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1 Differential operators in characteristic p

1.1 Frobenius twist

Fix an algebraically closed field k, chark = p > 0. Recall that for such a field
the Frobenius map x 7→ xp gives an automorphism. Let X be a reduced, smooth
and irreducible scheme over k. Consider the Frobenius morphism Frp : X →
X, f ∈ OX 7→ fp (this is the morphism of schemes, not k-schemes). Let X(1)

be another scheme over k, identical to X as a topological space but having a k-
action twisted by the Frobenius automorphism of k: k·f = k1/pf, k ∈ k, f ∈ OX .
Then Frp gives an isomorphism of X and X(1) as abstract schemes. Frp is a
bijection on k-points. IfX is defined over k Frp is the isomorphism of k-schemes.

Let V, V ′ be vector spaces over k. Define V (1) to be a vector space isomorphic
to V as an abelian group but having a twisted k-action as above. We call an
additive map A : V → V ′ p-linear, if A(kv) = kpv for k ∈ k, v ∈ V – that is,
this is a linear map from V (1) to V ′.

1.2 Crystalline differential operators and their center

Representation theory and the theory of D-modules in positive characteristics
are quite different from their characteristic 0 analogues. In positive character-
istics, (finite-dimensional) representations of an algebraic group G no longer
correspond to representations of U(g), g being the Lie algebra of G (one should
rather consider the universal enveloping algebra with divided powers). On the
other hand, U(g) has a large center in positive characteristic (U(g) is finitely
generated over the center) which makes it easier to study U(g)-modules.

Recall that for an affine X and OX -modules M,N the ring of Grothendieck
differential operators D(M,N) is defined as follows. D(M,N) is a filtered ring,
having D−1 = 0 and Dk = {L ∈ Homk(M,N) : [L, f ] ∈ Dk−1 for all f ∈ OX}.
Grothendieck differential operators in positive characteristic do not posses many
properties of differential operators in characteristic 0. For example, there is no
symbol map. Crystalline differential operators (see definition below) are in many
ways similar to differential operators in characteristic 0. The main difference
is, again, as follows: crystalline differential operators are coherent over their
center. Moreover, over a suitable flat cover of the variety corresponding to the
center, the sheaf of crystalline differential operators looks particularly simple
– it is isomorphic to an endomorphism sheaf of a vector bundle. Sheaves of
algebras that become endomorphism sheaves on a flat cover are called Azumaya
algebras. We proceed with the formal definitions.

Definition. The sheaf of crystalline differential operators DX is the sheaf of
rings generated by OX and TX , where the latter is a tangent sheaf of X subject
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to the relations: ∂f − f∂ = ∂(f), ∂′∂′′ − ∂′′∂′ = [∂′, ∂′′]. DX has a natural
structure of an OX -module.

The action of crystalline differential operators on O, unlike the characteristic
0 case, is not faithful: note that for the unital algebras in characteristic p, p’s
power of a derivation ∂ is again a derivation: ∂p(fg) =

∑
Cip∂

i(f)∂p−i(g) =

∂p(f)g + f∂p(g). We will denote this derivation ∂[p]. Consider a map i : TX →
DX , ∂ 7→ ∂p − ∂[p]. This map is O(1)

X -linear, that is i(f∂) = fp∂ and lands into

the kernel of the action on OX . It gives a map i : T (1)
X → DX (which we denote

by the same letter - it will cause no confusion).
We have the standard geometric filtration D≤n,X on DX . It’s properties are

summarized in the following

Proposition 1. (a) gr(DX) ∼= OT∗X .

(b) OT∗X carries a Poisson algebra structure {f1, f2} = [f1, f2]modD≤degf1+degf2−2,X
where f1, f2 are some lifts of f1, f2 to DX

(c) The canonical map D≤p−1,X → Endk(OX) is an inclusion.

First two properties are parallel to the case of characteristic 0 and the third
one is a computation.

We shall see most of important properties of DX in the case of the Weyl
algebra.

1.3 Weyl algebra

Let W = k〈x1, ..., xn, ∂1, ..., ∂n〉 be the Weyl algebra – an algebra generated
by commuting {xi} and commuting {∂i} with relations [∂i, xj ] = δij , W =

DAn . Note that xpi for all i lies in the center of W: [xpi , ∂j ] = pxp−1i δij =
0. Note also that [∂pi , xi] = p∂p−1 = 0. So the center Z(W) of W contains
k[xp1, ..., x

p
n, ∂

p
1 , ..., ∂

p
n] = OT∗An(1) . Denote Z = k[xp1, ..., x

p
n, ∂

p
1 , ..., ∂

p
n].

Proposition 2. The center of W is isomorphic to Z.

To show this we will show that fibers of W considered as a OT∗An(1)-coherent
sheaf of algebras have trivial center. We first note that there is an inclusion of
Z→ k[x1, ..., xn, ∂

p
1 , ..., ∂

p
n] = A. Note that SpecZ = T ∗An(1), SpecA = T ∗,1An

is pullback of the twisted cotangent bundle to X from X(1).

Proposition 3. Fibers of W considered as a Z-module are isomorphic to matrix
algebras.

Indeed, in the local coordinates at ζ ∈ SpecZ, ζ = (ap1, ..., a
p
n, b

p
1, ..., b

p
n), Wζ

has a basis of the form xα∂β , α, β being n-tuples of integers from {0, ..., p− 1},
where xα = xα1

1 ...xαn
n , ∂β = ∂β1

1 ...∂βn
n with xpi = api , ∂

p
i = bpi . So Wζ has

dimension p2n. Let ξ be a unique lift of a point ζ to SpecA. Consider the
module δξ = W ⊗A Aξ. δξ has a basis of the form ∂β , β ∈ {0, ..., p − 1}n,
xi∂

β = [xi, ∂
β ] + ai∂

β , ∂pi = bpi . Note that dim δξ = pn so it is enough to show
that δξ is an irreducible Wζ-module, which is standard.

We get that W is a sheaf of algebras over T ∗An,(1) whose fibers are matrix
algebras. Note that in this case we see that W itself is not isomorphic to an
endomorphism ring of any bundle: endomorphism ring of every vector bundle
(which is trivial over An) have zero divisors, while W has none (because its
associate graded has none).
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1.4 General case

Set ZX = π∗(OT∗X(1)), where π : T ∗X(1) → X(1) is the standard projection.
Set T ∗,1X = X ×X(1) T

∗X(1), AX = π′∗(OT∗,1X), where π′ : T ∗,1X → X is a
pullback of the standard projection.

Proposition 4. Map i extends to a map ZX → DX by sending FrX(f) to fp.

Image of i lies in the center of Z(DX): locally [fp, ∂] = pfp−1∂(f) = 0, and
[i(∂), f ], [i(∂), ∂′] are both in D≤p−1,X and in the kernel of the action on OX , so
are equal to 0. Indeed, the first commutator is in D≤p−1,X by definition and the
second one is there because, for any Poisson algebra in characteristic p, pth power
of any element lies in the Poisson center: {fp, g} = −{g, fp} = −pfp−1{g, f}.

Proposition 5. AX = OX · ZX (considered in DX).

We can now view DX as a ZX - and AX -module and, hence, as a sheaf of
algebras over T ∗X(1) and a coherent sheaf over T ∗,1X.

For a point ζ = (b, ω) ∈ T ∗X(1) by δζ we denote a point module DX ⊗Z Oζ .
k is algebraically closed so there exists a unique pullback a ∈ X of the point
b ∈ X(1). Set ξ = (a, ω) ∈ T ∗X(1), δξ = DX ⊗AX

Oξ = δa ⊗ZX
δζ .

Proposition 6. DX,ζ = Endk(Γ(X, δξ))

This is a local computation which we already did for W.

Proposition 7. i extends to an isomorphism ZX = Z(DX)

This is because, as a sheaf of algebras on T ∗X(1), DX has stalks isomorphic
to matrix algebras, hence image of the center in these stalks is canonically
isomorphic to k.

2 Azumaya property

2.1 Central simple and Azumaya algebras

Let k be an arbitrary field.
Definition. Unital algebra A over k is called a simple central algebra if A

is simple as a ring and Z(A) = k.

Proposition 8. Let k be an algebraic closure of k and let A be a unital central
algebra. Then A⊗kk ∼= Matn(k), where Matn(k) is an algebra of n×n matrices
over k.

Example. Consider the ring of quaternions H as an algebra over R. Then
H becomes a simple central algebra. It is well-known that C⊗R H ∼= Mat2C.

Let X be a scheme over k. An OX -algebra is called an Azumaya algebra
over X if it is locally-free and coherent as an OX -module and Ax is a central
simple algebra for all geometric points x ∈ X.

Remember that a morphism X → Y is called a flat cover if it is flat, finitely
presented (ring of functions of X is locally finitely-presented over the ring of
functions of Y ), and quasi-finite (fibers are finite).

Proposition 9. The following properties are equivalent.
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(a) A is an Azumaya algebra over X.

(b) There is a flat cover (Ui → X) such that for any i there exists ri such
that A ⊗OX

OUi
∼= Mri(OUi

), where Mri(OUi
) denotes the sheaf of matrix

algebras over Ui.

2.2 Splitting of DX over the flat cover

In this section we prove that DX splits over AX .

Proposition 10. DX⊗ZX
AX ∼= EndAX

((DX)AX
), where by (DX)AX

we mean
DX viewed as an AX-module – DX is a vector bundle over AX .

This Proposition is local and parallel to the case of W.

3 Universal enveloping algebra in positive char-
acteristics

Let G be an algebraic group and let g be its Lie algebra. By definition, g
is isomorphic to the algebra of G-(right)invariant derivations of OG, that is
derivations commuting with the right G-action ([5]). As we have seen before, if
∂ is a derivation, ∂p is a derivation too, and if ∂ is G-invariant ∂p is, obviously,
also G-invariant. This gives g a structure of a restricted Lie algebra, that is a
Lie algebra equipped with a map x 7→ x[p] (we won’t need a precise definition,
see [5]). Consider a p-linear map i : g → U(g), x 7→ xp − x[p]. As we have seen
before, this maps g to the center of DG and hence to the center of U(g). The
image of this map is called the Frobenius center and is denoted ZFr. Note that
U(g)G is also contained in the center and is called the Harish-Chandra center,
denoted ZHC .

A prime p is called good if it does not coincide with a coefficient of a simple
root in the maximal root, and p is called very good if it is good and G does not
contain a factor isomorphic to SL(mp). Let p be very good.

Proposition 11 ([3]). Z(U(g)) is generated by ZFr and ZHC . Moreover, it is
isomorphic to ZFr ⊗ZG

Fr
ZHC .

Now note that ZFr ∼= Og(1) = S(g∗(1)), ZHC ∼= S(h∗)W .

Proposition 12. S(g∗(1))G ∼= S(h∗(1))W .

Finally we get

Theorem 1. Spec(Z(U(g))) ∼= g∗(1) ×h∗(1)/W h∗/W , where the map h∗/W →
h∗(1)/W comes from a map S(h(1))→ S(h) given by h 7→ hp − h[p] (this map is
called an Artin-Schrieir map).

3.1 Comoment maps

Let B be the flag variety B = G/B. Now let N be a unipotent subgroup
corresponding to n. For B̃ = G/N we have a T -torsor π : B̃ → B. Put D̃ =
π∗(DB̃)T . One has T ∗B̃ = g̃∗ = {(b, x) : b ∈ B, x ∈ g∗, x(rad b) = 0}, so that
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g̃∗ = g∗ ×h∗/W h∗. Calculation analogous to the one we did for D shows that

the center of D̃ is isomorphic to g̃∗(1) ×h(1)/W h, where the map h → h(1)/W
comes from the Artin-Schrieir map.

Proposition 13. The map U(g)⊗U(h)→ D̃ factors through U(g)⊗ZHC
U(h).

Proposition 14. The comoment map g → TB commutes with ·[p], that is pre-
serves restricted structure.

So the map g→ TB gives the map ZHC = Og∗(1) → Z(D̃).
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