Representations of St (and related Lie algebras), part 2

- 0) Introduction
- 1) Definition.
- 2) Properties.

O) This afterlife lecture is a continuetron of Lecture 14.5 (note that $29 = 14.5 \cdot 2$). In that lecture we were dealing w. certain categories C (e.g. $C = \bigoplus_{n \ge 0} FS_n - mod$), see Sec 1 of Lecture 14.5. We have discussed that an action of SL on C should include exact endofunctors $E, F: C \longrightarrow C$ and a decomposition $C = \bigoplus_{n \in \mathbb{Z}} C_n$ s.t. [E], [F] define the structure of a weight representation of SL (see Define in Sec 1.2 of Lec 14.5) on (the complexification of) $K_n(C)$.

However, this definition is not particularly useful as it provides very few tools to study the functors E&F. We need more structure. This structure is a bunch of functor morphisms.

Let's explain an ideological reason for that. In a sentence: what acts is one level categorical structure up compared to what it acts on. For example, on a vector space (categorical level 0) we consider an action of an associative algebra. An associative ring can be thought of as a category w. single object whose set of morphisms is additionally equipped w. an abelian group structure so that the composition map is bi-additive. So it's categorical level 1. If we want to act on a category, what acts should be of categorical level 2:

have functors and their morphisms.

We follow J. Chuang, R. Rouguier "Derived equivalences for symmetric groups and St-categorification" Ann. Math. 167 (2008)

1) Definition

1.1) Kevisiting the example of PFS,-mod

Let F be an algebraically closed field and a be an element in 7/10 F. Let C = DF5, -mod. In Sec 1.3 of Lec 14.5 we have considered endofunctors $E_{n} = \bigoplus (Res_{n-1}^{n} \cdot)_{2}, F_{n} = \bigoplus (Ind_{n-1}^{n} \cdot)_{2}, of C.$ By the construction, compare to Lemma 6.9 in [RT1], Fx is left adjoint to E. Also, by the construction, Ex comes with a distinguished functor endomorphism: for MEFS,-mod (&C), In acts on E.M. The action of In-2 on E.M is nilpotent. We will need two more properties.

Lemma 1: In the above notation, E, McM is (n-1, n)-stable

Proof: The degenerate affine Hecke algebra H(z) acts on Resn 1/1) w. $X_1 \mapsto J_n, X_2 \mapsto J_{n-1}, T \mapsto (n-1,n)$. The symmetric polynomials in X, X2 are central. It follows that any simultaneous eigenspace for these polynomials is stable under any element of H(z) including T. To finish the proof note that E2M is such a generalized eigenspace (it corresponds to evaluating the symmetric polynomials in X, X, at the point (d,d).

Lemma 2: Fx is isomorphic to the right adjoint of Ex.

Proof: Note that $\bigoplus F_z = Ind_{n-1}^n$ is right adjoint to $\bigoplus E_z$. To show that F_z is isomorphic to the right adjoint of E_z it's enough to show that

(*) the isomorphism $Hom_{S_{n-1}}(EM,N) \xrightarrow{\sim} Hom_{S_n}(M,FN)$ restricts to $Hom_{S_{n-1}}(E_{\lambda}M,N) \xrightarrow{\sim} Hom_{S_n}(M,F_{\lambda}N)$.

For this we decompose FS_n -mod w.r.t. the generalized eigenspaces for the action of the central subalgebre of symmetric polynomials in the elements $J_1,...,J_n$: FS_n -mod = $\bigoplus FS_n$ -mod, where the summation is taxen over unordered n-tuples of elements of Z-1 and FS_n -mod, is the full subcategory of all FS_n -modules, where $f(J_1,...,J_n)$ acts w. single eigenvalue f(A), A symmetric polynomials A.

Exercise: • Show E_{λ} sends FS_{n} -mod_{λ} to FS_{n-1} -mod_{λ}, where λ is obtained from λ by removing one copy of λ (if λ contains such, otherwise E_{λ} sends FS_{n} -mod_{λ} to 0).

· Use that F_{λ} is left adjoint to E_{λ} to show that F_{λ} sends F_{λ} , -mod_{λ'}, to F_{λ} -mod_{λ''}, where A'' is obtained from A' by adding a copy of $A_{\lambda''}$.

· Deduce (*) and finish the proof

IJ

1.2) Definition of an Sh-action on C

Let C be as above: the direct sum of categories of modules

Definition: An action of Sh on C consists of:

Data: (i) A pair of exact endofunctors E, F of C

(ii) A direct sum decomposition $C = \bigoplus_{m \in \mathbb{Z}} C_m$,

(iii) Endomorphisms $X \in End(E)$, $T \in End(E^2)$,

(iv) A fixed isomorphism between F and the left adjoint of E, i.e. adjunction unit ε : id \Rightarrow FE and counit γ : EF \Rightarrow id, that satisfies the following

Axioms: (I) F is isomorphic to the right adjoint of E.

(II) Consider endomorphisms $X1, 1X, T \in End(E^2)$ (where X1 acts by X on the first application of E, and 1X acts on the second). They satisfy the relations of $H(2)^{opp}$: T(X1) = (1X)T + 1

(III) $\exists A \in \mathbb{F} \text{ s.t. } X_M - A \in \text{End}(EM) \text{ is nilpotent, } H M \in C.$

(IV) The operators [E], [F] & the direct sum decomposition $K_o(C) = \bigoplus_{m} K_o(C_m)$ give the structure of a weight representation of SL. Moreover, this representation is integrable meaning that $V \in K_0(L) \supset A(-d_v) \in \mathbb{Z}_0$ s.t. $[F]^d v = [E]^d v = 0$.

Exercise: Show that the assignment $X_i \mapsto 1.1, X_1...1, i=1,...d, T_j \mapsto$ 1.1, T.1.1, detines au algebra homomorphism $\mathcal{H}(d)^{opp} \longrightarrow End(E^d)$

for all do (compare to the solution to Prob 5 in HW3).

Example: for each $d \in \mathbb{Z} \cdot 1 \subset \mathbb{F}$ we have an action of SL on $C = \bigoplus FS_n$ -mod with the functors being E_d , F_d . The direct sum decomposition $C = \bigoplus C_m$ was introduced in Section 1.3.1 of Lec 14.5. Element $X \in End(E)$ is as follows. On $M \in FS_n$ -mod, it's defined by $X_M = action$ of J_n of M. Similarly, $T \in End(E_d^2)$ comes from the action of (n-1,n). The isomorphism between F_d and the left adjoint of E_d was discussed in the beginning of Sec 1.1 of this lecture.

Let's explain why the axioms hold. For (IV), the claim about the weight representation was checked in Lecture 14.5, Section 1.3. In the construction we have established an SL-linear epimorphism $\mathcal{F} \longrightarrow \bigoplus_{n,n} K_o(FS_n\text{-mod})$. It's an exercise to check that the SL-action on \mathcal{F} is integrable.

(I) is Lemma 2 in Sec. 1.1. (II) follows from relations between J_{n-1} , J_n , (n,n-1) established in Lemma 4.1, [RT1]. (III) follows from the construction of X.

1.3) Actions of other Lie algebras.

Let $\sigma_j = \hat{Sl}_p$ if char F = p & $\sigma_j = \hat{Sl}_\infty$ if char F = 0. The former algebra p was discussed in Section 3.1 of Lecture 20. The latter algebra is an infinite version of \hat{Sl}_n , it consists of all matrices $(m_{ij})_{i,j} \in \mathcal{U}$ st only finitely many m_{ij} 's are nonzero & $\sum_{i \in \mathcal{U}} m_{ii} = 0$. It's a Kac-Moody algebra corresponding to the Dynkin diagram, whose nodes are \mathcal{U} and we have an edge between i&j iff |i-j|=1. Note that in both cases the nodes of the Dynkin diagram are in a natural

bijection w. 71.1 C.F.

Let's explain a definition of a og-action on C. It closely follows the definition in Sec 1.2. We need to replace (ii) with the decomposition $C = \bigoplus_{\lambda \in \Lambda} C_{\lambda}$, where Λ is the weight lattice of og.

Axioms (I) and (II) are as before. Axiom (III) now says that all eigenvalues of X_M are in $\mathbb{Z}\cdot 1(=F)$. Then we can decompose EM into the direct sum of eigen-spaces $(EM)_{\mathcal{A}}$ for X_M . The assignment $M\mapsto (EM)_{\mathcal{A}}$ is a functor (exercise) so we get a functor $E_{\mathcal{A}}: C\to C$. All these functors are exact and $E=\bigoplus_{X\in \mathcal{X}}E_{\mathcal{A}}$.

By the adjunction in (I), we have an identification $End(F) \xrightarrow{s} End(E)^{opp}$ So we can consider X as an endomorphism of F & use it to decompose F as $\bigoplus F_s$.

Exercise: F, is left adjoint to E.

Next, axiom (IV) needs to be replaced with the condition that $[E_{\alpha}], [F_{\beta}] & K_{\alpha}(C) = \bigoplus K_{\alpha}(C_{\lambda})$ equip $K_{\alpha}(C)$ with the structure of a weight of representation. Moreover, we require that the representation is integrable: $\forall \alpha \& \nu \in K_{\alpha}(C) \exists m > 0 \text{ s.t. } [E_{\alpha}]^{m} v = 0$ $= [F_{\alpha}]^{m} v = 0.$

Exercise: • F, is isomorphic to the right adjoint of Ex;

- T preserves the direct summand E₂² € E.²
- The following data define a categorical action of St

on $E: E_{d}$, F_{d} , the images of X in $End(E_{d})$, T in $End(E_{d}^{2})$, the isomorphism between F_{d} and the left adjoint of F_{d} , and finally the decomposition $C = \bigoplus_{m \in \mathcal{U}} C_{m}$, where C_{m} is the direct sum of all C_{d} s.t. the pairing of X w. the simple root corresponding to X is X.

Example 1: $C = \bigoplus_{\substack{n > 0 \ n > 0}} FS_n$ -mod is a categorical of-representation w. $E = \bigoplus_{\substack{n > 0 \ n > 0}} Res_{n-1}^n$, $F = \bigoplus_{\substack{n > 0 \ n > 0}} Ind_{n-1}^n$. The other pieces of data are as in Example in Sec 1.2.

It turns out that $K_0(\mathcal{C})$ is the irreducible highest weight representation of highest weight ω_0 . The highest weight space is $K_0(\mathbb{F}S,-mod)$.

Example 2: Consider the category O for ofly (the weights are now in $Z^n \subset J^*$, where $J \subset O$ is still the subalgebra of diagonal matrices). Define endofunctors $E = V \otimes \bullet$, $F = V^* \otimes \bullet$ of O and endomorphisms X = End(E), the tensor Casimir from Prob S in HW3, and $T \in End(E^2)$ permutes the tensor factors V. This is a part of a categorical S^1_{∞} -action. The weight decomposition of O is as follows. Let $J = \sum_{i \in Z} a_i \omega_i$. The O_J is the infinitesimal block of the Verma Module W, highest weight J = O, where:

• M_{λ} is an n-tuple, where the entry i occurs a times $\widetilde{\rho} = (n-1, n-2, ..., 1, 0)$.

We then identify $K_0(0)$ w. $(\mathbb{C}^{\mathbb{Z}})^{\otimes n}$, where $\mathbb{C}^{\mathbb{Z}}$ is a tautologi-

cal representation of Sl_{∞} . Under this identification $[\Delta(\mu-\rho)]$ corresponds to the tensor monomial $e_{\mu, \infty} \otimes e_{\mu_n}$, where $\mu=(\mu_1,...,\mu_n)$ and we write e_j , $j\in \mathbb{Z}$, for the tautological basis element of $C^{\mathbb{Z}}$. To check the axioms is a meaningful and not quite trivial exercise (based on problems 2 and 5 of HW3).

Remarks: 1) In the definition of a categorical of-representation one can replace the degenerate affine Hecke algebra relations where affine Hecke algebra relations (for some $g = R \in \mathbb{F}^{\times}$ in axiom II. An example of a categorical \widehat{Sl}_{ℓ} -action is on $\bigoplus H_{R}(S_{n})$ -mod, where R is a primitive lth root of 1.

2) One can define a notion of a categorical of-representation for an arbitrary Kac-Moody algebra of. But one needs to replace the ldegenerate) affine Hecre algebras (that are very classical) with the so called KLR (Khovanov-Landa-Rouguier) algebras constructed in [R]: R. Rouquier "2-Kac-Moody algebras" arXiv: 0812.5023 & [KL]: M. Khovanov, A. Lauda "A diagrammatic approach to categorification of quantum groups" Trans. Amer. Math. Soc. 363 (2011) specifically for the categorification purpose.

2) Properties

Here we explain some easy to state properties of a cottegorical SL-representations in C. For more, including a construction of derived self-equivalence of C from the St-action see the Chuang-Rouquier paper, [CP]. The proofs evucially use the representation theory of (degenerate) affine Hecre algebras.

2.1) Simple 546s & quotients.

The following is Proposition 5. 20 in [CR]. It implies Theorem 6.15 in [RT1].

Theorem: Let C be equipped w an action of \mathcal{E}^{K}_{n} according to the definition in Sec 1.2. Let $L \in Irr(\mathcal{C})$. Then EL has the unique irreducible subobject and the unique irreducible quotient, and they are isomorphic.

The same holds for FL-in fact, these two functors are interchangeble.

2.2) Categorification of [e,f]=h. We know that $[E][F]-[F][E]=\lambda$ on $K_o(C_{\lambda})$. This lifts to a level of categories as follows, [CR], Section 5.5.

Theorem: We have the following isomorphisms of endo-functors of \mathcal{L}_{χ} :

EF ≃ FE ⊕ id ^{⊕ λ} if \200 EF ⊕ id ^{⊕ - λ} ≃ FE if \200 2.3) Minimal categorifications.

By a minimal Sh-categorification we mean a category C w an action of St s.t.

- · K(E) is a finite dimensional irreducible St-representation.
- · For its highest weight I, C, ~ Vect.

The following is a consequence of [CR], Proposition 5.26. It is an analog of the classification of finite dimensional irreducible SL-irreps.

Theorem: Minimal categorifications are classified by their highest weights.

One can construct the minimal categorification, $C(\lambda)$, w. highest weight I in several equivalent ways. For example, $C(\lambda) = \bigoplus H^*(Gr(x, \lambda)) - mod$

where $Gr(k,\lambda)$ is the Grassmanian of K-dimensional subspaces in

A direct analog of Theorem for general Kac-Moody algebras was established by Rouquier in [R], Section 5.1.2. For example, for type A Lie algebras of the minimel categorifications arise from the representation categories of "cyclotomic" (degenerate) Hecke algebras: ## FS,-mod is an example.