Lecture 13: Connections to Algebraic Number theory

- 1) Unique factorization for ideals, contid
- 2) Noether normalization lemma.

[N] Sec 1.3, Sec 1.6.

1) Unique factorization for ideals, cont'd 1.0) Reminder

Recall (Sec 1.1 of Lec 13) that a Dedexind domain is a normal Noetherian domain where every nonzero prime ideal is maximal. Our goal in this section is to prove

Theorem: Let A be a Dedexind domain & I < A a nonzero ideal.
Then I prime ideals \$1,... \$1,... \$2. unique up to permutation | I = \$1... \$2.

1.1) Fractional ideals.

This is the first tool we need to prove the theorem.

Definition: A fractional ideal for A is a finitely generated nonzero A-submodule of K:=Frac(A).

Special cases: 1) $\forall A \in K \setminus \{0\}$, $A_A = \{a_A \mid a \in A\}$ is a fractional ideal (called principal).

2) the nonzero ideals in A = the fractional ideals contained in A.

We'll need two operations on fractional ideals

Lemma: Let $I, J \subset K$ be fractional ideals. Then $IJ := \{ \sum_{i=1}^{n} a_i b_i | a_i \in I, b_i \in J \}$

J-1 = { e = K | a J < A }

are fractional ideals

Proof: we'll give a proof for J'leaving the case of IJ as an exercise (hint: this is similar to product of ideals, Sec 1 of Lec 2).

If $a, b \in J^{-1} \& c \in A$, then a+b, $ca \in J^{-1}$. Also $0 \in J^{-1}$. So, J^{-1} is an A-submodule. To show it's finitely generated, let $a \in J \setminus \{0\}$. Then $a \in J^{-1} \Rightarrow ad \in A \Rightarrow a \in Ad^{-1} \Rightarrow J \subset Ad^{-1}$. Since A is Noetherian, J is fin. gen'd.

Rem: We have (II) L = I(JL), IJ = JI & AI=I by construction

Example: Let $A = \mathbb{Z}[\sqrt{-5}]$, $J = (2, 1+\sqrt{-5})$. Then $J^{-1} = \{a \in \mathbb{Q}(\sqrt{-5})\}$ 22, $\{1+\sqrt{-5}\} \neq \{a+6\sqrt{-5}\}$ 20, $26 \in \mathbb{Z}$; $a+6 \in \mathbb{Z}$ $\{3=\frac{1}{2}\}$.

1.2) Auxiliary results

Last time we've proved.

Lemma: Let A be Noetherran & ICA be a nontero ideal. Then ∃ nonzero prime ideals \$1... \$n CA s.t. I > \$1... \$n.

The proof of Thm is based on the following claim:

Proposition: Let $J, \beta \in A$ be nontero ideals s.t. β is maximal. Then

1) $J\beta^{-1} \neq J$

2) \$\$-1 = A & J\$-1 ⊆ A for J⊆\$.

3) J= \$ (J p-1)

4) If $J' \subset A$ is an ideal w. $J = \beta J' \Rightarrow J' = J = J = J'$ Proof:

1): A < p⁻¹ ⇒ J ⊂ J p⁻¹. WTS J≠ J p⁻¹ This is the main part of the proof.

Case 1: J = A: we need to find an element in $A\beta^{-1} \setminus A = \beta^{-1} \setminus A$ Take $a \in \beta \setminus \{0\}$. By Lemma, \exists prime ideals $\beta_1,...,\beta_n \neq \{0\} \mid \beta_1...,\beta_n \subset (a)$, we can assume that $\bigcap_{i \neq j} \beta_i \neq (a) \neq j = 1,... n$ (else we remove β_j).

Since $a \in \beta$, we have $\beta_{n} ... \beta_{n} (c(a)) c \beta$. Since β is prime, $\beta_{i} c \beta$ for some i, w.l.o.g. assume i=n. But every nonzero prime ideal is maximal, incl. $\beta_{n} \Rightarrow \beta_{n} = \beta$. Take $b \in \beta_{n} ... \beta_{n-1} \setminus (a) \Rightarrow a^{-1}b \in K \setminus A$. But $b \in \beta_{n} ... \beta_{n-1} \beta_{n-1} = \beta_{n-1} \beta_{n} c(a) \Leftrightarrow a^{-1}b \beta c A \Leftrightarrow a^{-1}b \in \beta^{-1} \Rightarrow \beta^{-1} \neq A$.

Case 2: general J. Assume $J \beta^{-1} = J$. Take $y \in \beta^{-1} \setminus A$. Then $y = J \in J \beta^{-1} = J \longrightarrow A$ -linear map $g: J \to J$, $a \mapsto y a$. Since J is a fin. gen'd A-module, the Ceyley-Hamilton type lemme (Sec 1.1 of Lec 11 applied to M:=J I=A) shows \exists monic $f \in A[x]$ w. f(y)=0. But $f(y): J \to J$ is given by $a \mapsto f(y)a$. Take $a \neq 0 \to f(y)=0 \Rightarrow y \in A$. But $A^K = A$. Contradiction $w. y \notin A$. \square of 1)

^{2):} Note that JB-1CBB-1CA (exercise). Since B is maximal &

1.3) Proof of Theorem

Existence: assume the contrary: there's a nonzero ideal JCA that is not a product of primes. Since A is Noetherian we can choose J to be maximal w. this property. We can find a maximal ideal & s.t. JCB.

Taxe $J': = J \not = !$ By 1) of Prop'n, $J \not = J'$, by 2) $J' \in A$ & by 3), $J = \not \in J'$. By the choice of J, $J' = \not \in J'$ some primes $\not \in J'$. $\not \in J'$.

Uniqueness: Let $J = \beta_1 ... \beta_e = q'_1 ... q'_k$, where $\beta_1 ... \beta_e$, $q'_1 ..., q'_k$ are maximal ideals. Since $\beta_1 ... \beta_e = q'_1 ... q'_k \subset q'_k \in q'_k$ is prime $\Rightarrow \beta_i \subset q'_k \Rightarrow \beta_i = q'_k$ for some i. W.L.o.g. i = l. By 4) of Proposition, $\beta_1 ... \beta_{e-1} = J \beta_e^{-1} = q'_1 ... q'_{k-1}$ & we argue by induction on l.

1.4) Class group

Let FI be the set of all fractional ideals & PFI be the subset of all principal fractional ideals. The product of fractional ideals equips FI with an abelian group structure (the inverse is J-1-4)

to check $JJ^{-1}=A$ one reduces to the case when $J\subset A$ using $J\subset A$ as for some d, then applies the theorem & $\beta\beta^{-1}=A$). FPI is a subgroup. The quotient CL(A):=FI/PFI is called the class group of A. It, roughly speaking, measures how far A is from being a PID.

Bonus discussion

Much is known about the class groups of the rings of algebraic integers - and yet much is not known.

The following is Theorem 6.3 in [N], Chapter I.

Theorem: Let L be a finite extension of Q. Then $|Cl(\overline{Z}^L)| < \infty$.

To get a better understanding of $CL(\overline{Z}^L)$ is an important problem in Number theory, even for $L=Q(\overline{J}_L)$ (which goes back to Gauss), where even some basic things are not known. For a survey of recent developments one can check

A. Bhand, M.R. Murty "Class numbers of quadratic fields", Hardy-Romanujan journal 42 (2019), 1-9.

2) Noether normalization lemma.

We now switch gears & prove an important result about finite extensions of rings.

Recall that a finitely generated field extension is a finite extinof a purely transcendental one. Here's an analog for rings.

Theorem (Noether). Let F be a field, A a fin generated

F-algebra. Then = m70 & F-algebra inclusion F[x,...xm] -A

s.t A is finite over F[x,...xm]

We'll only prove this when IF is infinite, where a proof is easier. For a general case, see [E], Lemma 13.2 & Theorem 13.3.

Key lemme: Assume F is infinite, $F \in F[x_1,...x_n]$ is nonzero. Then $\exists F$ -Ginear combinations $y_1,...,y_{n-1}$ of variables $x_1...x_n$ s.t. $F[x_1,...x_n]/(F)$ is finite over $F[y_1,...,y_{n-1}]$.

Proof of Cemma:

 $F = f_0 + ... + f_k$, f_i is homogeneous of deg = i, $f_k \neq 0$. Special case: $a := f_k(0,...,0,1) \neq 0$. Note that a is the coeffit of X_n^k in f_k , so in F, $g_i \in F(x_i,...,x_{n-1}) = g_i(x_i,...,x_{n-1}) = g_i(x$

General case: F is infinite & $f_k \neq 0 \Rightarrow \exists a_1,...,a_n \in F \mid f_k(a_1,...a_n) \neq 0$ (exercise, hint: view F as an element of $F[x_1,...x_n][x_n]$ & induct on n). Picx invertible $P \in Mat_{n \times n}(F)$ s.t

 $\mathcal{P}\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$

Consider $F = F \circ P$ as a function $F \to F$ (polynomial obtained from F by linear change of variables). Then $f_{\kappa}^{\varphi}(0,...,0,1) = f_{\kappa}(q_{1}...q_{n}) \neq 0$.

So $F[x_{1}...x_{n}]/(F^{\varphi})$ is finite over $F[x_{1}...x_{n-1}]$, hence $f(x_{1}...x_{n})/(F)$ is finite over $f(x_{2}...x_{n-1})$ is $f(x_{1}...x_{n-1})$ is $f(x_{1}...x_{n-1})$.

Proof of Thm: Pick <u>minimal possible</u> m s.t. \exists \mathcal{G} : $\mathbb{F}[x_1,...,x_m]$ $\longrightarrow A$ & A is finite over $\mathbb{F}[x_1,...,x_m]$. Such m exists b/c A is finitely generated, hence a quotient of $\mathbb{F}[x_1,...,x_n]$ for some n. It remains to prove the following:

Claim: q is injective.

Proof of claim:

Assume the contrary: $\exists F \in \ker \varphi, F \neq 0$. By Key Lemma $F[x_1, x_m]/(F)$ is finite over $F[y_1, y_m] \in \mathbb{R}$ A is finite over $F[x_1, x_m]/(F)$ (b/c φ factors through $F[x_1, x_m]/(F)$). By Lemma 1 in Section 2.3 in Lecture 10 A is finite over $F[y_1, y_m]$. Contradiction w. choice of m. \square