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1 Category O.

1.1 Preliminaries

Let g be a semisimple Lie algebra over an algebraically closed field k of char-
acteristic 0, let b be one of its Borel subalgebras, h ⊂ b be its Cartan subalge-
bra, let n ⊂ b be the corresponding maximal nilpotent subalgebra and n− be
the nilpotent subalgebra given by the negative root subspaces of (b, h) so that
g = n− ⊕ h⊕ n = n− ⊕ b. Let U(g) be the universal enveloping algebra of g.

By (x, y), x, y ∈ g, we denote the Killing form on g. Let Φ be the root
system of g, let Φ+ be the choice of the subset of positive roots corresponding
to b. For α ∈ Φ let α∨ = 2α/(α, α) be a coroot of g. Define the lattice of
integral weights as follows: Λ = {λ ∈ h∗|(λ, α∨) ∈ Z, α ∈ Φ}. Weight λ ∈ Λ is
called integral dominant if (λ, α∨) ≥ 0 for α ∈ Φ+. These are highest weights
of finite-dimensional irreducible representations. Analogously, λ ∈ Λ is called
integral anti-dominant if (λ, α∨) ≤ 0. The convex hull of the set of dominant

weights in Λ ⊗ R is called the fundamental Weyl chamber. Put ρ =
1

2

∑
Φ+ α

so that (ρ, α∨) = 1 for α ∈ Φ.
Note: if g is of type An, h∗ = {(λ0, ..., λn)|

∑
λi = 0}. Φ = {1i−1j}, where

1i is a vector in h∗ with 1 on the i’th coordinate and 0s on others, Φ+ = {1i −
1j}, i < j, simple roots are of the form αi = 1i−1i+1, the Killing form restricted
to h∗ is given by (x, y) = 2n

∑
xiyj , α

∨ = α/2n, Λ = {(λ0, ..., λn)|
∑
λi =

0, (λi − λj) ∈ Z}, dominant weights are those with decreasing coordinates and
ρ = (n/2, (n− 2)/2, ...,−(n− 2)/2,−n/2).

1.2 Basic definitions and properties.

Let A be an algebra (sheaf of algebras). By A − mod we denote the cate-
gory of left A-modules (sheaves of left A-modules). We will need the following
subcategory of U(g)−mod:

Definition. Category O is a full subcategory of U(g) −mod consisting of
all modules M satisfying following axioms:

O1. M is a finitely generated U(g)-module.

O2. M is h-semisimple, that is, M =
⊕

λ∈h∗Mλ, Mλ being the subspace of
weight λ.

O3. M is locally n-finite: for each v ∈M , the subspace U(n)v is finite-dimensional.

We will need the following important examples of modules in category O:
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Verma modules. For each weight λ define ∆λ = Ind
U(g)
U(b)〈vλ〉, where 〈vλ〉 is

the one-dimensional U(b) = U(h ⊕ n)-module generated by a vector vλ
such that hvλ = λ(h)vλ, h ∈ h and nvλ = 0, n ∈ n. Modules ∆λ are called
Verma modules. Note that ∆λ

∼= U(n−) as vector spaces.

Irreducible modules. One can show that each Verma module ∆λ has a unique
irreducible quotient which we denote Lλ. It is finite-dimensional if and
only if λ is an integral dominant weight.

Other important properties of O we will use are given by the following

Theorem. (a) O is abelian.

(b) For M ∈ O and L being a finite-dimensional module, M ⊗L ∈ O and ?⊗L
is an exact functor.

(c) Any M ∈ O is a finitely generated U(n−)-module.

(d) O is noetherian and artinian (this means, in particular, that any M ∈ O
has finite length).

(e) All weight spaces of modules in O are finite-dimensional.

(f) The set of all weights of a module in O lies in the finite union of the sets
of weights of Verma modules.

1.3 Blocks in category O.

Let Z = Z(g) be the center of U(g). Let χ be some character of Z. For M ∈ O
denote Mχ = {v ∈ M |(z − χ(z))nv = 0, for some n = n(z) ∈ N}. Let Oχ be
a full subcategory of O consisting of modules M such that Mχ = M . It was
shown by Jose during his talk that central elements act as constants on Verma
modules. Set Oλ = Oχλ , where χλ is the character of Z given by it’s action on
∆λ. Let W be the Weyl group of (g, h). Note that χλ = χµ iff µ = w · λ, where
w· denotes the so-called dot-action of W : w · λ = w(λ+ ρ)− ρ, so O =

⊕
Oλ,

where the sum is over W -dot-orbits in h∗.

2 Translation functors

We now describe how different blocks O relate to each other. To do this we
introduce translation functors Tλ→µ.

Let prλ : O → Oλ be the projection functor and let L be some finite-
dimensional g-module. We will be interested in functors of the form M 7→
prλ(M ⊗ L) mapping Oµ to Oλ. These are obviously exact.

From now on we assume that all the weights under consideration are integral.
Fix two weights λ, µ and set ν = µ − λ. There is a unique element w ∈ W
such that ν̄ = w(ν) is dominant. We define functors Tλ→µ : Oλ → Oµ,M 7→
prµ(Lν̄ ⊗M).

Proposition 1. Tλ→µ is biadjoint to Tµ→λ.

We leave this proposition as an exercise to the reader.
To say something non-trivial about these functors we need to lay further

restrictions on λ and µ.
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2.1 Facets

Fix a decomposition of Φ into a disjoint union of sets Φ0,Φ+,Φ−. Facet corre-
sponding to this decomposition is the set of integral weights λ satisfying

(a) (λ+ ρ, α∨) = 0, α ∈ Φ0;

(b) (λ+ ρ, α∨) > 0, α ∈ Φ+;

(c) (λ+ ρ, α∨) < 0, α ∈ Φ−.

Note that for some choice of subsets the corresponding facet may be empty.
The closure of a facet is, evidently, the set of the same form with ≤ and ≥

instead of < and >. A facet is called a chamber if Φ0 = ∅. Fundamental Weyl
chamber gives an example of the (closure of a) facet.

2.2 Equivalence of blocks

We will need the following important

Theorem 1. Let L be a finite-dimensional module. Then L ⊗∆λ has a finite
filtration with qoutients isomorphic to ∆λ+µ⊗L[µ], L[µ] being the corresponding
weight component of L.

Then one can prove the following

Proposition 2. Let λ, µ be integral weights and assume that µ lies in the closure
of the facet containing λ, ν = µ− λ, ν̄ = wν is dominant. Then W · µ does not
contain any weights λ+ν′, where ν′ are weights appearing in Lν̄ except, maybe,
λ+ ν.

Corollary. Let λ, µ be integral weights and assume that µ lies in the closure of
the facet containing λ. Then Tλ→µ∆w·λ = ∆w·µ for any w ∈W .

Indeed, this follows straightforwardly from Theorem and Proposition.

Corollary. Let λ, µ be integral weights and assume that µ lies in the closure of
the facet containing λ. Then Tλ→µLw·λ = Lw·µ or 0 for any w ∈W .

Corollary. If λ and µ lie in the same facet then Tλ→µ : Oλ → Oµ is an
equivalence of categories.

Indeed, Tλ→µ induces the isomorphism on K-theory and takes irreducibles
to corresponding irreducibles. One also has a biadjoint functor Tµ→λ with the
same properties. Now proceeding by induction on the length of the module one
gets the equivalence.

2.3 Wall-crossing and reflection functors

In the previous section we dealt with the case of λ and µ lying in the same facet.
Properties we mentioned involved the translation from the facet to its closure
(or wall). Now we deal with the opposite case – translation from the wall.
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Theorem. Let λ, µ be anti-dominant integral weights and assume that µ lies in
the closure of the facet containing λ. Let Wλ ⊂Wµ be the stabilizers of λ and µ
in the Weyl group (with respect to the dot-action). Then the following formula
for characters holds:

chTµ→λ∆w·µ =
∑
w′∈Wµ/Wλ

ch∆ww′·λ.

This theorem follows by combinatorial computation from the Theorem 1 in
the previous section.

Now assume that λ is anti-dominant regular and µ lies in the closure of the
chamber of λ having stabilizer {1, s} ⊂ W , where s is some simple reflection.
The corresponding functor Θs = Tλ→µTµ→λ : Oλ → Oλ is called a wall-crossing
functor. Theorem above gives us chΘs∆w·λ = ch∆w·λ + ch∆ws·λ. This moti-
vates the following construction.

Now consider complexes of functors given by adjunction morphisms: Fs :
0 −→ Θs −→ id −→ 0 and Fs−1 : 0 −→ id −→ Θs −→ 0. These give us
an endomorphism of K0(Oλ) and an endofunctor of Db(Oλ). In the latter
case corresponding functors are called reflection functors. Note that from the
previous paragraph it is obvious that these functors give an acion of W on
K0(Oλ). In the following sections we will give a construction of the functors
Fs : Db(Oλ) → Db(Oλ) via D-modules and explain that these functors define
the action of the braid group.

3 Reflection functors via D-modules

Let B be the flag variety G/B of a connected algebraic group G corresponding
to g where B stands for the Borel subgroup of G corresponding to b.

Note that the category O defined above does not fit to the context of the
localization of D-modules described in Jose’s talk. There, global sections of
Dλ-modules (we recall the definition below) were Uλ-modules, that is, modules
with regular central character. There were also no restrictions on the n-action.
To work with category O we need to modify this context as follows.

Let N ⊂ B be the unipotent subgroup corresponding to n, and let T ⊂ B
be the torus, B = N · T . We have the T -torsor π : B̃ = G/N → B. Put
D̃ = π∗(DB̃)T . The action of G×T on B̃ given by (g, t)aN = gatN gives a map

U(g)⊗ U(h)→ DB̃. Define Dλ = D̃ ⊗U(h) kλ, where kλ = U(h)/mλ, mλ being
the maximal ideal corresponding to λ. This is the sheaf of twisted differential op-

erators we had before. Now note that U(h) = S(h) and set ˆS(h) = lim
←
S(h)/mn

λ

(see [1]). Now global sections of Dλ̂ = D̃⊗
S(h) ˆS(h)

-modules are U(g)-modules

with the generalized central character χλ. We denote this category Uλ̂ −mod.
Definition. B-equivariant D-module on B is a D-module with a structure

of B-equivariant quasi-coherent sheaf such that the derivation of the B-action
given by this structure corresponds to the D ⊃ b-action.

Let D −modN be a category of equivariant D-modules on B. We now face
the technical problem of defining the equivariant derived category of D−modN .
Note that it is not the derived category of the category D −modN . See [3] for
the correct definition.

Statements, parallel to the localizaion theorems for (Dλ −mod, Uλ −mod)
hold for (Dλ̂ −mod, Uλ̂ −mod) and (Dλ̂ −modN ,Oλ).
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Now we state the properties of the geometric version of translation functors.
Again, we have the following two cases, translation to the wall and from the
wall (compare with the previous section):

Theorem. Assume that µ lies in the closure of the facet containing λ. The
following diagram

Db(Dλ̂ −modN )
⊗O(µ−λ)−−−−−−→ Db(Dµ̂ −modN )yRΓλ

yRΓµ

Db(Oλ)
Tλ→µ−−−−→ Db(Oµ)

(1)

commutes.

The following theorem is parallel to the character computation for the wall-
crossing functor.

Theorem. Assume that λ is regular and µ lies in the s-face of the closure of
the chamber containing λ,M∈ Db(Oµ). If λ > λ ·s we have the following exact
triangle in Db(Oλ):

RΓλ·s(M⊗O(λ · s− µ))→ Tµ→λRΓµ(M)→ RΓλ(M⊗O(λ− µ)).

3.1 The action of generators of the braid group via com-
paring different localizations

Let λ and µ be some regular weights. One can define the intervening functor
Fλ→µ : Db(Oλ)→ Db(Oµ):

Fλ→µ(M) = RΓµ(LLocλM ⊗O(µ− λ)).

Theorem. Assume that λ · s < λ. Then Fs ∼= Fλ→s·λ, Fs−1
∼= Fs·λ→λ.

For the reduced expression w = s1...sk define Fw = Fs1 ◦ ... ◦ Fsk . Note
that from this description of Fs given above it is evident that braid relations of
the form Fw1

◦ Fw2
= Fw2◦w1

, l(w2w1) = l(w1) + l(w2), are satisfied: Os·λ−λ ⊗
Ots·λ−s·λ = Ots·λ−λ so the functors on the right hand side and on the left hand
side are intertwining for the same pair of equivalences of categories.

3.2 The action of generators of the braid group via Radon
transform

We briefly mention another realization of the action of generators of the braid
group on Db(Oλ).

Assume that λ is as before. We will define a new intertwining functor Is :
Db(Dλ̂·s −mod)→ Db(Dλ̂ −mod) such that LLocλ = IsLLocλ·s. As w · λ and
λ give the same central character this intertwining functor will give us some
autoequivalence of Db(Uλ̂ −mod).

Now assume s ∈ W is a simple reflection. We have the Schubert cell Ys =
{(b, sb) ∈ X ×X} and let pr1 and pr2 : Ys → X denote projections to the first
and the second factors respectively. Define

Is = pr1∗(pr
∗
2).
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Here pri∗ and pr∗i stand for derived direct and inverse image functors for
D-modules. We sketch the definitions below, following [2].

Let π : Y → Z be an affine morphism. Let D be a t.d.o. on Z. Define
π◦(D) to be a sheaf of algebras on Y which is a sheaf-pullback of D. Define
DY→Z to be a pull-back of D as a quasi-coherent sheaf. At last, define Dπ to
be a sheaf of differential endomorphisms of π∗(D) commuting with the right
action of π◦(D). One can check that Dπ is a t.d.o. By definition, DY→Z is a
Dπ − π◦(D)-bimodule and for a D-module M we define π∗M = DY→Z ⊗ π◦M
which is a Dπ-module.

To define the direct image we define a π◦(D)−Dπ-bimodule DZ→Y and put
π∗M = π◦(DZ→Y ⊗M), where π◦ is a sheaf-direct image. This bimodule is
defined as follows: DZ→Y = ΩY ⊗OY π∗(Ω−1

Z ⊗OZ Dop).
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