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There are 2 problems worth 12 points total. Your score for this homework
is the minimum of the sum of the points you’ve got and 10. Note that if
the problem has several related parts, you can use previous parts to prove
subsequent ones and get the corresponding credit. Each problem is in its
own section, which also features some discussion. You are responsible for
establishing claims in the “Problem” sections (for this problem set, these are
Sections 1.2 and 2.1). Note that Section 2.2 is not for credit.

As we haven’t covered much theory yet, the purpose of this problem set is to study
representations using elementary (e.g., Linear Algebra) means – and also to gain some
intuition into what the representations are. The problem set discusses arbitrary repre-
sentations of cyclic groups as well as irreducible representations of the “binary dihedral
group” (that will be introduced in the corresponding section).

1. Representations of cyclic groups

Let m > 1 be an integer, and consider the cyclic group G = Z/mZ. The pur-
pose of this problem is to describe the finite dimensional representations of G over an
algebraically closed field F. For this we need to recall the Jordan normal form (JNF)
theorem from Linear Algebra.

1.1. JNF Theorem. We start by recalling the notions of Jordan blocks and Jordan
matrices. Let n be a positive integer and λ ∈ F. Let In denote the identity matrix of size
n and Jn denote the matrix with 1’s right above the main diagonal and zeroes everywhere

else, e.g., J3 =

0 1 0
0 0 1
0 0 0

. A Jordan block Jn(λ), by definition, is λIn +Jn. For example,

J3(λ) =

λ 1 0
0 λ 1
0 0 λ

. A Jordan matrix is a block-diagonal matrix

diag(Jn1(λ1), Jn2(λ2), . . . , Jnk
(λk))

for some positive integers n1, . . . , nk and some elements λ1, . . . , λk. For example, the
following is an example of a Jordan matrix:λ 1 0

0 λ 0
0 0 µ

 , λ, µ ∈ F.

This class of matrices is important thanks to the following theorem.

Theorem 1.1. For every linear operator on a finite dimensional vector space over F there
is a basis in which it is presented by a Jordan matrix. Moreover, this matrix is uniquely
determined up to permuting the blocks.

And now we proceed to understanding the representations of G using this theorem.
1



2 MATH 353, HW1, DUE FEB 7

1.2. Problem, 4pts. a, 1pt) Let V be a finite dimensional vector space over F. Show
that there is a bijection between

• Representations of G in V (up to isomorphism of representations),
• and conjugacy classes linear operators on V of order dividing m (meaning operators
A with Am = IdV ), where, recall G = Z/mZ.

that depends on the choice of a generator in G.

b, 2pt) Suppose F is of characteristic 0 (e.g. C). Let V be a finite dimensional represen-
tation of G. Show that V is isomorphic to the direct sum of 1-dimensional representations,
each of the following form: if we view G as the group of mth roots of 1, then the one-
dimensional representations are given by g 7→ gk for some k = 0, . . . ,m − 1. Hint: you
need to use the JNF theorem and the binomial formula.

c, 1pt) Give a counterexample to the direct analog of the claim in b) when F has positive
characteristic.

2. Representations of binary dihedral groups

Let n be a positive integer. Let G be the following subset of GL2(C):

G = {
(
ε 0
0 ε−1

)
,

(
0 ε
−ε−1 0

)
|ε2n = 1}.

It is easy to see that G is a subgroup of order 4n. This group is known as the binary
dihedral group. The goal of this problem is to classify its finite dimensional irreducible
representations over C (the same classification will work over any algebraically closed
characteristic 0 field).

To start with this, consider the following two elements of G:

s =

(
0 1
−1 0

)
, t =

(
ε 0
0 ε−1

)
for a fixed primitive root of unity ε of order 2n.

Also note that the subgroup of G consisting of diagonal matrices, to be denoted by
H, is a cyclic group of order 2n. Essentially, our main tool to classify the irreducible
representations of G is to study their restrictions to H (whose representations we know
thanks to the previous problem) – compare to Remark in Section 2.4 of Lecture 2.

2.1. Problem, 8pts total. a, 1pt) Show that every element of G is uniquely written as
either tm or stm with m = 0, 1, . . . , 2n−1 with multiplication recovered from the relations
e = t2n, s2 = tn, sts−1 = t−1.

b,1pt) Deduce that there is a bijection between

• Representations of G in a finite dimensional vector space V (up to isomorphism),
• and pairs of operators S, T ∈ GL(V ) satisfying S2 = T n, T 2n = Id, STS−1 = T−1

(up to simultaneous conjugation).

c, 1pt) Show that the assignments sending t to z := ±1 and s to ±
√
zn define four

pairwise non-isomorphic 1-dimensional representations of G. Furthermore, show that
every 1-dimensional representation is isomorphic to one of these.

d, 1pt) Let V be a finite dimensional representation of G and v be an eigenvector for t
with eigenvalue λ. Check that sv is also an eigenvector for t, now with eigenvalue λ−1.
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e, 1pt) In the notation of the previous part, show that SpanC(v, sv) is a subrepresen-
tation in the representation V of G. Deduce that every finite dimensional irreducible
representation of G has dimension at most 2.

f, 1pt) Prove that if V is a 2-dimensional irreducible representation of G, then λ from
d) is not equal to ±1.

g, 1pt) Prove that V is uniquely recovered from λ(6= ±1) up to an isomorphism, and,
moreover, the irreducible representations corresponding to λ and λ−1 are isomorphic.
Hint: try to recover the matrices corresponding to s, t in a suitable basis.

h, 1pt) Conclude that G has exactly 4 one-dimensional (irreducible) representations
and n− 1 two-dimensional irreducible representations.

2.2. Not for credit. This part examines a special case of the so called McKay correspon-
dence. One point is: we’ll do something weird to get something nice (as often happens
in Mathematics). Another point is to practice tensor products of group representations.
We assume the Maschke theorem: representations of finite groups over C are completely
reducible (equivalently, are direct sums of irreducibles).

Note that the inclusion G ⊂ GL2(C) gives rise to the distinguished 2-dimensional
representation of G (by restriction) to be denoted simply by C2. Let V0, . . . , Vr be the
irreducible representations of G with V0 being the trivial representation (so that r = n+2).
We construct an un-oriented graph with vertices 0, . . . , r, where i and j are connected by
edges whose number is the multiplicity of Vi in C2 ⊗ Vj.

a) Show that this is well-defined: the multiplicity of Vi in C2 ⊗ Vj is the same as the
multiplicity of Vj in C2 ⊗ Vi. Hint: observe that C2 ∼= (C2)∗ as representations of G and
use the “tensor-Hom adjunction” together with the Schur Lemma.

b) Draw the resulting graph. Hint: restrict to H.

c) Google “Dynkin diagrams”. What you get in b) is the “Dynkin diagram of affine
type Dn” a.k.a. the “extended Dynkin diagram of type Dn”. If one removes the node 0,
one gets the “Dynkin diagram of type Dn”. And if you were to do this construction with
the group H (very easy), you would get the “Dynkin diagram of affine type A2n”. We’ll
see the subgroup of SL2(C) serving “E6” later.


