Lecture 1: Rings, ideals & modules I.
0) Introduction
1) Rings,
2) Ring homomorphisms.
3) Ideals
2) 24x chrs
References: mostly Section 1,2 in Chapter 1 of [AM] (+examples that are not present there).
unar we not present there.
BONUS: Non-commutative counterparts.
o) Introduction
The goal of the first part of the course is to study
1) Rings & their homomorphisms (this lecture)
2) Ideals
3) Modules (& their homomorphisms)
Here by studying we mean giving constructions/examples & establishing
various properties. It should be noted that these activities will be
important throughout the course.
1) Rings,
1,1) Definition:
Def: A (unital, associative) ring is a set A together w. two maps, +.: A×A -> A (addition & multiplication) s.t.
1

(i) A is an abelean group w.r.t. + (in particular, O∈ A, a E A ~ opposite -a EA). (ii) multipl'n, , 15 associative: (ab)c = a(6c) • distributive: (a+6)c=ac+6c, c(a+6)=ca+cb \ +a,6,ceA.
• has cont. 7/ · has unit : ∃ (autom. unique) 1∈A st. 1a=a1=a taeA. A is commutative if $ab = ba + ab \in A$. In this course we will mostly consider commutative rings. 1.2) Examples & constructions. 0) A = {0} (1=0). 1) Fields = comm've rings where every ato has an inverse e.g. Q,R,C,Fp (for prime p) 2) A = Z. 3) Kings of polynomials: A is a (commive) ring. (can take e.g. A=Q, C or Ketc.) · A[x] = { polynomials \(\sum_{iro} \a_i \times A, \, \fin. \text{ many \(\neq 0 \) \}, usual addition & multiplication of polynomials. · more general: $A[x_1,...,x_n] = \{polynomials \sum_{i_1,...,i_n} a_{i_1...i_n} x_n^{i_n} x_n^{i_n} \}$ $a_{i_1...i_n} \in A\}$ can be obtained by iterating the previous constrin, for example, $A[x_1, x_2] = A[x_1][x_2]$

· variation: Laurent polynomials $A[x^{\pm 1}] = \{ \sum_{i \in \mathcal{I}} a_i x^i \mid a_i \in A, fin.$ many nonzero }.

4) Products: (commive) rings A, Az ~ product $A_1 \times A_2 = \{(a_1, a_2) \mid a_i \in A_i \}$ w. componentwise t. e.g. (4,6) (6,6) = (2,6,26).

Def: A subring of a ring A is a subset BCA s.t.

B is a subgroup w.r.t. + $\cdot a, 6 \in B \Rightarrow ab \in B$

Then B is a ring itself (commutative if Ais).

Examples (of subrings) ·ZCQCRCC · A < A[x], A[x,...x,] < A[x,...x,], A[x] < A[x+1].

2) King homomorphisms

Def: Let A, B be rings. A map g: A -> B is a ring homomorphism if:

i) φ(q+q)=φ(q)+φ(q), φ(qq)=φ(q)φ(q) +q,q∈A. $ii) \varphi(1) = 1.$

Leun: the zero map $A \rightarrow B$ satisfies i) but not ii)

Examples & constructions:

- 0) If BCA is a subring, then the inclusion BC>A is a homomim.
- 1) 97: A, ×A2 -> Ai, i=1,2, Ti(q,2)=Q- is a homomim
- 2) How to think about homomims $P: A[x_1, x_n] \rightarrow B$ $\Rightarrow g = P|_{A}: A \rightarrow B \text{ homomim}; b_i = P(x_i), i = 1, ..., h, b_i \in B.$ Conversely, from $g: A \rightarrow B$ & b_1 ... $b_n \in B$, uniquely recover $P: P(\sum_{i_1...i_n} a_{i_1...i_n} x_1^{i_1} x_1^{i_1} x_n^{i_n}) := \sum_{\alpha} g(a_{\alpha}) b_1^{\alpha} a_{\alpha}^{i_1} b_n^{\alpha}$
- 3) A ring homom'm $\mathbb{Z} \to \mathbb{B}$ is unique 6/c $1 \mapsto 1$, it's given by $n \mapsto n \cdot 1$.
- 4) Compositions & inverses: $\varphi: A \to B$, $\psi: B \to C$ homomorphisms $\Rightarrow \psi \cdot \varphi: A \to C$ is also a homomorphism.
- $\varphi: A \to B$ a byective homom'm $\Rightarrow \varphi^{-1}: B \to A$ is also a homom'm (exercise). Here we say that φ is an isomorphism.

Exer: The image of a ring homomorphism is a subring.

3) Ideals

A is a commive ring

3.1) Definition & examples:

Def. An ideal in A is a subset ICA s.t.

(i) I is a subgroup of A wirt +, and (ii) \forall $a \in A$, $b \in I \Rightarrow ab \in I$.

Examples/constructions:

0) {03 < A, A < A are ideals.

1) Let $\varphi: A \rightarrow B$ be ring homomim. Then kery is an ideal (e.g. $a \in A$, $b \in \ker \varphi \Rightarrow \varphi(ab) = \varphi(a)\varphi(b) = 0 \Rightarrow ab \in \ker \varphi$).

2) $q_{i...}, q_{i} \in A$. The ideal generated by $q_{i...}, q_{i}$ is defined by $(q_{i...}, q_{i}) := \{ \sum_{i=1}^{n} b_{i} q_{i} \mid b_{i} \in A \}$. More generally, let X be a set & a, for x = X be elements of A. Then the ideal generated by the elements a_{x} is $(a_{x} | x \in X) := \{ \sum_{i=1}^{k} b_{i} a_{x_{i}} \text{ for } k \neq 0 \text{ & } x_{i} ... x_{k} \in X \}$ -finite A-linear combinations of elits a_x ($a_x | x \in X$) is the minimal (w.r.t. =) Ideal containing all a: if I = A is ideal w. ax & I \Rightarrow $(a_x | x \in X) < I$. The proof is left as an exercise.

Definition: An ideal of the form $(a_1...a_n)$ for some $n \in \mathbb{Z}_{z_0}$, equiv. (ax | x \in X) w. X finite, is called finitely generated. An ideal of the form (a) is called principal.

Rem: In reasonable ("Noetherian") rings all ideals are finitely generated. An example of such a ring is F[x,...xn], where F is a field - we'll prove a more general result (Hilbert basis theorem) a bit later in the course. It's quite vave that all ideals are principal. We'll discuss the most important class of rings, where this holds - principal ideal domains -also later in the course.

3) Every ideal in The or F[x], where F is a field, is principal.

Rem: For an ideal $I \subset A$, the equality I = A is equivalent to $1 \in I$. Further, if I contains an invertible element, say a, then $1 = aa' \in I \Rightarrow I = A$. In particular, any field F has exactly 2 ideals, 603 & F.

Exercise (to be used later) let A be a (commutative) ring. Suppose 603& A are the only 2 ideals in A, and they are distinct. Show A is a field.

3.2) Quotient rings: I C A ideal in a commutative ring \sim quotient group $A/I:=\{a+I|a\in A\}$ & group homonim $gr:A \rightarrow A/I$, $\Im(a):=a+I$.

Proposition: 0) For $a, b \in A$, the element $ab + I \in A/I$ depends only on a+I, b+I and not an a,b themselves.

1) The assignment $(a+I)\cdot(6+I):=ab+I$ defines a commutative ring strive on A|I(w.unit 1+I).

2) $\mathcal{T}: A \rightarrow A/I$ is a ring homomorphism (moreover, the ring strive on A/I is unique s.t. \mathcal{T} is a <u>ring</u> homomorphism)

3) Universal property" for A/I & 97:

Let $g: A \to B$ be a ring homom'm s.t. $I \subset \text{ker } g$. Then $\exists ! \text{ (notation means: there's unique) ring homom'm } g: A \mid I \to B$

s.t. 4 = 4 . T.

Equalities of homomorphisms like this are often depicted as "commutative diagrams". The homomorphisms are depicted as arrows and dashed arrows are used for homomorphisms whose existence and uniqueness we seek to establish. For example, the claim of 3) is represented by a commutative diagram as follows:

A/I---g--≤B

Proof (of Proposition): exercise.

Exercise 1: Show that φ is surjective $\Leftrightarrow \varphi$ is. Further show φ is injective $\Leftrightarrow \ker \varphi = I$.

BONUS: noncommutative counterparts, part 1.

Nonunital (but commutative) rings are not particularly important so we do not consider them. But noncommutative (unital) rings are of great importance. In this bonus & 2 subsequent ones, I'll explain how various constructions in the main body of the lectures work in the noncommutative setting.

B1) Examples. Below A stands for a (associve, unital) ring.

1) Fix $n \in \mathbb{Z}_7$. We can consider the ring Mat, (A) of $n \times n$ matrices w. coefficients in A w. usual matrix addition & multip-

Exercise: Identify Matm (Matn (A)) with Matmin (A).

2) Noncommutative polynomials:

Let x, x be variables. By a noncommutative monomial we mean a word in the alphabet x. X. They are multiplied by concatenation. The ring A(x, x, > of noncommutative polynomials consists of A-linear combination of noncommutative monomials w. natural addition & multiplication (elements of A commute with the X's)

Exercise: Give a description of homomorphisms $A(x_1,...x_n) \rightarrow B$ similarly to what was done in the lecture for the usual polynomials,

B2) Ideals in noncommutative rings,

The multiplication is no longer commutative so we get three versions of ideals.

Definition: · A left ideal in A is a subset ICA st.

1) I is an abelien subgroup of A (w.r.t.+)

2) + a∈A, 6∈I ⇒ ab ∈I.

· A right ideal is a similar thing but in 2) we require 6aEI.

· A two-sided ideal is a subset that is both left & right ideal.

Exercise: Let 9: A -B be a ring homomorphism. Then kery is a two-sided ideal.

For a two-sided ideal ICA can form the quotient ring 1/I. It enjoys properties analogous to Proposition from Sect. 3.2.

Example (of importance for Quantum Physics). The (first) Weyl

algebra; let F be a field. Then we consider

Weyl,: = F(x,y)/(xy-yx-1), 2-s, 2-s, 2-s, 2-s, 3-s, 3

Premium exercise: Weyl, has a F-basis of ordered monomials xiyi (i,je 7/20) "Premium": to be tried at your own risk.
$\chi^{i}y^{j}$ (i, $j \in \mathbb{Z}_{2n}$)
"Premium": to be tried at your own risk.