Lecture 10: Localization III / Integral extensions I

- 1) Localization of modules, contid.
- 2) Finite & integral algebras.

Ref: [AM], Sections 3, 3.1, 5.1

- 1) Localization of modules contid.
- 1.0) Reminder

Let $S \subset A$ be a multiplicative subset in a commutative ring, so that we can form the localization $A[S^{-1}]$. Let M be an A-module. We form the $A[S^{-1}]$ -module

 $M[S^{-1}] = \left\{ \frac{m}{5} \middle| m \in M, s \in S \right\},$

It comes w. an A-linear map (M -> M[S-1], M +> M.

The pair $(M[S^-], (M))$ has the following universal property: for an $A[S^-]$ -module N & A-linear map $S: M \to N \to A[S^-]$ linear $S': M[S^-] \to N$ w. $S' = S \circ (M, it's given by <math>S(\frac{M}{S}) = \frac{1}{5}S(M)$.

In particular, to $\psi \in Hom_{A}(M_{1}, M_{2})$ we can assign $\psi[S^{-1}] \in Hom_{A[S^{-1}]}(M_{1}[S^{-1}], M_{2}[S^{-1}])$ by $\psi[S^{-1}](\frac{m}{s}) = \frac{\psi(m)}{s}$. See Sec 2.2 in Lec 9 for Letails.

In this section we'll study interaction of localization w. kernels, images, quotients & direct sums, which will give us some tools to compute (in some sense) localizations of modules.

1.1) Localization us kernels and images.

Our next task is to relate Kery[5"], im y[5"] to Kery, imy.

Proposition: Let M, N be A-modules & WE Hom, (M,N)

i) $\ker (\psi[S^{-1}]) = (\ker \psi)[S^{-1}]$

ii) $im(\psi[S^{-1}]) = (im \psi)[S^{-1}]$

Proof: i) First, we check $\ker(\psi[S^{-1}]) \subset (\ker\psi)[S^{-1}]$ $\ker(\psi[S^{-1}]) = \{\frac{m}{S} \in M[S^{-1}] \mid 0 = \psi[S^{-1}](\frac{m}{S}) = \frac{\psi(m)}{S} \iff \exists$ $u \in S \mid u \psi(m) = o \iff um \in \ker \psi \} \subseteq [\frac{um}{us} = \frac{m}{S}] \subseteq (\ker \psi)[S^{-1}].$ Now $(\ker \psi)[S^{-1}] = \{\frac{m}{S} \mid \psi(m) = o \} \subset \ker(\psi[S^{-1}]), finishing (i).$

(ii) $im(\psi[S^{-1}]) = \{\psi[S^{-1}](\frac{m}{S}) = \frac{\psi(m)}{S}\} = (im\psi)[S^{-1}].$

Covollary: Let M be A-module, M'CM be an A-sub module.

Then there's a natural A[S-']-module isomorphism

(M/M')[S-1] ~> M[S-1]/M'[S-1].

Proof:

Apply Proposition to $\psi: M \rightarrow M/M'$, $m \mapsto m + M'$. Then $im(\psi[S^{-1}]) = (im\psi)[S^{-1}] = (M/M')[S^{-1}]; \ker(\psi[S^{-1}]) = (\ker\psi)[S^{-1}] = M[S^{-1}]/M'[S^{-1}] \stackrel{\sim}{\longrightarrow} (M/M')[S^{-1}]$

1,2) Localizations vs direct sum.

Let I be a set and M_i , $i \in I$, be A-modules so that we can form the direct sum $\bigoplus_{i \in I} M_i$.

Lemma: There's a natural isomorphism $\bigoplus (M_i[S^{-1}]) \xrightarrow{\sim} (\bigoplus M_i)[S^{-1}]$. Proof:

Set $M = \bigoplus M_i$. Consider the map $g: M \to \bigoplus (M_i[S^{-1}]),$ $(M_i) \mapsto (\frac{m_i}{1}), it's A-linear. By the universal property, it lifts to the <math>A[S^{-1}]$ -linear map $g: M[S^{-1}] \to \bigoplus (M_i[S^{-1}]), \frac{(m_i)}{S} \mapsto (\frac{m_i}{S})$

• \int is injective $\left(\int \left(\frac{(m_i)}{S}\right) = 0 \Leftrightarrow \frac{m_i}{S} = 0 + i\right)$ Let $I_s = \{i \mid m_i \neq 0\}$. This is a finite subset of I_s . For $i \in I_s$, $\frac{m_i}{S} = 0 \Leftrightarrow \exists u_i \in S \mid u_i m_i = 0$. Take $u = [T]u_i$ so that $um_i = 0 + i \in I \Rightarrow \frac{(m_i)}{S} = 0$

• 5' is surjective ($\forall \left(\frac{m_i}{S_i}\right) \in \bigoplus \left(M_i \left[S^{-1}\right]\right) \Rightarrow \left(\frac{m_i}{S_i}\right) \in im S'$). Let $I_i := \{i \in I \mid \frac{m_i}{S_i} \neq 0\}$ -finite set. Set $S := \bigcap_{i \in I_0} S_i$, $\widetilde{m}_i := \left(\bigcap_{j \in I_0} S_j\right) m_j$ so that $\frac{m_i}{S_i} := \frac{\widetilde{m}_i}{S_i} \quad \forall i \in I_j$. Set $\widetilde{m}_i := 0$ for $i \notin \widetilde{I}_j$. Then $\left(\frac{\widetilde{m}_i}{S_i}\right) \mapsto \left(\frac{m_i}{S_i}\right)$, showing the surjectivity.

Example: $M = A^{\oplus I}$ So $M[S^{-1}] \cong A[S^{-1}]^{\oplus I}$ —the localization of a free module is free.

1.3) A way to compute M[5"]

Assume M is finitely presented: $\exists A^{\oplus l} \xrightarrow{\mathfrak{I}} M$ with finitely generated ted kernel. Choosing generators in ker \mathfrak{I} gives a surjection $A^{\oplus k} \xrightarrow{\mathfrak{I}} k$ where an A-linear map $\psi \colon A^{\oplus k} \xrightarrow{\mathfrak{I}} A^{\oplus l} w$. $M \cong A^{\oplus k} / im \psi$, one can view this as a presentation of M by generators & relations.

By Sec 1.1, $M[S^{-1}] \cong A^{\oplus l}[S^{-1}] / im \psi[S^{-1}]$ & by example in Sec. 1.2

 $A^{\oplus l}[S^{-1}] = A[S^{-1}]^{\oplus l}$ So $M[S^{-1}] \simeq A[S^{-1}]^{\oplus l}/im \ \psi[S^{-1}]$. So we need to compute $\psi[S^{-1}]$. Recall (Sec 3.2 of Lec 2) that $\psi: A \xrightarrow{\oplus r} A^{\oplus l}$ is given by a matrix $Y \in Mat_{l \times k}(A)$, $Y = (a_{ij})$: if we view elits of $A^{\oplus r}$, $A^{\oplus l}$ as column vectors, then $\psi(v) = Yv$. Then $\psi[S^{-1}] : A[S^{-1}]^{\oplus k} \longrightarrow A[S^{-1}]^{\oplus l}$ is given by the matrix $(\frac{a_{ij}}{7})$ (exercise).

2) Finite and integral algebras.

In what follows A is a commutative ring & B is a commutative A-algebra (a ring w. fixed homomorphism from A)

The concepts of finite & integral A-algebras (and related results) generalize the concepts of finite & algebraic field extensions (and related results). They are important for Algebraic Number theory as we will see in subsequent lectures.

2.1) Main definitions.

Recall (Sec 2.2 of Lec 5) that B is finitely generated (as an A-algebra) if $\exists b_1...b_n \in B$ (generators) s.t. $\forall b \in B \exists F \in A[x_n...x_n] \mid b = F(b_1...b_n)$.

Definition: We say that B is finite over A if it is a finitely generated A-module.

In particular, finite => finitely generated but not vice versa:

A[x] is finitely generated as an A-algebra but is not finite.

Definition: Let B be a commutative A-algebra.

coeff = 1) $f \in A[x] / f(b) = 0$

· B is integral over A if $\forall b \in B$ is integral (over A).

Exercise: If B is integral over A & C is a quotient of B, then C is integral over A.

Rem: If A -B we can view A as a subring of B. We call B an extension of A and talk about finite/integral extensions.

2.2) Examples

1) Let A:=K, B:=L be fields. Here any homomorphism from A is injective, so L is a field extension of K. "L is finite over K" is the usual notion from the study of field extensions. And L is integral over K iff L is algebraic over K: if $l \in L$ & $g \in K[x]$ are s.t. g(l)=0 (i.e. l is algebraic over K) & $g=a_nx^n+a_{n-1}x^{n-1}...+a_n$ w. $a_n\neq 0$, then set $f=a_n^{-1}g$, it's monic and setisfies f(l)=0. So l is integral.

2) Let $f(x) \in A[x]$ be a monic polynomial. Then $\overline{x} := x + (f) \in B$: = A[x]/(f) is tautologically integral A. Also note that B is finite over A (spanned by $1, \overline{x}, \overline{x}^{d-1}$ for d := deg f). Below we'll see that B is integral over A.

3) Non-example: Let A be a domain $\& g(x) = a_n x^n + ... + a_n$ where a_n is not invertible (but $a_n \neq 0$). Then $\overline{x} = x + (f) \in B' := A/(g)$ is not integral over A: if $h \in A[x]$ is a monic polynomial w. $h(\overline{x}) = 0$, then h : g in A[x], which is impossible.

2.3) Finite vs integral

Reminder: For field extensions: finite \(= \left[algebraic & finitely generated (as a field extension) \right]. This generalities to rings.

Thm: Let B be an A-algebra. TFAE

- (a) B is integral and finitely generated A-algebra.
- (6) B is finite A-algebra.

The proof of $(a) \Rightarrow (b)$ is based on the following lemma. Note that if A_1 is an A-algebra & A_2 is an A,-algebra, then A_2 is also an A-algebra: for the homomorphism $A \rightarrow A_2$ take the composition $A \rightarrow A_1 \rightarrow A_2$.

Lemma 1: Suppose A, is finite over A & Az is finite over Az.
Then Az is finite over A.

Proof: Have q,..., a, ∈ A, & b,... be ∈ A, s.t. A, = Span (q,...ak), A, = Span (b,..., be).

Exercise: Az = Span, (a; b; li=1,..., l, j=1,... k)

Notation: For an A-algebra $B \& b_1,b_k \in B$ we write $A[b_1,b_k]$
for the A-subalgebra of B generated by 6, 6.
Proof of (a) \Rightarrow (6): say B is generated by some elements b_{k} b_{k}
as an A-algebra. We induct on k. Base: K=1: B is generated by 6 as A-algebra. b is integral over
A, let $f \in A[x]$ be monic s.t. $f(b) = 0$. Then the unique $A - algebra$ homomorphism $A[x] \rightarrow B$ w. $x \mapsto b$ factors as
$A[x] \longrightarrow A[x]/(f) \longrightarrow B$. Since b generates B, have $A[x] \longrightarrow B \Rightarrow$ $A[x]/(f) \longrightarrow B$. By Example 2 above, $A[x]/(f)$ is fin. gen'd A-module
\Rightarrow B is fin. gen'd A-module. Step 2: B is generated by b_2b_k (k-1 elits) over \widetilde{A} : = A[b_1] By inductive assumption, B is finite over \widetilde{A} . Now we apply Lemma
1 (to A, = A, Az = B) to finish the proof.
(b) \Rightarrow (a) will be proved in the next lecture.