Lecture 12: Integral & finite algebras II

- 1) Dederind domains
- 2) Unique factorization of ideals.

Refs: [V], Section 9.3; [N] Sec 1.3.

- 1) Dederind domains
- 1.1) Definition and main example.

Let A be a domain.

Definition: We say A is a Dedexind domain if

- · A is Noetherian
- · it's normal (Sec 2.3 of Lec 11), i.e. A Frac(A) = A.
- · Levery nontero prime ideal is maximal.

Example: PID A is Dedexind. Indeed, \forall PID is tautologically Noetherian & is a UFD, hence normal (Sec 2.3 of Lec 11). Every nonzero prime ideal is of the form (p) for prime $p \in A$. It's maximal: if $(f) \supseteq (p)$, then f divides $p \Rightarrow f = \varepsilon$ or εp for invertible p.

The following is the main result of this section, a reason why Dedekind domains are important for Number theory.

Theorem: Every ring of algebraic integers (= integral closure Theorem a finite extension L of Q, Sec 2.2 in Lec 11) is Dedexind.

1.2) Finiteness of integral closures.

The main part of the proof of Thm is to show that \mathbb{Z}^L is finite over \mathbb{Z} (e. K.a. finitely generated abelian group). We will consider a more general situation.

Let A be a domain, K= Frac (A), KCL finite field extension.

Proposition: Suppose A is Noetherian and normal & char K=0. Then \overline{A}^L is a finite A-algebra

Applying this to A= 7/2 (so K=Q), get

Corollary: 7/2 is finite over 7/2 (and hence Noetherian).

Side remark: Proposition is true in the cases when A is a domain that is a finitely generated algebra over 7% or over a field ([E], Thm 4.14) or when A is a Dedexind domain (a special case of [E], Thm 11.13), but not true just under the Noetherian assumption.

1.3) Reminders from Linear algebra

In the proof of the proposition we'll need some constructions from Linear algebra that we recall now.

Let K be a field and V a finite dimensional vector space/K.

1.3.1) Bilinear forms

By a bilinear form on V we mean a bilinear map $p: V \times V \to K$. We say β is symmetric if $\beta(u,v) = \beta(v,u) + u,v$, and non-degenevate if $\forall u \in V \setminus \{0\} \exists u' \in V \text{ s.t. } \beta(u,u') \neq 0$.

Now choose a basis $e_{i}...e_{n} \in V$ so that $K^{n} \xrightarrow{\sim} V((e_{i}...e_{n}) \mapsto \sum_{i=1}^{n} e_{i}e_{i})$ We view elements of V as column vectors. Then every bilinear g is given by $g(u,v) = u^{T}Bv$ for unique matrix $g(g) = g(e_{i},e_{j})^{n}$. We have: g is symmetric g is symmetric; g is non-degenerate. g is non-degenerate.

Exercise 1 Let β be non-degenerate β symmetric. Show that: 1) $\exists !$ "dual basis" e^i , i = 1, ... n, characterized by $\beta(e_i, e_j) = \delta_{i,j}$ (take

the columns of B')

2) $\forall v \in V \Rightarrow v = \sum_{i=1}^{n} (e_i, v)e^i (hint: \beta(v - \sum (e_i, v)e^i, e_i) = 0 \ \forall i).$

1.3.2) Trace

Let $\psi: V \to V$ be a linear operator. By the trace of ψ , $tv(\psi)$, one means the sum of diagonal entries of the matrix of ψ in any basis of V. Equivalently, if $\lambda_1...\lambda_n$ $(n=\dim V)$ are eigenvalues of ψ with multiplicities, then $tv(\psi) = \sum_{i=1}^n \lambda_i$.

1.4) Proof of Proposition

Let $\dim_{\mathbb{R}} L = n$. Every element 2EL gives a K-linear operator $m_{2}: L \to L$, $l \mapsto dl$. So for 2EL it makes sense to speak about $tr(d):=tr(m_{2}) \in K$. The proof will be in 4 steps.

Step 1: Show that $A \in \overline{A}^{L} \Rightarrow tr(A) \in A$ (here we use that A is normal).

Step 2: Define $\beta(x,y) = tr(xy)$, a bilinear form $L \times L \to K$. Since $xy = yx \Rightarrow m_x m_y = m_y m_x \Rightarrow \beta$ is symmetric We'll show that β is non-degenerate (here we use that char K = 0)

Step 3: We show ∃ basis e,...e, of Lover K lying in A.C.
Thx to Step 2 & 1) of Exercise 1 ∃ dual basis e,...e ∈ L.

Step 4: We use 2) of Exercise 1 to show $\overline{A}^{L} \subset M$: = Spen $(e, ..., e^{n})$ & use that A is Noetherien to conclude \overline{A}^{L} is a fin. gen'd A-module.

Proof of Step 2: β is nondegenerate, i.e. $\forall u \in L \exists u' \in L \mid t' \in L \mid t$

Indeed, let u_i, u_i, \dots, u_k be the pairwise distinct eigenvalues of m_i (elements of some finite extension Z of L) w. multiplicities d_i, \dots, d_k . Then $tr(u^m) = \sum_{i=1}^k d_i u_i^m$

Consider equations $\sum_{i=1}^{k} u_i^m d_i = 0$ for m = 1,...k. We view them as the system of linear equations on $d_1,...d_k$ w. matrix $X = (u_i^m)_{i,m=1}^k$, essenti-

ally, the Vandermonde matrix. We have $\det(X) = \int_{i=1}^{\kappa} u_i \cdot \int_{i>j} (u_i - u_j)$. By our convention, $u_i \neq u_j$ for $i \neq j$ so the 2nd factor is nonzero. Also $u \neq 0$ $\Rightarrow m_u$ is invertible $\Rightarrow u_i \neq 0$ $\forall i$, so $\int_{i=1}^{\kappa} u_i \neq 0$. So $\det(X) \neq 0$. We conclude that $d_i = \int_{i=1}^{\kappa} d_i = 0$ (in I), which is impossible: $d_i \in I_{i>0}(X) \in I_{i>0}(X)$ Char I = 0. This contradiction shows $tr(u^m) \neq 0$ for some i, hence f(x) is non-degenerate.

Proof of Step 3: one can choose a basis of L over K lying in \overline{A}^L Pick a basis $l_1...l_n$ of L over K. We claim $\exists \ a_1...a_n \in A \setminus \{0\}$ s.t. $e_i := a_i l_i \in \overline{A}^L$

Choose $f \in K(x)$, $f(x) = x^m + \sum_{i=0}^{m-1} b_i x^j$ w. $b_i \in K$ is s.t. $f(l_i) = 0$. \forall $a_i \in A \setminus \{0\} \Rightarrow 0 = a_i^m f(l_i) = \widehat{f}(a_i l_i)$, where $\widehat{f} = x^m + \sum_{j=0}^{m-1} b_j a_i^{m-j} x^j$. Choose $a_i \in A$ w. $a_i \cdot b_j \in A$ $\forall j \Rightarrow \widehat{f} \in A[x] \ \&$ is monic $\Rightarrow e_i := a_i l_i \in \overline{A^L}$

Proof of Step 4: that $\overline{A}^{\prime} \subset M = Span_{A}(e^{i}) \& \overline{A}^{\prime}$ is fin. gen'd.

Pick $a \in \overline{A}^{\prime}$ By Exercise 1, $a = \sum_{i=1}^{n} \beta(e_{i}, a)e^{i}$. By Step 3, $e_{i} \in \overline{A}^{\prime}$ $\Rightarrow e_{i}a \in \overline{A}^{\prime}$. By Step 1, $\beta(e_{i}, a) = tr(e_{i}a) \in A$. So $a \in M \Rightarrow \overline{A}^{\prime} \subset M$.

M is finitely generated A-module. Since A is Noetherian, Corollary in Sec 3 of Lec 5, shows M is Noetherian $\Rightarrow \overline{A}^{\prime}$ is finitely generated A-module.

1.3) Proof of Theorem

Set $B:=\overline{Z^L}$. It's a finitely generated Z-module by Proposition 8 normal by Example 1) in Sec 2.3 of Lec 11.

It remains to show that every nontero prime ideal BCB is maxil The domain B/B is a field.

Step 1: We claim that \forall nonzero ideal $I \subset B \Rightarrow I \cap \mathbb{Z} \neq \{0\}$. Pick $\varrho \in I \setminus \{0\}$ & let $f \in \mathbb{Z}[x]$ be monic s.t. $f(\varrho) = 0$ & has min. deg. w. this property; $f(x) = x^n + c_{n-1}x^{n-1} + ... + c_{\sigma}(\cdot; \in \mathbb{Z})$. Note that: • $c_{\sigma} \neq 0$ - otherwise for g(x) = f(x)/x still have $g(\varrho) = 0$. • $c_{\sigma} = -a^n - c_{n-1}a^{n-1} - c_{\sigma}e \in I \cap \mathbb{Z}$.

Step 2: Note that $\beta \cap \mathcal{H}$ is an ideal in \mathcal{H} . We have $\beta \cap \mathcal{H} \neq \{0\}$ $\Rightarrow \mathcal{H}/(\beta \cap \mathcal{H})$ is finite set. Since β is finitely generated module over β , hence over β is finitely generated module over β , hence over β is finite as a set. But every domain finite as a set is a field (exercise - hint: every injective map from a finite set to itself is bijective) so β is maximal.

2) Unique factorization for ideals.

Our next goal is to prove the following theorem going back to Dedexind, which also explains why we care about Dedexind domains.

Theorem: Let A be a Dedexind domain & I < A a nonzero ideal.

Then I prime ideals $\beta_1,...,\beta_k$ unique up to permutation s.t. $I = \beta_1...,\beta_k$.

In other words, the unique factorization, which may fail on the
In other words, the unique factorization, which may fail on the level of ideals.
In the proof we need the following lemma:
8
Lemma: Let A be Noetherian & ICA be a nontero ideal. Then 3
nonzero prime ideals & & cA s.t. I > & &n.
Proof:
Let X be the set of all I for which the claim fails. If X # 0
then \exists maxil w.r.t. inclusion $J \in X$ (6/c A is Noetherian). Then J isn'
prime $\Rightarrow \exists J_1, J_2 \neq J \text{ w. } J_1J_2 \subseteq J$. Then $J_j \notin X$ leading to contra-
diction (exercise). \Box
WOLIDA (CAROLISE).