beta,m}^*] = \delta_{\alpha,\beta} \delta_{m+n,0} \mathbf{1}$$
 and $[a_{\alpha,n}, a_{\beta,m}] = [a_{\alpha,n}^*, a_{\beta,m}^*] = 0.$

There is a sub-Lie algebra $\widehat{\Gamma}^{\mathfrak{g},\mathfrak{p}}_+ := \mathfrak{u}_+ \llbracket t \rrbracket \oplus \mathfrak{u}^*_+ \llbracket t \rrbracket dt$. Let the Fock representation be $M_{\mathfrak{g},\mathfrak{p}} = \operatorname{Ind}_{\widehat{\Gamma}^{\mathfrak{g},\mathfrak{p}}_+ \oplus \mathbb{C}\mathbf{1}} \mathbb{C}|0\rangle$.

⁷Recall that $\widetilde{\mathscr{A}^{\mathfrak{g}}} := \widetilde{U}(\widehat{\Gamma}^{\mathfrak{g}})/(1-1).$

KENTA SUZUKI

The Fock representation $M_{\mathfrak{g},\mathfrak{p}}$ can be given a vertex algebra structure by the same formula used for $M_{\mathfrak{g}}$. It is related to $M_{\mathfrak{g}}$ as follows:

Exercise 1.28. There is a vertex algebra isomorphism

$$M_{\mathfrak{g},\mathfrak{p}}\otimes M_{\mathfrak{m}}\simeq M_{\mathfrak{g}},$$

sending:

$$\begin{aligned} a_{\alpha,n}|0\rangle \otimes |0\rangle &\mapsto a_{\alpha,n}|0\rangle, \qquad a_{\alpha,n}^*|0\rangle \otimes |0\rangle &\mapsto a_{\alpha,n}^*|0\rangle \text{ for } \alpha \in \Delta'_+, \text{ and} \\ |0\rangle \otimes a_{\beta,n}|0\rangle &\mapsto a_{\beta,n}|0\rangle, \qquad |0\rangle \otimes a_{\beta,n}^*|0\rangle \mapsto a_{\beta,n}^*|0\rangle \text{ for } \alpha \in \Delta_+ \backslash \Delta'_+. \end{aligned}$$

The proof of Theorem 1.25 follows the same strategy as [Fre07, Theorem 6.2.1], explained by [Wan24b], so we will not repeat it here.

Now Theorem 1.25 gives a homomorphism analogous to (1.24):

$$\widetilde{U}_{\kappa+\kappa_c}(\widehat{\mathfrak{g}})\to\widetilde{\mathscr{A}}^{\mathfrak{g},\mathfrak{p}}\widehat{\otimes}\widetilde{U}_{\kappa|_\mathfrak{m}+\kappa_c(\mathfrak{m})}(\widehat{\mathfrak{m}}),$$

which allows us to define generalized Wakimoto modules:

Definition 1.29. Let R be a smooth $\widehat{\mathfrak{m}}_{\kappa|_{\mathfrak{m}}+\kappa_c(\mathfrak{m})}$ -module. Then $M_{\mathfrak{g},\mathfrak{p}}\otimes R$ carries a smooth $\widehat{\mathfrak{g}}_{\kappa+\kappa_c}$ module structure, called the *generalized Wakimoto module corresponding to* R. We denote it by
Wak_{\mathfrak{p}}^{\mathfrak{g}} R.

Now we have the following analog of Lemma 1.7, which finally accomplishes Goal 1.5 (see [Los24b] for a proof sketch):

Proposition 1.30. There is a commutative diagram:

$$V_{\kappa+\kappa_{c}}(\mathfrak{g}) \xrightarrow{w_{\kappa}} M_{\mathfrak{g}} \otimes V_{\kappa|_{\mathfrak{h}}}(\mathfrak{h})$$

$$\downarrow^{w_{\kappa}^{\mathfrak{p}}} \qquad \downarrow^{\simeq}$$

$$M_{\mathfrak{g},\mathfrak{p}} \otimes V_{\kappa|_{\mathfrak{m}}+\kappa_{c}(\mathfrak{m})}(\mathfrak{m}) \xrightarrow{1 \otimes w_{\kappa|_{\mathfrak{m}}}} M_{\mathfrak{g},\mathfrak{p}} \otimes M_{\mathfrak{m}} \otimes V_{\kappa|_{\mathfrak{h}}}(\mathfrak{h}).$$

where the vertical isomorphism was defined in Exercise 1.28. Thus, for any $\lambda \in \mathfrak{h}^*$ there is an isomorphism

$$\operatorname{Wak}_{\mathfrak{p}}^{\mathfrak{g}}(W_{\lambda,\kappa|_{\mathfrak{m}}+\kappa_{c}(\mathfrak{m})})\simeq W_{\lambda,\kappa+\kappa_{c}}.$$

2. Comparing Affine Verma modules to Wakimoto modules

Let \mathfrak{g} be a finite-dimensional simple Lie algebra now. Let $\tilde{\mathfrak{b}}_+ := \mathfrak{b}_+ + t\mathfrak{g}\llbracket t \rrbracket$ and $\tilde{\mathfrak{n}}_+ := \mathfrak{n}_+ + t\mathfrak{g}\llbracket t \rrbracket$ be the pre-images of \mathfrak{b}_+ and \mathfrak{n}_+ , respectively, under the quotient map $\mathfrak{g}\llbracket t \rrbracket \to \mathfrak{g}$ evaluating at t = 0. The subalgebra $\tilde{\mathfrak{b}}_+$ is called the *Iwahori subalgebra*, and $\tilde{\mathfrak{n}}_+$ is its topological nilpotent radical. Now for a weight $\lambda \in \mathfrak{h}^*$ let \mathbb{C}_{λ} be the one-dimensional representation of $\tilde{\mathfrak{b}}_+ \oplus \mathbb{C}\mathbf{1}$ such that $\hat{\mathfrak{n}}_+$ acts by zero, \mathfrak{h} acts by λ , and $\mathbf{1}$ acts as the identity.

Definition 2.1. The Verma module $\mathbb{M}_{\lambda,\kappa}$ of level κ and highest weight λ is

$$\mathbb{M}_{\lambda,\kappa} := \operatorname{Ind}_{\widetilde{\mathfrak{b}}_+ \oplus \mathbb{C}\mathbf{1}}^{\widehat{\mathfrak{g}}_{\kappa}} \mathbb{C}_{\lambda}.$$

Denote the highest-weight vector, $1 \otimes 1$, as $v_{\lambda,\kappa}$.

We hope to compare the Wakimoto module W_{0,κ_c} with the Verma module \mathbb{M}_{0,κ_c} . There is a homomorphism

(2.2)
$$\mathbb{M}_{0,\kappa_c} \twoheadrightarrow V_{\kappa_c}(\mathfrak{g}) \xrightarrow{w_{\kappa_c}} W_{0,\kappa_c}$$

which sends the highest-weight vector v_{0,κ_c} to $|0\rangle \otimes |0\rangle$, since by construction w_{κ_c} is $\widehat{\mathfrak{g}}_{\kappa_c}$ -equivariant. Here, the first homomorphism is by the transitivity of induction:

$$\mathbb{M}_{0,\kappa_c} = \operatorname{Ind}_{\widetilde{\mathfrak{b}}_+}^{\widehat{\mathfrak{g}}} \mathbb{C}_0 = \operatorname{Ind}_{\mathfrak{g}[\![t]\!] \oplus \mathbb{C}\mathbf{1}}^{\widehat{\mathfrak{g}}} \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_0 \twoheadrightarrow \operatorname{Ind}_{\mathfrak{g}[\![t]\!] \oplus \mathbb{C}\mathbf{1}}^{\widehat{\mathfrak{g}}_{\kappa_c}} \mathbb{C} = V_{\kappa_c}(\mathfrak{g}).$$

However, (2.2) cannot be an isomorphism; indeed, the energy zero component of $\mathbb{M}_{\lambda,\kappa_c}$ is the Verma module $\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_0$ while the energy zero component of W_{0,κ_c} is the dual Verma module $(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_0)^{\vee}$, so they cannot be isomorphic. Thus, we modify the Wakimoto modules $W_{\lambda,\kappa}$ to $W_{\lambda,\kappa}^+$ to be defined below, so that the following holds:

Theorem 2.3 ([Fre07, Proposition 6.3.3]). The Wakimoto module W_{0,κ_c}^+ is isomorphic to the Verma module \mathbb{M}_{0,κ_c} .

To define $W_{\lambda,\kappa}^+$, the Fock representation of $\widehat{\Gamma}^{\mathfrak{g}}$, defined as $M_{\mathfrak{g}} := \operatorname{Ind}_{\widehat{\Gamma}^{\mathfrak{g}}_+ \oplus \mathbb{C}\mathbf{1}}^{\widehat{\Gamma}^{\mathfrak{g}}} \mathbb{C}|0\rangle$, is modified to the module with the following modification of (1.19):

$$a_{\alpha,n}|0\rangle' = 0$$
 for $n > 0$, $a_{\alpha,n}^*|0\rangle' = 0$ for $n \ge 0$, and $\mathbf{1}|0\rangle' = |0\rangle'$.

Now let

(2.4)
$$W_{\lambda,\kappa}^{+} := M_{\mathfrak{g}}^{\prime} \otimes \pi_{-2\rho-\lambda}^{\kappa-\kappa_{c}},$$

where $\pi_{-2\rho-\lambda}^{\kappa-\kappa_c}$ was defined in [Wan24b, §0]:

$$\pi_{-2\rho-\lambda}^{\kappa-\kappa_c} \coloneqq \operatorname{Ind}_{\mathfrak{h}[t]]\oplus\mathbb{C}\mathbf{1}}^{\widehat{\mathfrak{h}}_{\kappa-\kappa_c}} \mathbb{C}|-2\rho-\lambda\rangle.$$

Denote the vector $|0\rangle' \otimes |-2\rho - \lambda\rangle$ in $W^+_{\lambda,\kappa}$ as $|0\rangle'$. The shift by 2ρ in (2.4) is explained in §2.2; it is necessary for $|0\rangle' \in W^+_{\lambda,\kappa}$ to be a highest weight vector of weight λ .

We may modify the formulas in Theorem 1.20 to obtain a homomorphism $\widehat{\mathfrak{g}}_{\kappa}$ -module structure on $W^+_{\lambda,\kappa}$. We will give explicit formulas at the critical level:

Theorem 2.5. The module $W^+_{\lambda,\kappa}$ has a $\widehat{\mathfrak{g}}_{\kappa_c}$ -module structure given by

(2.6)
$$w'_{\kappa_c}(f_i(z)) = a_{\alpha_i}(z) + \sum_{\beta \in \Delta_+} :P^i_{\beta}(\underline{a}^*(z))a_{\beta}(z):$$

(2.7)
$$w'_{\kappa_c}(h_i(z)) = \sum_{\beta \in \Delta_+} \beta(h_i) : a^*_{\beta}(z) a_{\beta}(z) : -b_i(z)$$

(2.8)
$$w'_{\kappa_c}(e_i(z)) = \sum_{\beta \in \Delta_+} : Q^i_\beta(\underline{a}^*(z))a_\beta(z) : +b_i(z)a^*_{\alpha_i}(z) + c_i\partial_z a^*_{\alpha_i}(z),$$

for some constants $c_i \in \mathbb{C}$ and where polynomials P^i_β and Q^i_β are defined in [Fre07, §5.2].

In fact, there are formulas for $w'_{\kappa_c}(f_{\alpha}(z))$ for arbitrary $\alpha \in \Delta_+$, not just for simple roots:

(2.9)
$$w'_{\kappa_c}(f_{\alpha}(z)) = a_{\alpha}(z) + \sum_{\beta \in \Delta_+; \beta > \alpha} : P^{\alpha}_{\beta}(\underline{a}^*(z)) a_{\beta}(z) :$$

for some polynomials P_{β}^{α} . See [Fre07, equation (6.1-2)].

We prove Theorem 2.3 in three steps:

- (a) comparing the formal characters;
- (b) constructing a homomorphism $\mathbb{M}_{0,\kappa_c} \to W_{0,\kappa_c}^+$; and
- (c) proving the surjectivity of the homomorphism.

From the three steps, the isomorphism is clear: the character of the kernel of $\mathbb{M}_{0,\kappa_c} \to W_{0,\kappa_c}^+$ must be zero by (a). Step (b) is accomplished in exactly the same way the homomorphism $\mathbb{M}_{0,\kappa_c} \to W_{0,\kappa_c}$ was constructed in (2.2), by sending the highest vector v_{0,κ_c} to the vacuum vector $|0\rangle' \otimes |-2\rho\rangle$. 2.1. Formal characters of $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$ -modules. To check (a), let us recall what the character of a $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$ -module is. For a $\widetilde{U}_{\kappa}(\widehat{\mathfrak{g}})$ -module M, suppose there is a grading operator $d: M \to M$ compatible with the $\widehat{\mathfrak{g}}_{\kappa}$ -action, i.e., such that $[d, xt^n] = nxt^{n-1}$. Let $\mathfrak{h}' = \mathfrak{h} \oplus \mathbb{C}d$, so the characters are of the form $\lambda' = (\lambda, \phi)$ where $\lambda \in \mathfrak{h}^*$ and $\phi \in \mathbb{C}$, so d acts by ϕ .

Now, we can define the character of a $U_{\kappa}(\hat{\mathfrak{g}})$ -module:

Definition 2.10. Let M be a smooth $\widehat{\mathfrak{g}}'_{\kappa}$ -module, such that **1** acts by identity and the Cartan $\mathfrak{h} \oplus \mathbb{C}d \oplus \mathbb{C}\mathbf{1}$ acts semi-simply on M with finite-dimensional weight spaces:

$$M = \bigoplus_{\lambda' \in (\mathfrak{h}')^*} M(\lambda').$$

Then the *character* of M is

$$\operatorname{ch} M = \sum_{\lambda' \in (\mathfrak{h}')^*} \dim M(\lambda') \cdot e^{\lambda'}.$$

Letting $\delta := (0,1) \in \widetilde{\mathfrak{h}}^*$, the set of positive roots of $\widehat{\mathfrak{g}}'$ is:

(2.11)
$$\widehat{\Delta}_{+} = (\Delta_{+} + \mathbb{Z}_{\geq 0}\delta) \sqcup ((\Delta_{-} \cup \{0\}) + \mathbb{Z}_{\geq 0}\delta).$$

The positive roots define a partial order on $\widetilde{\mathfrak{h}}^*:$

Definition 2.12. Let $\lambda' > \mu'$ if $\lambda' - \mu' = \sum_i \beta'_i$ for some $\beta'_i \in \widehat{\Delta}_+$.

The Verma module $\mathbb{M}_{\lambda,\kappa}$ over $\widehat{\mathfrak{g}}_{\kappa}$, as defined in Definition 2.1, can be extended to $\widehat{\mathfrak{g}}'_{\kappa}$, which we denote by $\mathbb{M}_{\lambda',\kappa}$ where $\lambda' = (\lambda, 0)$:

$$\mathbb{M}_{\lambda',\kappa} := \operatorname{Ind}_{\widetilde{\mathfrak{b}}_+ \oplus \mathbb{C} \mathbf{1} \oplus \mathbb{C} d}^{\widehat{\mathfrak{g}}'_{\kappa}} \mathbb{C}_{\lambda'}.$$

Now by the PBW theorem, as a vector space $\mathbb{M}_{\lambda,\kappa} \simeq U(\tilde{\mathfrak{n}}_{-})$, where $\tilde{\mathfrak{n}}_{-} = \mathfrak{n}_{-} \oplus t^{-1}\mathfrak{g}[t^{-1}]$, so

(2.13)
$$\operatorname{ch} \mathbb{M}_{\lambda',\kappa} = e^{\lambda'} \prod_{\alpha' \in \widehat{\Delta}_+} (1 - e^{-\alpha'})^{-\operatorname{mult} \alpha'},$$

where mult α' is the dimension of the weight space $\widehat{\mathfrak{g}}'_{\kappa_c,\alpha'}$.

Since W_{0,κ_c}^+ has a basis in the monomials

(2.14)
$$a_{\alpha,n}, \alpha \in \Delta_+, n < 0; a^*_{\alpha,n}, \alpha \in \Delta_+, n \le 0; \text{ and } b_{i,n}, i = 1, \dots, \ell, n < 0,$$

to compute the character of the $\widehat{\mathfrak{g}}'_{\kappa}$ -module W^+_{0,κ_c} , we must compute the \mathfrak{h}' -action on $a_{\alpha,n}$, $a^*_{\alpha,n}$, and $b_{i,n}$.

Since d simply acts by $L_0 = -t\partial_t$ on $M_{\mathfrak{g}} \otimes V_0(\mathfrak{h})$,

(2.15)
$$[d, a_{\alpha,n}] = -na_{\alpha,n}, \quad [d, a_{\alpha,n}^*] = -na_{\alpha,n}^*, \quad [d, b_{i,n}] = -nb_{i,n},$$

where $a_{\alpha,n}, a_{\alpha,n}^* \in M_{\mathfrak{g}}$, and $b_{i,n} \in \widetilde{U}_0(\mathfrak{h}^*((t)))$. The \mathfrak{h} -action on W_{0,κ_c}^+ is given by, for $h \in \mathfrak{h}$,

(2.16)
$$[h, a_{\alpha,n}] = \alpha(h)a_{\alpha,n}, \quad [h, a_{\alpha,n}^*] = \alpha(h)a_{\alpha,n}^*, \quad [h, b_{i,n}] = 0.$$

Formula (2.16) follows from (1.22):

Exercise 2.17. Deduce formula (2.16) from (1.22).

Now (2.15) and (2.16) together show that the character of W_{0,κ_c}^+ equals (2.13).

2.2. Constructing the homomorphism. Let us compute the action of \mathfrak{h} on $|0\rangle'$:

Exercise 2.18. For any $\lambda \in \mathfrak{h}^*$ and $h \in \mathfrak{h}$, then $h \cdot |0\rangle' = \lambda(h)|0\rangle'$ in W_{0,κ_c}^+ .

The Exercise shows why the shift by 2ρ was necessary in (2.4). The classical analog is the following: $\mathbb{C}[x]$ and $\mathbb{C}[\delta_0]$ are both $D(\mathbb{A}^1) \simeq \mathbb{C}[x, \partial_x]$ -modules, where δ_0 is the delta function supported on 0.⁸ Then $L_0 = -x\partial_x$ acts as 0 on $1 \in \mathbb{C}[x]$, but acts instead as

$$-x\partial_x \cdot 1 = (1 - \partial_x x)1 = 1.$$

Solution to Exercise 2.18. The constant term in (2.7) is (by definition of the normally ordered product)

$$\begin{split} w_{\kappa_{c}}(h_{i,0}|0\rangle) &= \sum_{\beta \in \Delta_{+}} \beta(h_{i}) \bigg(\sum_{n \geq 0} a_{\beta,-n}^{*} a_{\beta,n} + \sum_{n < 0} a_{\beta,n} a_{\beta,-n}^{*} \bigg) |0\rangle' - b_{i,0}|0\rangle' \\ &= \sum_{\beta \in \Delta_{+}} \beta(h_{i}) a_{\beta,0}^{*} a_{\beta,0}|0\rangle' - (-2\rho - \lambda)(h_{i})|0\rangle' \\ &= \sum_{\beta \in \Delta_{+}} \beta(h_{i}) (a_{\beta,0} a_{\beta,0}^{*} - 1)|0\rangle' + (2\rho + \lambda)(h_{i})|0\rangle' \\ &= -\sum_{\beta \in \Delta_{+}} \beta(h_{i})|0\rangle' + (2\rho + \lambda)(h_{i})|0\rangle' \\ &= \lambda(h_{i})|0\rangle'. \end{split}$$

Now, by the character formula in §2.1 the weight spaces of $\lambda' > 0$ are zero, i.e., $|0\rangle' \in W^+_{0,\kappa_c}$ is annihilated by $\tilde{\mathfrak{n}}_+$. Thus there is a homomorphism $\mathbb{M}_{0,\kappa_c} \to W^+_{0,\kappa_c}$.

2.3. Proving the surjectivity of the homomorphism.

The remainder of the proof of Theorem 2.3. We need to check that $\mathbb{M}_{0,\kappa_c} \to W_{0,\kappa_c}^+$ is surjective, i.e., that W_{0,κ_c}^+ is generated as a $\hat{\mathfrak{g}}_{\kappa_c}$ -module by $|0\rangle'$. Consider the coinvariants of W_{0,κ_c}^+ with respect to $\tilde{\mathfrak{n}}_{-} = \mathfrak{n}_{-} \oplus t^{-1}\mathfrak{g}[t^{-1}]$:

$$(W_{0,\kappa_c}^+)_{\widetilde{\mathfrak{n}}_-} := \mathbb{C}_0 \otimes_{U(\widetilde{\mathfrak{n}}_-)} W_{0,\kappa_c}^+$$

which is a \mathfrak{h}' -representation since $\tilde{\mathfrak{n}}_{-} \subset \hat{\mathfrak{g}}_{\kappa_c}$ is \mathfrak{h}' -stable. If $\mathbb{M}_{0,\kappa_c} \to W^+_{0,\kappa_c}$ were not surjective, then there is an exact sequence of $\hat{\mathfrak{g}}'_{\kappa_c}$ -modules

$$\mathbb{M}_{0,\kappa_c} \to W^+_{0,\kappa_c} \to V \to 0,$$

for some non-zero V, which induces an exact sequence of \mathfrak{h}' -modules

(2.19)
$$(\mathbb{M}_{0,\kappa_c})_{\widetilde{\mathfrak{n}}_-} = \mathbb{C} \to (W_{0,\kappa_c}^+)_{\widetilde{\mathfrak{n}}_-} \to V_{\widetilde{\mathfrak{n}}_-} \to 0,$$

where $V_{\tilde{\mathfrak{n}}_{-}} \neq 0$. But $(\mathbb{M}_{0,\kappa_c})_{\tilde{\mathfrak{n}}_{-}} \to (W_{0,\kappa_c}^+)_{\tilde{\mathfrak{n}}_{-}}$ is an isomorphism on the (0,0)-weight space, so $(W_{0,\kappa_c}^+)_{\tilde{\mathfrak{n}}_{-}}$ must have a nonzero weight μ' . In other words W_{0,κ_c}^+ has an irreducible quotient L_{μ',κ_c} with highest weight μ' . Since \mathbb{M}_{0,κ_c} and W_{0,κ_c}^+ have the same characters, they define the same class in the Grothendieck group and hence must have the same irreducible subquotients. Now we shall:

- (1) observe restrictions on $\mu' \in (\mathfrak{h}')^*$ coming from L_{μ',κ_c} being a subquotient of W_{0,κ_c}^+ ; and
- (2) observe restrictions on $\mu' \in (\mathfrak{h}')^*$ coming from L_{μ',κ_c} being a subquotient of \mathbb{M}_{0,κ_c} .

⁸They are Fourier transforms of each other.

We will show the two restrictions on μ' are incompatible, and hence our assumption, that $V \neq 0$, must have been wrong.

First, however, there is a sublety: \mathbb{M}_{0,κ_c} and W_{0,κ_c}^+ have infinite length, so $\operatorname{ch} \mathbb{M}_{0,\kappa_c} = \operatorname{ch} W_{0,\kappa_c}^+$ does not imply they have the same irreducible subquotients in the naïve way. The correct statement is as follows:

Exercise 2.20. Let M and N be category \mathcal{O} -modules for $\hat{\mathfrak{g}}'_{\kappa}$. Then $\operatorname{ch} M = \operatorname{ch} N$ if and only if M and N define the same class in the *completed* Grothendieck group $\widehat{K}_0(\mathcal{O}_{\widehat{\mathfrak{g}}'_{\kappa}})$, which is the inverse limit

$$\widehat{K}_0(\mathcal{O}_{\widehat{\mathfrak{g}}'_{\kappa}}) := \lim_{\substack{\lambda' \in (\mathfrak{h}')^*}} K_0(\mathcal{O}_{\widehat{\mathfrak{g}}'_{\kappa}}/\mathcal{O}_{\widehat{\mathfrak{g}}'_{\kappa},\leq\lambda'}),$$

over the partial order on $(\mathfrak{h}')^*$ defined in (2.12) where $\mathcal{O}_{\mathfrak{g}'_{\kappa},\leq\lambda'}$ is the Serre subcategory of $\mathcal{O}_{\mathfrak{g}'_{\kappa}}$ consisting of modules with weights $\leq \lambda'$. Moreover when this holds, if L is an irreducible subquotient of M, then L is also an irreducible subquotient of N.

For (1), note that by the explicit formulas for $f_{\alpha}(z)$ and $h_i(z)$ -actions on W_{0,κ_c}^+ in (2.7) and (2.9), respectively, the lexicographically ordered monomials

(2.21)
$$\prod_{\ell_{\alpha}<0} b_{i_{\alpha},\ell_{\alpha}} \prod_{m_{b}\leq0} f_{\alpha_{b},m_{b}} \prod_{n_{c}<0} a^{*}_{\beta_{c},n_{c}} |0\rangle' \text{ where } 1 \leq i_{\alpha} \leq \ell, \ \alpha_{b} \in \Delta_{s}, \text{ and } \beta_{c} \in \Delta_{+}$$

form a basis of W_{0,κ_c}^+ . The weights appearing in the coinvariants must be of the form

(2.22)
$$\mu' = -\sum_{j} (n_j \delta - \beta_j)$$

where $n_j > 0$ and $\beta_j \in \Delta_+$. Indeed, by the description of the basis of W_{0,κ_c}^+ in (2.21), there is an isomorphism of $\tilde{\mathfrak{h}}$ -modules

$$(W_{0,\kappa_c}^+)_{\mathfrak{n}_{-}[t^{-1}]\oplus t^{-1}\mathfrak{h}[t^{-1}]} \simeq \mathbb{C}[a_{\alpha,n}^*]_{\alpha\in\Delta_+,n<0},$$

and $(W_{0,\kappa_c}^+)_{\tilde{\mathfrak{n}}_-}$ is a quotient.

For (2) note that [KK79, Theorem 2] (also see [Fre07, §6.3.3]) gives a characterization of possible irreducible subquotient of Verma modules:

Proposition 2.23. A weight $\mu' = (\mu, n)$ appears as the highest weight of an irreducible subquotient of $\mathbb{M}_{(\lambda,0),\kappa_c}$ if and only if $n \leq 0$ and $\mu = w(\rho) - \rho$ for some $w \in W$.

Note that for any $w \in W$ the weight $w(\rho) - \rho$ equals the linear combination of simple roots of \mathfrak{g} with non-positive coefficients, hence the weight of any irreducible subquotient of \mathbb{M}_{0,κ_c} has the form

(2.24)
$$\mu' = -n\delta - \sum_{i} m_i \alpha_i$$

for some $n \ge 0$ and $m_i \ge 0$. Finally, note that (2.22) and (2.24) cannot simultaneously hold, a contradiction, and hence V = 0. We have thus completed (a), (b), and (c), which together prove that $\mathbb{M}_{0,\kappa_c} \simeq W_{0,\kappa_c}^+$.

Next, we characterize all the endomorphisms of our module $\mathbb{M}_{0,\kappa_c} \simeq W_{0,\kappa_c}^+$. In other words, we hope to characterize all $\widehat{\mathfrak{g}}'_{\kappa_c}$ -homomorphisms $\mathbb{M}_{0,\kappa_c} \to W_{0,\kappa_c}^+$. By adjunction, this is equivalent to characterize the vectors in W_{0,κ_c}^+ annihilated by $\widetilde{\mathfrak{b}}_+$.

Lemma 2.25 ([Fre07, Lemma 6.3.4]). The space of $\widetilde{\mathfrak{b}}_+$ -invariants of W_{0,κ_c}^+ is equal to $\pi_{-2\rho} \subset W_{0,\kappa_c}^+$.

Proof. The formulas in Theorem 2.5 shows the vectors of $\pi_{-2\rho}$ are annihilated by $\tilde{\mathfrak{b}}_+$. To prove the converse, note that W^+_{0,κ_c} has another basis

$$\prod_{\ell_{\alpha}<0} b_{i_{\alpha},\ell_{\alpha}} \prod_{m_{b}\leq 0} f^{R}_{\alpha_{b},m_{b}} \prod_{n_{c}<0} a^{*}_{\alpha_{c},n_{c}} |0\rangle',$$

by the same argument as for (2.21). Here the $f_{\alpha,n}^R$ generate an action of $t\mathfrak{n}_{-}[t]$ as defined in [Los24a], which we now briefly recall. There is an isomorphism of the Fock representation of $\widehat{\Gamma}^{\mathfrak{g}}$ with the vertex algebra of chiral differential operators on N_{-} :

$$M_{\mathfrak{g}} \simeq \mathrm{CDO}(N_{-}).$$

Now viewing $\mathcal{J}\mathfrak{n}_{-} = \mathfrak{n}_{-}[t]$ as the *right-invariant* vector fields on $\mathcal{J}N_{-}$ defines a left $\mathfrak{n}_{-}[t]$ -action on CDO(N_{-}), which induces the restriction of the $\hat{\mathfrak{g}}'_{\kappa_{c}}$ -action on $W^{+}_{0,\kappa_{c}}$. On the other hand, viewing $\mathfrak{n}_{-}[t]$ as the *left-invariant* vector fields on $\mathcal{J}N_{-}$ defines a right $\mathfrak{n}_{-}[t]$ -action which are the $f^{R}_{\alpha,n}$.

Thus there is a tensor product decomposition

$$W_{0,\kappa_c}^+ = \overline{W}_{0,\kappa_c}^+ \otimes W_{0,\kappa_c}^{+,*},$$

where $W_{0,\kappa_c}^{+,*}$ (resp., $\overline{W}_{0,\kappa_c}^+$) is the span of monomials in $a_{\alpha,n}^*$ (resp., in $b_{i,\ell}$ and $f_{\alpha,m}^R$). Since the left action of $t\mathfrak{n}_{-}[\![t]\!]$ commutes with $b_{i,\ell}$ and $f_{\alpha,m}^R$, we conclude $t\mathfrak{n}_{-}[\![t]\!]$ acts by zero on $\overline{W}_{0,\kappa_c}^+$. In fact, it is isomorphic to the restricted dual of the free $\widetilde{U}(\mathfrak{n}_{-}[\![t]\!])$ -module with one generator. Thus

$$(W_{0,\kappa_c}^+)^{t\mathfrak{n}_{-}\llbracket t\rrbracket} = \overline{W}_{0,\kappa_c}^+ \otimes (W_{0,\kappa_c}^{+,*})^{t\mathfrak{n}_{-}\llbracket t\rrbracket} = \overline{W}_{0,\kappa_c}^+.$$

Furthermore, for $h \in \mathfrak{h}$ since

$$[h, a_{\alpha,n}^*] = \alpha(h)a_{\alpha,n}^*$$

a vector in $\overline{W}_{0,\kappa_c}^+$ is annihilated by \mathfrak{h} if and only if it belongs to $\pi_{-2\rho}$.

3. PROOF OF THE KAC-KAZHDAN CONJECTURE

The Verma module $\mathbb{M}_{\lambda',\kappa}$ over $\hat{\mathfrak{g}}'_{\kappa}$ has a unique irreducible quotient $L_{\lambda',\kappa}$. The Kac-Kazhdan conjecture computes the character of $\mathbb{M}_{\lambda',\kappa}$ for generic λ' .

First, recall that the roots Δ_+ from (2.11) has a subset of *real roots*

$$\widehat{\Delta}^{\mathrm{re}}_{+} := (\Delta_{+} + \mathbb{Z}_{\geq 0}\delta) \sqcup (\Delta_{-} + \mathbb{Z}_{\geq 0}\delta),$$

i.e., the roots $(\lambda, \phi) \in \widehat{\Delta}_+$ such that $\lambda \neq 0$.

Theorem 3.1. For a generic weight $\lambda \in \mathfrak{h}^*$ of critical level,

$$\operatorname{ch} L_{\lambda',\kappa_c} = e^{\lambda'} \prod_{\alpha' \in \widehat{\Delta}_+^{\operatorname{re}}} (1 - e^{-\alpha'})^{-1}.$$

Here, a weight λ is generic when $\lambda \notin \bigcup_{\beta \in \widehat{\Delta}_{+}^{\mathrm{re}}, m > 0} H_{\beta, m}^{\kappa_c}$ where $H_{\beta, m}^{\kappa_c}$ are certain hyperplanes in \mathfrak{h}^* defined in [KK79].

Proof. For $\lambda \in \mathfrak{h}^*$ the Wakimoto module of critical level $W_{\lambda/t}$ is a $\widehat{\mathfrak{g}}'_{\kappa_c}$ -module since $M_{\mathfrak{g}}$ is graded, and the $\mathfrak{h}((t))$ -module $\mathbb{C}_{\lambda/t}$ is graded, and hence $W_{\lambda/t} := M_{\mathfrak{g}} \otimes \mathbb{C}_{\lambda/t}$ inherits a grading. The $\widehat{\mathfrak{g}}'_{\kappa_c}$ -module $W_{\lambda/t}$ has character

$$\operatorname{ch} W_{\lambda/t} = e^{\lambda'} \prod_{\alpha' \in \widehat{\Delta}_{\pm}^{\operatorname{re}}} (1 - e^{-\alpha'})^{-1}.$$

where $\lambda' = (\lambda, 0)$, from a similar argument as in (a) in the proof of Theorem 2.3. Moreover, the same argument as in (b) in the proof of Theorem 2.3 shows there is a homomorphism $\mathbb{M}_{\lambda',\kappa_c} \to W_{\lambda/t}$

sending the highest weight vector to $|0\rangle$. It thus suffices to check that if λ is a generic weight of critical level, then $W_{\lambda/t}$ is irreducible, since then $L_{\lambda',\kappa_c} \simeq W_{\lambda/t}$. If $W_{\lambda/t}$ is not irreducible, either:

- $W_{\lambda/t}$ is not generated by its highest vector, i.e., the homomorphism $\mathbb{M}_{\lambda',\kappa_c} \to W_{\lambda/t}$ is not surjective; or
- $W_{\lambda/t}$ is generated by its highest vector, in which $\mathbb{M}_{\lambda',\kappa_c} \to W_{\lambda/t}$ is surjective and the image of a highest weight of the maximal sub-module of $\mathbb{M}_{\lambda',\kappa_c}$ is a non-zero singular vector in $W_{\lambda/t}$ not in $\mathbb{C}|0\rangle$.

If $W_{\lambda/t}$ contains a singular vector not in $\mathbb{C}|0\rangle$ then it must be annihilated by $\mathfrak{n}_+[t]$. We know that

$$\prod_{n_a<0} e^R_{\alpha_a,n_a} \prod_{m_b \le 0} a^*_{\alpha_b,m_b} |0\rangle$$

forms a basis of $M_{\mathfrak{g}}$, where the e_{α_a,n_a}^R are defined as in the proof of Lemma 2.25, using the description of $M_{\mathfrak{g}} \simeq \text{CDO}(N_+)$, as in the proof of Lemma 2.25. By the same method as in Lemma 2.25, the $\mathfrak{n}_+[t]$ -invariants of W_{0,κ_c} equals the subspace $\overline{W}_{0,\kappa_c}$ spanned by all monomials of e_{α_a,n_a}^R . In particular, the weight of any singular vector of $W_{\lambda/t}$ is of the form $\lambda' - \sum_j (n_j \delta - \beta_j)$ where $n_j > 0$ and $\beta_j \in \Delta_+$. Thus $W_{\lambda/t}$ contains an irreducible subquotient of that highest weight. Now, since for $\alpha' \in \widehat{\Delta}_+$,

$$\operatorname{mult} \alpha' = \begin{cases} 1 & \text{if } \alpha' \in \widehat{\Delta}_+^{\operatorname{re}} \\ \ell & \text{otherwise,} \end{cases}$$

we have

(3.2)
$$\operatorname{ch} \mathbb{M}_{\lambda',\kappa_c} = \prod_{n>0} (1 - e^{-n\delta})^{-\ell} \operatorname{ch} W_{\lambda/t},$$

where ℓ is the rank of \mathfrak{g} . Thus if an irreducible module L_{μ',κ_c} appears as a subquotient of $W_{\lambda/t}$, it must also appear as a subquotient of $\operatorname{ch} \mathbb{M}_{\lambda',\kappa_c}$: only look at the part of (3.2) with energy zero. But our contradicts the assumption that λ is generic: irreducible subquotients of Verma modules are controlled by hyperplanes by [KK79]. Thus $W_{\lambda/t}$ does not contain any singular vectors other than the highest weight.

Next, if $W_{\lambda/t}$ is not generated by its highest vector, then by the same argument as above there is an irreducible subquotient of $W_{\lambda/t}$ with highest weight $\lambda' - \sum_j (n_j \delta + \beta_j)$ with $n_j \ge 0$ and $\beta_j \in \Delta_+$. This again contradicts λ being a generic weight.

References

- [Dum24] Ilya Dumanski, Vertex algebras, seminar notes 2024.
- [Fre07] Edward Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
- [Kiy24] Daishi Kiyohara, *Free field realization*, seminar notes 2024.
- [KK79] V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97–108. MR 547842
- [KL24] Ivan Karpov and Ivan Losev, Invariants of jets and the center for \mathfrak{sl}_2 , seminar notes 2024.
- [Los24a] Ivan Losev, Chiral differential operators 1, seminar notes 2024.
- [Los24b] _____, Chiral differential operators 2, seminar notes 2024.
- [Wan24a] Hamilton Wan, Central elements of the completed universal enveloping algebra, seminar notes 2024.
- [Wan24b] Zeyu Wang, Wakimoto modules, seminar notes 2024.

M.I.T., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA, USA Email address: kjsuzuki@mit.edu