Lecture 11: Finite & integral extension of rings, II

- 1) Finite and integral algebras, contid
- 2) Integral closure.

Ref: [AM], Sections 5.1, 5.3

1) Finite and integral algebras.

Last time, we have stated the following theorem.

Thm: Let B be an A-algebra. TFAE

- (a) B is integral and finitely generated A-algebra.
- (6) B is finite over A.

We've proved (a) \Rightarrow (6) & our first task now is to prove (6) \Rightarrow (a). Then we deduce some corollaries of the theorem parallel to those in the case of field extensions.

1.1) Caley-Hamilton type Cemma

This is the most essential ingredient in proving (6) => (a).

Lemma: Let M be a finitely generated A-module, $I \subset A$ an ideal, $\varphi \colon M \to M$ A-linear map $s \not\in \varphi(M) \subset IM$. Then there is a polynomial $f(x) \in A[x]$ of the form

(*) $f(x) = x^n + qx^{n-1} + \dots + q_n$ with $q_k \in I^k \neq k$

st f(q)=0.

Proof: Note that M upgrades to an AlxI-module w. x acting by φ . Pick generators $m_1, m_n \in M$. We have elements $a_{ij} \in I$, i=1, n s.t.

(1) $xm_i = \sum_{j=1}^n a_{ij}m_j$ Form the matrix $X = xI - (a_{ij}) \in Mot_n(A[x]) \rightarrow det(X) \in A[x]$. Note that det(X) is a polynomial f(x) softisfying (*)(exercise: hint - use that $det(X) = \sum_{g \in S_n} sgn(g) \bigcap_{i=1}^n X_{ig(i)} \& X_{ij} \in S_{ij} \times + I$). Also note that det(X) acts by f(y) on M. So it's enough to show that det(X) acts by O.

Let $\vec{M} = (M_{\underline{q}}, ..., M_{n})$ viewed as a column vector. Then $X \vec{m} = \vec{\delta}$ by (1). Consider the "adjoint" matrix $X' = (x'_{ij})$ w. $x'_{ij} = (-1)^{i \cdot j}$ det (the matrix obtained from X by removing row #i & column #j) so that $X'X = \det(X)$. Id. Then $X \vec{m} = \vec{\delta} \implies \det(X) \vec{m} = X'X \vec{m} = \vec{\delta} \implies (2) \qquad f(\varphi)m_{ij} = \det(X)m_{ij} = 0 \implies i$.

Since m_1 , m_n span the A- (and hence A[x]-) module M, (a) $\Rightarrow f(\varphi)m = dxt(X)m = 0 \quad \forall m \in M$. This finishes the proof \square

Rem: Caley-Hamilton lemme in Linear algebra is the claim that for a finite dimensional vector space V & a linear operator ψ : $V \rightarrow V$ we have $X(\psi) = 0$, where X is the Characteristic polynomial. It's proved similarly to the lemma above.

1.2) Proof of (6) ⇒(a) Let B be a finite A-algebra. It's finitely generated as an A-algebra b/c module generators are algebra

generators. It remains to Show that $\forall b \in B$ is integral over A.

In Lemme we take M:=B, $\varphi: M \to M$, $m \mapsto bm$, I=A. We conclude: $\exists monic polynomial f \in A[x] s.t. f(\varphi) = 0 \Rightarrow 0 = f(\varphi)1 = f(b)$ $\Rightarrow b$ is integral over A.

Exercise: Under the assumptions of Thm, if A is Noetherian, then B is Noetherian.

1.2) Consequences of Thm.

Corollary 1: i) If $f(x) \in A[x]$ is monic, then A[x]/(f(x)) is integral over A.

— ii) If B is an A-algebra & L∈B is integral over A, then A[d] is integral over A.

Proof: exercise.

Covollary 2 (transitivity of integral algebras): If B is an A-algebra integral over A, and C is a B-algebra integral over B, then C is an integral A-algebra.

Note that this corollary generalizes the transitivity of algebraic field extensions. The proof is similar to that case.

Proof: Take $Y \in C$; it's integral over $B \cap J = b_0, b_{k-1} \in B$ s.t. $J \in B$ So $J \in B$ is integral over $A[b_0, b_{k-1}] \subset B$. But

bo, ... br., are integral over A. We use (a) ⇒ (6) of Thm to Show that A[6,...6,] is finite over A, while A[6,...6,...8] < C is finite over A[6,-6k-,] so A[6,-6k-1,8] is finite over A. By (b) ⇒(a) of Thm, 8 is integral over A and we are done.

2) Integral closure.

2.1) Definition & basic properties

Proposition 1: Let B be an A-algebra. If $d,\beta \in B$ are integral over A, then so are $d+\beta,d\beta,a\lambda$ ($\forall a\in A$).

Proof: Consider subalgebras $A[A] \subset A[A,B] \subset B$, A[A] is integral over A[A] the Cor 1. By Corollary 2, Ala, B] is integral over A. Since &B, d+B, ad ∈ A[d, β], they are integral over A. □

Covollary /definition: The elements in B integral over A form an A-subalgebra of B called the integral closure of A in B. Weill denote the integral closure by \overline{A}^B

Example: If $A=K\subset B=L$ are fields, then K^L is the algebraic closure of Kin L.

Proposition 2: The integral closure of AB in B is A.

Proof: apply Corollary 2, left as exercise.

2.2) Rings of algebraic integers. Definition: Let K be a finite field extension of Q. The integral closure of Z in K is called the ring of algebraic integers in K.

Example: Let K=Q. Then ZQ = N. Indeed, assume & \(\frac{1}{6} \in \mathbb{Z} \) (\(\frac{1}{6} \in \mathbb{Z} \), $CD(a, 6)=1) \Rightarrow \exists ! f(x) = x^n + c_{n-1}x^{n-1} + ... + c_n w. c_i \in \mathbb{Z} | f(\frac{a}{6}) = 0 \Leftrightarrow$ $a^n + c_{n-1}a^{n-1}b + ... + c_nb^n = 0 \Rightarrow a^n : b \Rightarrow [CCD=1] b = \pm 1 \Rightarrow \frac{a}{b} \in \mathcal{H}.$

Let's consider a special case K=Q(VZ) w. square-free d (= d not divisible by p2 + prime p).

Proposition: Let I be a square-free integer, and K=Q(Jd). Then $\mathbb{Z}^K = \int \mathbb{Z}[\sqrt{d}]$ if d = 2 or $3 \mod 4$ $\left\{a + 6\sqrt{d} \mid a, 6 \in \mathbb{Z} \text{ or } a, 6 \in \frac{1}{2} + \mathbb{Z}\right\}$ if $d = 1 \mod 4$.

Proof: We need to understand when $\beta = a + 6\sqrt{d}$ (a, 6 \in Q), is integral over Z.

Claim: TFAE

- (i) B is integral over Z,
- $(ii) 2a, a^2 b^2 d \in \mathbb{Z}.$

Proof of Claim: Set $\overline{\beta}$:= a-6 \sqrt{a} . Note that $\beta+\overline{\beta}=2a$, $\beta\overline{\beta}=2a$ $a^2-b^2d \in \mathbb{Q}$. So $(x-\beta)(x-\overline{\beta})=x^2-2ex+(a^2-b^2d)$, hence $(ii) \Rightarrow (i)$.

Now assume (i). Note that B → B is a ring homomorphism $\mathbb{Z}[\sqrt{d}] \to \mathbb{Z}[\sqrt{d}]$. So for $f(x) \in \mathbb{Z}[x]$ we have $f(\bar{\beta}) = f(\beta)$. Hence if $f(\beta)=0$, then $f(\bar{\beta})=0$. In particular, if β is integral over \mathbb{Z} , then B is integral. By Proposition 1 of Section 2 of Lecture 9, $\beta + \overline{\beta}$, $\beta \overline{\beta} \in \mathbb{Q}$ are integral over \mathbb{Z} . By Example, elements of \mathbb{Q} integral over TL are integers. (ii) follows.

Now we get back to the proof of Proposition. The following claim is elementary Number theory.

Exercise If d=2 or 3 mod4, then (ii) \Rightarrow 36672; if $d \equiv 1 \mod 4$, then (ii) \iff either $q, 6 \in \mathbb{Z}$ or $q, 6 \in \mathbb{Z} + \frac{1}{2}$.

D

Claim & exercise finish the proof of Proposition.

Kemark: The rings of algebraic integers are the most important integral closures. The reason: they are of crucial importance for Number theory as they appear in various classical number theoretic questions, e.g.

• the claim that a prime p is the sum of two squares if $p \equiv 1 \mod 4$ is proved using Gaussian integers, $\mathbb{Z}[\sqrt{-1}]$, in particular using that it's a UFD.

· integer solutions to $a^2-db^2=\pm 1$ are closely related to invertible elements in the ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$.

· Let $K = Q(\sqrt[3]{1})$. If $\sqrt[7]{K}$ is UFD, then Fermat Last theorem holds for deg p.

2.3) Normal domains.

Let A be a domain

Definition:

A is normal if it coincides with its integral closure in the fraction field Frac (A).

Special cases:

1) L is a field, $A \subset L$ is a subring. Claim: \overline{A}^L is normal. Indeed, \overline{A}^L is integr. closed in L & Frac $(\overline{A}^L) \subset L \Longrightarrow \overline{A}^L$ closed in Frac (\overline{A}^L) .

In particular, any ring of algebraic integers is a normal domain. As a concrete example, for square-free d, $\mathcal{I}[Sd]$ is normal iff d = 2 or $3 \mod 4$ (for $d = 1 \mod 4 \Rightarrow \mathcal{I}[Sd] \neq its$ int. closure in Q(Sd)).

2) UFD ⇒ normal. The argument is similar to the case of Z & is left as exercise.