Lecture 15: Connections to Algebraic geometry, II.

- 1) Prime ideals, irreducibility & components.
- 2) Algebra of polynomial functions
- 3) Geometric Significance of localization.

Refs: [V], Sec 9.6; [E], Intro to Sec 2, Sec 3.8.

0) Reminder from Lec 14.

Below F denotes an algebraically closed field.

Here are some results & definitions from Lec 14. For a subset $X \subset \mathbb{F}^n$, we write I(X) for $\{f \in \mathbb{F}[x_1, x_n] | f(x) = 0 \ \forall \ x \in \mathbb{F}^n \}$.

For ideal $I \subseteq F[x_1,...,x_n]$ we write V(I) for $\{x \in F^n | f(x) = 0 \ \forall f \in I\}$. We know that V(I) = V(JI) (iii) in Sec 1.4).

- I) Corollary in Sec 1.2: \forall ideal $I \subset F[x_n, x_n]$, there's a bijection between $\{ \max \text{ ideals in } F[x_n, x_n]/I \}$ & V(I), it sends $A \in V(I)$ to $M_2 = \{ f + I | f(A) = 0 \}$
- II) Proposition in Sec 1.4: $I \mapsto V(I) \& X \mapsto I(X)$ are mutually inverse bijections between {radical ideals (i.e. I = JI) in $F[x_1, x_n]$ and {algebraic subsets in F^n }. Moreover (Exercise in Sec 1.4), these maps reverse inclusions.
- III) Lemma in Sec 1.4: For ideals $I, J \subset F[x_1...x_n] \Rightarrow V(IJ) = V(INJ)$ = $V(I) \cup V(J)$.

Remark: Here's the (double) point of what's going to happen in this lecture (as well as in some future lectures & homeworks).

- · Algebraic geometry studies the geometry of spaces defined by polynomial equations (of which algebraic subsets of Fⁿ are basic examples). Most constructions/definitions/results in Algebraic geometry (ultimately) can be translated to the language of Commutative algebra.
- · Most constructions in Commutative algebra have geometric interpretation/meaning

Below we are going to see some exemples of this

1) Prime ideals, irreducibility & components.

1.1) Prime ideals vs irreducible subsets

Let $\beta \subset \mathbb{F}[x_n, x_n]$ be a prime ideal. It's radical: $a_i a_i \in \beta \Rightarrow a_i$ or a_i $\in \beta$, so $a^1 \in \beta \Rightarrow a \in \beta$. Our question is: what can we say about $V(\beta)$?

Definition: an algebraic subset X in F' is called

· irreducible: if X cannot be represented as X, UX, where X; \(\xi \) X is algebraic.

· reducible, else

Proposition: Let I < [F[x,...x,] be a radical ideal. TFAE

1) I is prime

Sketch of proof:

- i) I is not prime ⇒ ∃ I, I, I, Z I w. I, I, C I
- ii) $I_i \not\supseteq I \Rightarrow \sqrt{I_i} \not\supseteq I \Rightarrow V(I_i) = V(\sqrt{I_i}) \not\subseteq V(I)$ by II) in Sec 0 (we have $V(J_i) \neq V(I)$ b/c both I, J_i are radical). So $V(I,)UV(I_2) \subset V(I)$. $iii)) I_1 I_2 \subset I \Rightarrow V(I_1) \cup V(I_2) = V(I_1 I_2) \supset V(I) \Rightarrow V(I_1) \cup V(I_2) = V(I).$ This shows 2) ⇒1). We leave 1) ⇒2) as an exercise.

Example: Let $f \in F(x_1, -x_n) \setminus F$. Decompose $f = g_1^{\alpha_1} \cdot g_2^{\alpha_2}$, where $g_i \neq g_j^{\alpha_1}$ are irreducible. Then $S(f) = (q_1 ... q_e)$ (cf. Example in Sec 1 of Lec 2) 6/c F[x, x,] is UFD; V(f) = [III] = UV(gi). So V(f) is irreducible > l=1. For instance, if n=2 & f=x, x, x, for d, d, 70, then V(f) is the anion of the lines x,=0 & xz=0, reducible.

1.2) Irreducible components.

Theorem: Let X be an algebraic subset in F. Then

- a) I irreducible algebraic subsets K, X, s.t. X = UXi.
- 6) For X1, Xx we can take maximal (w.v.t. inclusion) irreducible algebraic subsets contained in X.

Note that (6) recovers X,... Xx uniquely.

Defin: χ_{1} , χ_{2} from 6) are called the <u>cirreducible</u> components of χ .

Example: In the notation of the previous example, the irreducible components of V(f) are V(g,),..., V(ge).

Proof of Theorem:

a) Assume the contrary: $\exists X \neq finite union of irreducibles$ \Leftrightarrow the set \mathcal{A} of all such X's is $\neq \emptyset$. \Rightarrow nonempty set $\{I(X)|X\in\mathcal{A}\}$. Since $\{F[X_1,...X_n]\}$ is Noetherian, every nonempty set of ideals has maximal (w.r.t.c.) element. Pick $X'\in\mathcal{A}$ s.t. I(X') is maximal in $\{I(X)|X\in\mathcal{A}\} \Leftarrow \{I\}\} \Rightarrow X'$ is minimal in \mathcal{A} w.r.t. C. But X' is reducible \mathcal{A} is $X'\in\mathcal{A}$ A is X'=X' is minimal in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} in \mathcal{A} is minimal in \mathcal{A} in \mathcal{A}

b) $X = \bigcup_{i=1}^{k} X_i$, we assume that none of X_i 's is contained m another.

Need to show: X_i is maxil irreducible (exercise) & if $Y \subseteq X$ maxil irreducible $\Rightarrow Y = X_i$ (for autom. unique i). To prove this, we observe $Y = \bigcup_{i=1}^{k} (Y \cap X_i)$; since Y is irreducible $\Rightarrow Y = Y \cap X_i$ for some i $\Rightarrow Y \subseteq X_i$, but since Y is maximal, $Y = X_i$.

Remark (alg. formulation of Thm): Let $I \subset [F[x_n, x_n]]$ be a redical ideal. Then $I = \bigcap_{i=1}^{n} I_i$, where I_i is prime; and we can recover I_i 's uniquely if we assume they are minimal (w.r.t \subseteq) w. $I \subset I_i$. To prove this is an exercise.

Remark: the same statement is true if IF[x,...,xn] is replaced w. arbitrary. Noetherian ring. There's a suitable generalization to arbitrary ideals: primary decomposition, [AM], Ch. 4 & 7.1.

2) Algebra of polynomial functions.

In most geometric contexts, the spaces being studied come with a distinguished class of functions—that play an important role in studying the space. E.g. for C^{∞} submanifolds in \mathbb{R}^n (or abstract C^{∞} manifolds one considers C^{∞} functions). For algebraic subsets of \mathbb{F}^n this role is played by polynomial functions.

Let X be an algebraic subset of F A I = I(X). Consider the set Fun (X, F) of all functions $X \to F$. This is an F-algebra W point-wise operations, e.g. $(f, f_{\ell})(x) = f_{\ell}(x)f_{\ell}(x)$. It admits a homomorphism $F[x_{\ell}, x_{n}] \to Fun(X, F)$, $f \mapsto f|_{X}$, with xernel I.

Definition: The algebra of polynomial functions, F[X] is the image of $F[x_1, x_n]$ in Fun (X, F). Note that it's identified w. $F[x_1, x_n]/I$.

Exercise

- 2) There's a bijection between:
 - · Radical ideals JCF[X]

· algebraic subsets $Y \subset X$ (i.e. algebraic subsets in F^n contained in X).

It sends YCX to {f = F[x]|f|y = 0} (hint: use II) in Sec 0).

3) $\{\max : | \text{deals in } F[X] \} \stackrel{\sim}{\longleftrightarrow} X : \alpha \in X \mapsto \{f \in F[X] | f(\alpha) = 0\}$ $\{\text{hint} : \text{use } I\} \text{ in } \text{Sec } 0\}$

Remark: We can recover $X \subset \mathbb{F}^n$ from $\mathbb{F}[X]$ & generators $\overline{X}_i := X_i + I$. Namely, $I = \{F \in \mathbb{F}[X_1, ... X_n] \mid F(\overline{X}, ... \overline{X}_n) = 0 \text{ in } \mathbb{F}[X] \} \xrightarrow{} X = V(I)$

Example: Let $X = \{(x_1, x_2) | f(x_1, x_2) = 0\} \subset \mathbb{F}^2$ for irreducible $f \in \mathbb{F}[x_1, x_2]$ (f) is radical $g \in \mathbb{F}[x_1, x_2] = \mathbb{F}[x_1, x_2] / \mathbb{F}[x_2, x_3] / \mathbb{F}[x_1, x_2] / \mathbb{F}[x_2, x_3] / \mathbb{F}[x_3]$, the same as the algebra of functions on \mathbb{F} viewed as an algebraic subset of itself.

3) Geometric significance of localization.

3.1) Localizing one element.

Let $X \subset \mathbb{F}^n$ be an algebraic subset $\mathcal{L} f \in \mathbb{F}[X]$. We want to find a geometric interpretation of the localization $\mathbb{F}[X][f^{-i}]$. Let $f_1,...,f_m$ be generators of $\mathbb{F}[X] \Rightarrow \mathbb{F}[X] = \mathbb{F}[X_1,...,X_n]/(f_1,...f_m)$. Lemma in Sec. 1.1 of Lec 9 tells us that $\mathbb{F}[X][f^{-i}] \simeq \mathbb{F}[X][f]/(f_{f-i}) = \mathbb{F}[X_1,...,X_n,f]/(f_{f-i},f_m,f_f)$.

Exercise: Show that if A is an algebra w/o nonzero nilpotent elements, then any localization of A has no nonzero nispotent elements.

So F[X][f-] has no nontero nilpotent elements ⇔ the ideal (t,...,tm, tf-1) is radical. The corresponding algebraic subset of F " is { (d, ..., d, 2) ∈ F 1+1 | f; (d, ... d) = 0 + i=1,...m; Zf(d, ... d,)=1}

The projection F -> F" forgetting the z coordinate identifies this algebraic subset $w \ \{ x \in X \mid f(x) \neq 0 \}$. Denote this subset by X_{β} . We note that it's not an algebraic subset of F" in our conventions. The subset Xf X is called a principal open subset.

Here's an explenation of the terminology.

Definition: · a subset YCX is called Zanski closed if it's an algebraic subset of F.

· A subset $U\subset X$ is Zanski open if $X\setminus U$ is Zanski closed.

Example: $X_f \subset X$ is Zariski open b/c $X \setminus X_f = \{d \in X \mid f(\alpha) = 0\}$ is closed

Exercise: Any Zeriski open subset of X is the union of, in fact, finitely many, principal open subsets.

Kemark: Zariski open/closed subsets are open/closed subsets in a topology (called the Zariski topology). Principal open subsets form a "base of topology."