(lategorical) Hecke algebras & link invariants. - 1) Knots, links & braids. - 2) HOMFLY polynomial. 1) We start by introducing some terminology. A link (w. κ components) is a continuous embedding of S'U...US' (κ components) into R^3 Links are considered up to isotopy (a continuous family of diffeomorphisms) of R^3 . A link κ one component is called a knot. We will consider oriented links. Usually, Cinxs are presented by their diagrams: images under sufficiently general projections $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$. For example: Hopf Cink Trefoil One can similarly talk about isotopies of diagrams and isotopic diagrams give isotopic links. But the converse is not true, for example both diagrams below come from the "unknot" (the trivial embedding $S^1 \hookrightarrow \mathbb{R}^3$); It's known when two diagrams give rise to isotopic links: this is true if and only if the diagrams are obtained from one another by a sequence of so called Peidemeister moves depicted below (and planar isotopies): One can put orientations in R1-R3 arbitrarily. For example, the two diagrams in (2) are obtained from one another using (R2). Now we pass to braids. A braid is a configuration of strands in $\mathbb{R}^2 \times [0,1]$ connecting n fixed points in $\mathbb{R}^2 \times [0,1]$ connecting n fixed points in $\mathbb{R}^2 \times [0,1]$ so that the strands do not intersect and each projects isomorphically to [0,1]. Braids are viewed up to isotopy. They also can be presented by 2D diagrams (by projection to $\mathbb{R} \times [0,1]$), e.g. We orient braids bottom to top. It turns out that Proposition: two braids are equal iff their diagrams are obtained from one another by a sequence of planar isotopies and the analogs of R2 & R3. Braids form a monoid. The composition is the vertical stacking, e.g. and the unit is the trivial braid. This monoid is generated by the elements T_i , i=1,...,n-1, and T_i^{-1} which are different from T_i^{-1} by the order of crossing. The notation is suggestive: we have $T_i T_i^{-1} = T_i^{-1} T_i = 1$ the to R2. So the braids form a group. The proposition above can be restated as follows: Proposition': the braid group, Brn, on n strands is generated by Tiss w. relations: Finally, let's discuss a connection between braids & links. For a braid 6 we can define its closure b as follows: Different braids can give the same link. For example, let $a,b \in Br_n$. Then ab = ba. To see this note that both sides can be depicted as Also, let note that $B_{n} \hookrightarrow B_{n+1}$ so we can view any $6 \in B_{n}$, as an element of B_{n+1} . We claim that $\overline{6T_n}^{\pm 1} = \overline{6}$. E.g. for the + sgn, have Definition: By Markov's moves one means the following operations: (M1) for $a,b \in Br_n$ replace ab w. ba. (MZ) for 6∈ Br, replace 6 w. 6Tn = Br, or vice versa. Facts: I: Alexander - every link is the closure of some braid. II: Markov - if two braids give the same link, then one is obtained from the other by a sequence of Markov moves. 2) HOMFLY polynomial. There's no algorithmic way to decide when two diagrams represent isotopic links. We can try to address a weaker question: from a diagram produce a computable quantity that is the same when two diagrams represent isotopic links. A famous example of such an invariant is HOMFLY polynomial. Theorem/definition: There is the unique map $\angle \mapsto P(\angle): \{\angle Inks\} \longrightarrow \mathbb{Z}[a^{\pm i}, g^{\pm i}][(g-g^{-i})^{-i}]$ (where a, g are independent variables) satisfying the following two conditions: • P(unlink w. K components) = $\left(\frac{a-a^{-1}}{g-g^{-1}}\right)^k$ • Suppose L_+, L_-, L_o are three links whose diagrams are the same outside of a small circle, and inside of the circle we have L+ (X) L- (X) L. ()() Then we have the relation $a^{-1}P(L_+) - a P(L_-) = (q^{-1}q)P(L_o)$ We say that P(L) is the HOMFLY polynomial of L Example: Let's compute the HOMFLY polynomial of the Hopf Link: $$P(L_{-}) = a^{-2}P(L_{+}) + a^{-1}(q-q^{-1})P(L_{0}) = a^{-2}\left(\frac{a-a^{-1}}{q-q^{-1}}\right)^{2} + a^{-1}(a-a^{-1}).$$ Note that if P exists, then it's unique: Lo has one less crossing than L+ & L, and we can unlink every link by exchanging L+ w. L_ and vice versa. The existence of P is nontrivial. It can be constructed using the R-matrix for the quantum group $U_q(sl_n)$, see Sec 15.2 in V. Chari, A. Pressley "A guide to quantum groups." Now we explain a connection to Hecke algebras. By Fact II in the previous section, we can view P as a map $[B_{n} \rightarrow \mathbb{Z}[a^{\pm 1}, g^{\pm 1}][(q-q^{-1})^{-1}]$ Extend P by additivity to $\mathbb{Z}Br_n$ for all $d, \beta \in Br_n$ we have $a^{-1}P(\alpha T_i \beta) - \alpha P(\alpha T_i^{-1}\beta) = (q^{-1}q)P(\alpha\beta) \iff$ $P(\alpha(\alpha^{-1}T_{i}-\alpha T_{i}^{-1}-(q^{-1}q))\beta)=0$ So P: 7Br, $\longrightarrow \mathbb{Z}[a^{\pm i}, g^{\pm i}][(q-q^{-i})^{-i}]$ factors through the quotient of 7Br, by the relation $a^{-i}T_i - aT_i^{-i} = (q-q^{-i}), i=1,...n$. This quotient is nothing else but the Hecke algebra $\mathcal{H}_q(S_n)$. Rem*: "Categorification" allows to streighthen the HOMFLY polynomial to a function of three variables: a, q, z, known as the Khovanov-Rozansky homology. Even better, the KR homology is the homology of a complex of bigraded vector spaces and the invariant in question encodes the dimensions of bigraded pieces of the individual cohomology groups. Up to a normalization, P is obtained as the Euler characteristic of the complex (redu- | cing the number of variables from 3 to 2). There's a construction | |--| | of the KR homology due to Khovanov: M. Khovanov, Triply | | graded link homology and Hochschild homology of Soergel | | bimodules, arxiv: 0510265 based on a construction of Rouguier, | | R. Rouquier, Categorification of the braid groups, arXiv: 0409593. | | Namely, Rouguier defined a "group homomorphism" Br, -> K (SBim), | | where the target is the bounded homotopy category of the | | category SBim of Soergel bimodules. Khovanov then showed that | | applying the Hoch shild cohomology functor to the Rouguier complexes | | leads to a link invarient that coincides with the one previously | | defined by Khovanov & Rozansky. |