
Hard Lefschetz for Soergel bimodules
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Abstract

These are notes for the joint MIT/Northeastern Graduate seminar on cate-
gory O and Soergel bimodules, Fall 2017. We prove the hard Lefschetz theorem
for Soergel bimodules, closely following [EW12]. For the sake of continuity, we
are mostly citing the previous talks of this seminar instead of loc. cit.

1 Setup

To fix a notation, lets recall the setup and some results described in the previous
talks [Tsv17], [Kim17], [SA17], [Ven17].

Fix a Coxeter system (W,S). Let h be a reflection faithful representation of W ,
αs ∈ h∗, s ∈ S be a collection of simple roots, ρ ∈ h∗ be a fixed strictly dominant
weight (see [SA17] for details).

We have a category of Soergel bimodules B, which is a subcategory of the cate-
gory of graded bimodules over the polynomial ring R = R[h]. We have a collection
of indecomposable bimodules Bx(i), x ∈ W, i ∈ Z, where (i) denotes a grading
shift. Category B is monoidal with respect to the product · ⊗R ·. Product of objects
B1, B2 ∈ B is denoted simply as B1B2. We also have a duality functor D : B → B.

For any sequence x = (s1, . . . , sr), si ∈ S, we have a Bott-Samelson bimodule
BS(x) = Bs1Bs2 . . . Bsr . Bx is an indecomposable summand of BS(x) if x is a
reduced expression for x. For B ∈ B, denote B = B ⊗R R, a left R-module. In
[SA17] an invariant form was defined on BS(x) for any reduced expression x, called
an intersection form. It descends to a bilinear form on BS(x). For any embedding
Bx → BS(x) we get a form on Bx by restriction. For any invariant form on Bx

there is such a form on BxBs, called an induced form, see loc.cit.
Fix x ∈ W . Recall that, for ζ ≥ 0, Lζ : BxBs → BxBs(2) is given by

Lζ = (ρ·) idBs +ζ idBx(ρ·), where (ρ·) denotes the left multiplication by ρ on the
corresponding factor.

Recall that if we have a finite-dimensional graded vector space V , such that
either H2i+1 = 0 for all i(in which case H is called even) or H2i = 0 for all i (in
which caseH is called odd), with a homogeneous bilinear pairing (·, ·) : V ×V → V ,
and a linear operator L : V → V (2) satisfying (Lx, y) = (x, Ly), we can talk of a
Hard Lefschetz theorem and Hodge-Riemann bilinear relations with standard sign
for V, L, see [SA17].

Let H = H(W,S) be a Hecke algebra associated to (W,S). It is an algebra
over the ring Z[v, v−1]. H has a standard basis Hx, x ∈ W, and a bilinear form
(·, ·) : H×H → Z[v, v−1] satisfying (Hx,Hy) = δx,y . There is a Z-linear involution
x → x on H, satisfying v = v−1, Hx = H−1

x−1 . H has a basis Hx, x ∈ W, called
a Kazhdan-Lusztig basis. It is characterised by the properties Hx = Hx,Hx ∈
Hx +

∑
y<x vZ[v]Hy . We have (Hx,Hy) ∈ δx,y + vZ[v].
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We have a map ch : Ob(B) → H, which descends to a homomorphism from a
split K-ring of B, see [SA17].

Recall that we have a following collection of statements for x ∈W , s ∈ S:

a) S(x) — Soergel’s conjecture holds for x, that is ch(Bx) = Hx.

b) hL(x, s) — Hard Lefschetz theorem holds for BxBs, ρ.

c) hL(x, s)ζ — Hard Lefschetz holds for BxBs, Lζ . We will sometives write
hL(x, s)0 for hL(x, s).

d) HR(x) — Hodge-Riemann bilinear relations with standard sign hold for
Bx, ρ, with respect to a form restricted from any embedding B(x) → BS(x)
for any reduced expression x for x.

e) HR(x, s)ζ — Hodge-Riemann bilenear relations with standard sign hold for
BxBs, Lζ , with respect to an induced form on BxBs.

For a statement I ∈ {S(·), hL(·, s), . . . } we write I(≤ x), I(< x), . . . if I(y)
holds for all y ≤ x, y < x, . . . .

The only missing piece for the induction machine is hL(x, s)ζ , ζ ≥ 0, assuming
“everything else” for y ≤ x known. This is what we will prove in these notes.

2 Strategy of the proof

Recall the following Lemma from [Ven17].

Lemma 2.1. Suppose that we have a map of graded R[L]-modules (degL = 2)

φ : V →W (1)

such that

a) φ is injective in degrees ≤ −1,

b) V and W are equipped with graded bilinear forms (·, ·)V and (·, ·)W such that
(φ(α), φ(β))W = (α,Lβ)V for all α, β ∈ V ,

c) W satisfies the Hodge-Riemann bilinear relations.

Then Li : V −i → V i is injective for i ≥ 0.

We are going to apply this Lemma, very roughly, for V = BxBs and φ given
by the first differential in the Rouquier complex Fxs, see [Kim17] and below for
the definition. In order to do this, we will have to equip the terms of Fxs with
bilinear forms, which was almost done already in the previous talks, and prove that
they satisfy Hodge-Riemann bilinear relations. In order to do this, we will need
to borrow some more tools from geometry. Namely, we will mimic the definition
of the perverse t-structure, and will prove, inspired by the corresponding fact from
the geometry of the flag variety, that the Rouquier complexes are perverse for this
definition. This will then allow us to prove Hodge-Riemann bilinear relations for
Rouquier complexes and, applying the Lemma above, hL(x, s)ζ for ζ ≥ 0.

We proceed to the definition of the perverse filtration on Soergel bimodules.
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3 Perverse filtrations

3.1 Perverse filtration on bimodules

Soergel bimodule B ∈ B is called perverse if ch(B) =
∑

z azHz, az ∈ Z≥0. Soergel
bimodule B is called p-split, if each of its indecomposable summands is of the form
B′(i), i ∈ Z, B′ is perverse. Note that it follows from the Soergel’s conjecture that
any Soergel bimodule is p-split. We need these definitions only while inductively
proving it. Recall the following proposition from [SA17]:

Proposition 1 (Soergel’s Hom formula). rkHom•(B1, B2) = (ch(B1), ch(B2)) for
B1, B2 ∈ B.

Applying this proposition, we see that

Hom(B,B′(−i)) = 0 (1)

if B,B′ are perverse and i > 0 (note that ch(B(k)) = vkch(B)).
For B ∈ B p-split, choose a decomposition

B =
⊕
i,x

B⊕mx,i
x (i)

and define a perverse filtration on B by

τ≤jB =
⊕
i≥−j

B⊕mx,i
x (i).

By (1), this filtration does not depend on a choice of decomposition, and any mor-
phism in B respects this filtration.

Define τ<j , τ≥j , τ>j in an obvious way. Finally, define

Hj(B) = τ≤jB/τ<jB(j).

Remark. This mimics the definitions from the theory of mixed equivariant
perverse sheaves on flag varieties associated to (W,S). There, functors τ,H are
usually denoted pτ , pH. In fact, in the next subsection we define an analogue of the
perverse t-structure on the homotopy category of Soergel bimodules.

3.2 Perverse filtration on complexes

Let Kb(B) be a bounded homotopy category of B. For a complex

F = · · · → iF → i+1F → . . .

we say that it F ∈ pKb(B)≥0 if, up to an isomorphism in Kb(B), it satisfies the
following properties:

• iF is p-split,

• τ<−i
iF = 0

for all i ∈ Z.
We say that it F ∈ pKb(B)≤0 if, up to an isomorphism in Kb(B), it satisfies the

following properties:
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• iF is p-split,

• iF = τ≤−i
iF

for all i ∈ Z.

Lemma 3.1 (exercise). If F ′ → F → F ′′ [1]−→ is a distinguished triangle in Kb(B),
and F ′, F ′′ ∈ pKb(B)≥0 (respectively, pKb(B)≤0) then F ∈ pKb(B)≥0 (respectively,
pKb(B)≥0).

The complex F is called perverse, if it is isomorphic to an object in pKb(B)≥0 ∩ pKb(B)≤0.
Remark. After Soergel’s conjectures are known, one can show that (pKb(B)≥0, pKb(B)≤0)

give a non-degenerate t-structure on Kb(B). Its heart can be thought of as a gener-
alization of a category of mixed equivariant perverse sheaves on a flag variety to the
case of the general Coxeter group.

4 Rouqier complexes

Recall from [Kim17] that we have complexes Fs = Bs → R(1) for every s ∈ S,
and for x ∈ W and a reduced expression x, x = s1 . . . sr, we have a complex
Fx = Fs1 . . . Fsr . For two different reduced expressions x, x′ of x, complexes Fx, Fx′

are canonically isomorphic inKb(B). We will replace Fx with its minimal subcomplex
Fx, the notion we introduce below, and prove that Fx is perverse.

Remark. This generalizes the geometric fact that the standard and costandard
sheaves on flag varieties are perverse.

4.1 Semisimplifaction and minimal subcomplexes

Let A be an additive category. There is an ideal radA in A, called a radical, defined
by

radA(X,Y ) = {φ ∈ HomA(X,Y ) : φ ◦ ψ ∈ J(EndA(Y )),∀ψ ∈ HomA(Y,X)}

where J(A) stands for a Jacobson radical of an algebra A.
The quotient A/RadA is called a semisimplification of A, denoted Ass. Denote

q : A → Ass the quotient functor.
Remark. Note that in case when A is a category of finitely generated projective

modules over a finite-dimensional algebra A, Ass is a category of finitely-generated
modules over A/J(A). q maps indecomposable projectives to simples.

Recall from [Tsv17], that B is a Krull-Schmidt category, and {Bx(i)} is a full set
of indecomposable objects. We have that End(Bx) are finite-dimensional local R-
algebras. Note that we also have a surjection End(Bx) � End(Γ≤x/Γ<xBx) = R,
so End(q(Bx)) = R.

We have the following facts:

• {q(Bx(i))} is a full set of pairwise non-isomorphic simple objects in Bss.

• Morphism f : B → B′ in B is an isomorphism if and only if q(f) is an
isomorphism.

• More generally, f : B → B′ is a split injection if and only if q(f) is a split
injection.
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Complex F ∈ Cb(B) — category of bounded complexes in B — is called mini-
mal, if q(F ) has zero differentials. It is equivalent to q(F ) having no contractible (i.e.
homotopic to 0) direct summands, which is equivalent to F having no contractible
direct summands. For any F ∈ Cb(B), we have a summand Fmin D F, Fmin ' F
in Kb(B), Fmin — minimal. Fmin is called a minimal subcomplex of F . It is easy
to see that any two minimal subcomplexes are isomorphic in Cb(B).

For a reduced expression x = s1 . . . sm, choose a minimal subcomplex Fx ⊂ Fx.
It does not depend on a choice of a reduced expression, up to an isomorphism in
Cb(B).

The following Lemma is easy:

Lemma 4.1 (exercise).

Hi(Fx) =

{
R(−l(x)), if i = 0,

0, otherwise.

Proposition 2. Assume S(y) for all y < x. Then Fx ∈ pKb(B)≥0.

Proof. We will need the following

Lemma 4.2. Assume S(x) and pick s ∈ S.

a) If xs < x, then BxFs ' Bx(−1) in Kb(B).

b) If xs > x, then BxFs ∈ pKb(B)≥0.

Proof of a). By S(x), ch(BxBs) = HxHs = (v + v−1)Hs, so BxBs ' Bx(−1) ⊕
Bx(1). Then BxFs if of the form

0 → Bx(1)⊕Bx(−1) → Bx(1) → 0.

Multiplication by Fs is an invertible endofunctor of Kb(B), so the complex above is
indecomposable (meaning that any summand of this complex is contractible) since
Bx is indecomposable. By S(x) and Soergel’s Hom formula, End(Bx) = R, so the
differential must take the summand Bx(1) isomorphically to Bx(1). Contracting
the subcomplex Bx(1) → Bx(1), we get that the complex above is homotopic to
Bx(−1).

Proof of b). By S(x), ch(BxBs) = HxHs ∈
∑

x′ Z≥0Hx′ , so, by definition, BxBs

is perverse. So

BxFs = 0 → BxBs → Bx(1) → 0 ∈ pKb(B)≥0.

Corollary 4.1. If F ∈ pKb(B)≥0 and S(y) holds for all indecomposable summands By

of iF for all i, then FFs ∈ pKb(B)≥0.

Proof. We can assume that F is a minimal complex. Consider the “stupid” filtration

w≥kF = 0 → kF → k+1F → . . . .

For all k, we have triangles

w≥k+1F → w≥kF → kF [−k] [1]−→ .
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By Lemma 3.1, we know that if w≥k+1FFs ∈ pKb(B)≥0 and kF [−k]Fs ∈
pKb(B)≥0, so is w≥kFFs. But the latter holds by Lemma 4.2, so we are done
by induction.

Now proposition follows by induction: Fs ∈ pKb(B)≥0 for all s ∈ S by defini-
tion, so for any reduced expression Fx ∈ pKb(B)≥0, and so is Fx.

We are now ready to prove that Fx are perverse, as promised.

Theorem 1. Assume S(y) for all y ≤ x. Then

a) 0F x = Bx.

b) For i ≥ 1, iF x = ⊕zBz(i)
⊕mz,i , z < x,mz,i ∈ Z≥0.

In particular, Fx ∈ pKb(B)≥0 ∩ pKb(B)≤0.

Proof. We will need the following Lemma from [LW14]. Recall from [SA17], that we
have a canonical support filtration Γ on any object in B, and for an element y ∈W
we have functors Γ≥y,Γ>y . Also recall that for y ∈ W , Ry is an R-bimodule
which is a free rank 1 left R-module with the right R-action twisted by x. Denote
∆y = Ry(−l(y)).

Lemma 4.3 ([LW14]).

Γ≥y/Γ>yFx '

{
∆y, y = x,

0, otherwise.

in the homotopy category of R-bimodules.

Knowing this Lemma, we proceed as follows. Consider a summand Bz(j) of
iF x. By assumption, z < x, and S(z) holds. Consider the image of Bz(j) under
the differential. Since S(y) holds for any y such that By(k) is a summand of i+1F x,
and by Soergel’s Hom formula, Bz(j) can map only to By(k) D i+1F x with k ≥ j.
Again, by Soergel’s Hom formula, any non-zero map in Hom(Bz(j), By(j)) is an
isomorphism, and such an isomoprphism can’t appear in a minimal complex. So
we must have k > j. Similarly, only summands By(k

′), k′ < j of i−1F can map to
Bz(j) non-trivially.

Consider Γ≥z/Γ>zFx. The summand Bz(j) of iF x contributes ∆z(j) to this
sub-quotient, and it must cancel, by Lemma 4.3, with such a summand from i−1F x

or i+1F x. Note that such a summand can come only from By(k) with y > z. By
S(y),

ch(By(l)) ∈ vl(Hy +
∑
y′<y

vZ[v]Hy′),

so, by the discussion above, ∆z(j) can only cancel with a contribution of the sum-
mand By(k

′) with y > z, k′ < j, from i−1F x.
We conclude: if iF x contains a summand Bz(j), z < x, i−1F x must contain a

summand By(k
′), y > z, k′ < j.

Since −1F x = 0, we get 0F x = Bx. Using Proposition 2, we get the rest by
induction.
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4.2 Rouquier complexes are Hodge-Riemann

In this subsection we will prove that terms iF x of a (minimal) Rouquier complex
satisfy Hodge-Riemann bilinear relations, after an appropriate graded shift. To do
this, we must first define an invariant form on these terms.

Fix some reduced expression x = s1 . . . sm of x. We have

jF x D j
(F s1 . . . Fsm) =

⊕
x′∈X

BS(x′)(j),

for some index set X . For a tuple λ = (λx′)x′∈X of positive numbers, define a form
(·, ·)λ on ⊕

x′∈X

BS(x′)

as (·, ·)λ =
∑

x′ λx′(·, ·)BS(x′).
We say that Fx satisfies Hodge-Riemann bilinear relations if, for any choice of

x = s1 . . . sm we can choose an embedding

Fx D Fs1 . . . Fsm

such that for any choice of a tuple λ, jF x(−j) satisfies Hodge-Riemann bilinear
relations with respect to (·, ·)λ and left multiplication by ρ, where sign is determined
so that the form is positive definite in degrees congruent to −m + j modulo 4, for
all j.

Theorem 2. Assume S(≤ x). Assume HR(y, s) for y < x, s ∈ S, ys > y. Then Fx

satisfies Hodge-Riemann bilinear relations.

Proof. We will use the following Lemma repeatedly in inductive arguments:

Lemma 4.4. Fix ζ ≥ 0, s ∈ S and B = ⊕z∈WB⊕mz
z ,mz ∈ Z≥0.

Assume that, if mz 6= 0, we have S(z),HR(z, s)ζ . If ζ = 0, assume in addition
mz = 0 for zs < z (we need this assumption since HR(z, s) fails if zs < z).

Assume that B is even or odd, and B is equipped with an invariant non-degenerate
form such that B satisfies Hodge-Riemann bilinear relations with standard signs, with
respect to (ρ·).

Then BBs satisfies Hodge-Riemann bilinear relations with standard signs with re-
spect to Lζ and an induced form.

Proof. The proof is straightforward, we only give a plan. One first shows, using
Soergel’s Hom formula, that one can choose a decomposition B = ⊕z∈WB⊕mz

z

to be orthogonal. By inductive assumption, all summands of the decomposition

BBs = ⊕z∈WBzBs
⊕mz satisfy Hodge-Riemann bilinear relations with standard

signs, so the only thing left to check is that the signs are the same in every degree
in each summand, using Hodge-Rimeann bilinear relations for B.

We proceed to the proof of the Theorem. Pick y, s, ys = x > y and assume
that the statement of the Theorem is already known for Fy . We have jF x(−j) D
jF yBs(−j) ⊕ j−1F y(−j + 1). Note that these two summands come from differ-
ent Bott-Samelson bimodules, as in the definition of the form (·, ·)λ, so they are
orthogonal with respect to this form.
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By S(≤ y), jF y(−j) = ⊕z∈WVz ⊗R Bz, where all multiplicity spaces Vz have
degree 0. Let

B� =
⊕

z∈W,zs>z

Vz ⊗R Bz, B
� =

⊕
z∈W,zs<z

Vz ⊗R Bz.

Decomposition jF y(−j) = B�⊕B� is orthogonal: Hom(B�,DB�) = Hom(B�,DB�) =
0, so there are no non-zero invariant pairings between the summands.

By S(≤ x), B�Bs is perverse, B�Bs = B�(1)⊕B�(−1). We get an orthogonal
decomposition

jF x(−j) D B�Bs ⊕B�Bs ⊕ j−1F y(−j + 1). (2)

j−1F y(−j + 1) satisfies Hodge-Riemann bilinear relations by the inductive assump-
tion. B� satisfies them too, by inductive assumption, so, by Lemma 4.4, B�Bs

satisfies Hodge-Riemann bilinear relations.
Since jF x(−j) is perverse, its projection to B�Bs in the inclusion (2) lands in

B�(1), by Soergel’s Hom formula. We will now prove that its image in B�(1) does
not contribute to the pairing, using the following linear-algebraic Lemma:

Lemma 4.5 (exercise). Let H be a graded vector space, (·, ·) — graded pairing on
H , not necessary non-degenerate, L : H• → H•+2 — Lefschetz operator. Assume
that Li : H−i−1 → H−1+i is an isomorphism for all i. Then, for i ≥ 0, the form
(h, h′)−i = (h,Lih′) on H−i is zero.

Hint. Use the primitive decomposition.

Applying this Lemma to H = B�(1), which we can do since B� satisfies hard
Lefschetz by assumption, we see that the image of jF x(−j) in B�(1) does not
contribute to the pairing.

We now need to prove that

ι : jF x(−j) → B�Bs ⊕ j−1F y(−j + 1)

is injective. To do this, recall the quotient functor q : B → Bss. Apply it to the
split injection (2). Recall, that {q(Bx)(i)} give a full set of pairwise non-isomorphic
simple objects in Bss. It follows that

q(jF x(−j) → B�(1)) = 0,

since jF x(−j) is a sum of objects of the form Bz , and B�(1) is the sum of objects
of the form Bz′(1). We conclude that

q(jF x(−j) → B� ⊕ j−1F y(−j + 1))

is a split injection. Hence jF x(−j) → B� ⊕ j−1F y(−j + 1) is a split injection.

We got an injection (respecting the forms) of jF x(−j) to a sum of orthogonal
spaces, each satisfying Hodge-Riemann bilinear relations. The only thing left to do
is to confirm that the signs of the form on these orthogonal spaces coincide in each
degree, which we omit.
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5 Hard Lefschetz

Recall our plan from Section 2. Fix a reduced expression x of x and s ∈ S with
xs > x. We have a map

φ : BS(xs) → ⊕BS(xsî),

which restricts to the first differential

φ :
0
(F xFs) → 1

(F xFs)

in the Rouquier complex FxFs. After killing the right R-action, we have

(b, Lζb
′)
BS(xs)

= (φ(b), φ(b′))γR,

where (·, ·)γR denotes the form on ⊕BS(xsî) rescaled by the certain tuple γ of
positive numbers. Lets first prove the easier case of the hard Lefschetz theorem:

Theorem 3. Suppose ζ > 0, x ∈W, s ∈ S, xs > x. Assume:

a) S(≤ x).

b) HR(z, t), z < x, t ∈ S, zt > z.

c) HR(< x, s)ζ .

d) HR(x).

Then hL(x, s)ζ holds.

Proof. By a), b) we know that Fx satisfies Hodge-Riemann bilinear relations.
Write

φ : BxBs → 1
(F xFs) =

1F xBs ⊕Bx(1)

and let d1 : BxBs → 1F xBs, d2 : BxBs → Bx(1) be the components of φ. Recall
that Lζ = (ρ·) idBs

+ idX(ζρ·) on XBs. It is easy to see that Lζ commutes with d1
and d2(Lζb) = ρd2(b) + d2(b)(·ζρ). Denote by L the operator on 1F xBs ⊕Bx(1)
given by Lζ on the first summand and ρ on the second. Since summands of 1F xBs⊕
Bx(1) come from the different Bott-Samelson bimodules, as in the definition of the
form (·, ·)γ , this decompostion is orthogonal with respect to this form.

We have φ(Lζb) = Lφ(b), and by HR(x), Hodge-Riemann bilinear relations for

Fx, and HR(< x, s)ζ with Lemma 4.4, 1F xBs ⊕Bx(1) satisfies Hodge-Riemann
bilinear relations. Since φ is the first differential in the complex FxFs ' Fxs, it is
injective in degrees < l(xs) = l(x) + 1, by Lemma 4.1. By Lemma 2.1 we get that

Lζ
k
is injective on (BxBs)

−k, and since BxBs has symmetric Betti numbers, we are
done.

We now turn to the harder case.

Theorem 4. Suppose x ∈W, s ∈ S, xs > x. Assume:

a) S(≤ x).

b) HR(z, t), z < x, t ∈ S, zt > z.
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c) HR(x).

d) hL(z), z < xs.

Then hL(x, s) holds.

Proof. Again, write φ : BxBs → Bx(1) ⊕ 1F xBs. Note that since ζ = 0, we don’t
have Hodge-Riemann bilinear relations for 1F xBs(−1), so we’ll have to circumvent it.

As we did before, write

1F x(−1) = B� ⊕B�,
with B�Bs perverse, H0(B�Bs) = 0. As before, this decomposition is orthogonal,
and the full decomposition

φ : BxBs → Bx(1)⊕B�Bs(1)⊕B�Bs(1)

is orthogonal.
By Corollary 4.1 FxFs ∈ pKb(B)≥0. Recall that B�Bs = B�(−1) ⊕ B�(1), so

B�Bs(1) = B� ⊕ B�(2). So the restriction of the second differential to B�(2) is a
split injection. After contracting this summand, the first two terms of the complex
become

d : BxBs → Bx(1)⊕B�Bs(1)⊕B�.
Let d1 : BxBs → Bx(1), d2 : BxBs → B�Bs(1), d3 : BxBs → B� be the

components of this differential.
Again, by Lemma 4.1 d is injective in degrees ≤ l(x).
We want to prove that, for any b ∈ (BxBs)

−k, ρkb 6= 0. We consider two cases.

Case a). d3(b) 6= 0. d3 commutes with the left multiplication by ρ, and all summands
of B� satisfy hL by our assumption, so

d3(ρ
k(b)) = ρkd3(b) 6= 0.

Case b). d3(b) = 0. Note that B� was the summand that prevented us form using

Hodge-Riemann bilinear relations as in the previous Theorem. So on ker d3
proof is identical to the previous case.

We are left with the last case of hard Lefschetz theorem. Its proof is completely
different (and much easier) and does not use Rouquier complexes.

Theorem 5. Suppose ζ > 0, x ∈ W, s ∈ S, xs < x. If hL(x) holds, then hL(x, s)ζ
holds.

Proof. We will need the following Lemma from [Wil10]. See Appendix for the proper
context.

Lemma 5.1 ([Wil10]). If x ∈ W, s ∈ S, xs < s, then there exists (R,Rs)-bimodule B′

such that Bx = B′ ⊗Rs R.
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We now construct an explicit isomorphism R ' Rs ⊕ Rs(−2): consider inclu-
sions

ι1, ι2 : Rs → R, ι1(r) = r, ι2(r) =
1

2
αsr,

and projections

π1, π2 : R→ Rs, π1(r) =
1

2
(r + sr), π2(r) = ∂sr.

It is easy to check that ι1, ι2 split π1, π2. This fixes an isomorphism

BxBs ' B′ ⊗Rs R⊗Rs R ' Bx(1)⊕Bx(−1).

With respect to this isomorphism, Lζ is given by the matrix(
(ρ·) + ζ(·π1(ρ)) 1

2ζ(·π1(αsρ))
ζρ(α∨

s ) (ρ·) + 1
2ζ(·∂s(αsρ))

)
.

After tensoring with ⊗RR, we get(
ρ 0

ζρ(α∨
s ) ρ

)
.

Completing the action of ρ to the action of sl2(R) on Bx, which we can do by
hL(x), we see that this matrix describes an action of e on a representation Bx⊗V2,
where V2 is a standard 2-dimensional representation of sl2(R), after rescaling. We
get hL(x, s).

Appendix. Singular Soergel bimodules

We describe the proper context for Lemma 5.1, following [Wil10].
I ⊂ S is called finitary, if WI — parabolic, corresponding to I — is finite. In

what follows, all I, J,K · · · ⊂ S are finitary (but S may not be).
Let wI be the longest element of WI ,

π(I) = vl(wI)
∑

w∈WI

v−l(w).

We have
HI := HwI

=
∑

w∈WI

vl(wI)−l(w)Hw,

H2
I = π(I)HI ,HKHI = π(K)HI ,K ⊂ I .
Write HI for the Hecke algebra of (WI , I),H = HS .
Let IH = HIH,HI = HHI ,

IHJ = IH ∩HJ .
We can define a multiplication:

∗J : IHJ × JHK → IHK , h1 ∗J h2 =
1

π(J)
h1h2.

Remark. If we regard IH as a rightH-module, then IH ' IndHHI
(triv). HomH(JH, IH) '

IHJ and ∗J becomes a composition. Note that HI is a projector to IH, up to a
factor of π(I).
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IHJ is a free Z[v, v−1]-module of rank #(WI\W/WJ). For p ∈WI\W/WJ let
p+ ∈W be its maximal length representative.

Define IHJ
p = Hp+

— the Kazhdan-Lusztig basis of IHJ . Define IHJ
p =∑

x∈p v
l(p+)−l(x)Hx — standard basis in IHJ .

Structure
(IHJ , ∗J)I,J⊂S,finitary

is called a Schur algebroid (cf. Remark above).
IBJ be a subcategory of graded (RI , RJ)-bimodules, where RI = RWI , that is

generated by graded shifts of summands of bimodules

RI1 ⊗RJ1 R
I2 ⊗RJ2 · · · ⊗RJn−1 R

In ,

I = I1 ⊂ J1 ⊃ I2 ⊂ J2 ⊃ I3 . . . .

Theorem 6 ([Wil10]). a) Isomorphism classes of indecomposable objects in IBJ up to
grading shifts are in one-to-one correspondence with WI\W/WJ .

b) We have a commutative diagram

IBJ × JBK IBK

IHJ × JHK IHK

⊗RJ

ch×ch ch

∗J

where ch is a certain analogue of ch defined before for H = ∅H∅. Moreover, for
any p ∈WI\W/WJ there is a unique indecomposable

IBJ
p with

ch(IBJ
p ) =

IHJ
p +

∑
q<p

gq,p
IHJ

q .

c) R⊗RI
IBJ

p ⊗RJ R ' Bp+
.

Remarks. Lemma 5.1 follows from c) immediately by setting J = {s}, I = ∅.
Also note that Soergel’s conjecture we just finished proving implies

ch(IBJ
p ) =

IHJ
p ,

see discussion in loc.cit.
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