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1 Geometricsignificanceof localizationcont'd
Let XCF bealgebraicsubset A F feA In sec 3 ofLec 15
we have interpretedA f as thealgebre ofpolynomialfunctionson Xp LEX f x to embedded as an algebraic subset
k z LEX Zfx 1 CF WecalledXp aprincipalopensubset
Now let MCAbe a maximalidealRecall that wewriteAm

for A Alm
NotethatAm is notfinitelygenerated ingeneral so isnotthe

algebra offunctions of an algebraicsubset It still has ageometricmeaning that we aregoing to discuss now
Forsimplicity assume X isirreducible I x isprime

A F x xD I X is a domain fractionfield Free A
fglf.geA gte By Sec 2.3 ofLecb Am tge

Free A gem
ByExercise 3 in Sec2 of Lects Lex st

m feF f21 0
So Am Eggal a Yanagi g FlXg

A



Conclusion

Everyelement ofAn is afunction on a principal opensubset
containing α but which subset we choose dependsonthiselement

Remark WhenX is reducible the conclusion still holds but
Am YF Xg makes no sense bc FXg Alg are notsubrings in
a fixedring ingeneral Tofix thisone replaces theunion w the
direct limit

Remark on terminology Recall Problem2 inHW6 thatAm
hastheuniquemaximal ideal ha and that rings satisfying
this condition are called local Conclusiongives ageometric
justificationfortheterminology thealgebraAncontrolswhat
happens locally intheZariskitopology near Lex

2 Categories
Weproceed to the2ndpartof this course Category theory

On the onehand it gives languagethatmuchofMathematics
uses On the otherhand it has rich interactions w

Commutativealgebra For ourpurposesgeneral constructions of Category
theory can beused to motivatemore concreteconstructions in
Commutative algebra although chronologically it wastheotherway
around
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Ourexposition ofCategory theory will start w exploringbasic
notions categories functors functormorphisms
Definitions below will have afamiliarstructure have data
axioms Eg here's abasic algebraicstructure

Definition a monoid is

Data a set M equippedw multiplicationmap MM M
axioms that is associative and hasunit 1

For example agroup is exactly a
monoid where all elements

are invertible Every ring is amonoid w kt multiplication

1 1 Definitionof a category
Definition A category C consistsof
Data a collection ofobjects 06 e

X YE06 e aset ofmorphismsHome XY
XYZ 0b e a map ofsets calledcomposition
Home XY Home YZ Home XZ fg got

o is often omittedfromthenotation

These satisfy
Axioms i composition is associative

fogoh f goh feHome Wx geHome XY heHome YZ
in Units XeObe 1 6 Home XX s.t



for f fetlome XY

1g g geHome Z X1

12 Examples
1 Category ofsets Sets objects sets morphisms mapsof
sets composition composition ofmaps Axioms classical
unit 1 id

2 Sets w additionalstructure objects sets w thisstructure

morphisms maps compatiblewiththisstructure composition
composition ofmaps
These include

a Categoryofgroups Groups objects aregroupsmorphisms
homomorphisms ofgroups
6 Categoryofrings Rings
c For aring A have categories of Amodules AMod

A algebras A Alg in the lattermorphisms A linearring
homomorphisms

2 Category of algebraicsubsets theobjects are algebraicsubsetsin F forvarious ne71,0 here F is an algebraically closed
field themorphisms arepolynomialmaps Problems in HW3

Whilethecategories where objects aresets wadditionalstructure
morphisms aremaps w usual composition occur frequently it's
I



importantto remember that ageneralcategory is NOTofthisform
Here's abasic example

3 Note 06 e Home XX is a monoid w.it e

Conversely everymonoidMgives a category w oneobject X
Home XX M

In the Bonus section we'llsketch a veryimportantexamplefrom
Topology thehomotopycategoryof topologicalspaces whereobjects
are sets w additional structurebut morphisms are equivalence
classes of maps

13 Remarks

1 Sometimes objects in a categoryform a set here wesay
our category is small Ingeneral theyform a class
a notiondefined in set theory We'll ignore this issue e.g
because whilethecategories we are workingwith are not small
they are essentially small

2 1eHomeXX is uniquelydetermined Moreover if feHomeXY
has a 2sidedinverseg i.e.gelomeCYXl1fog tygof1xthen
g is unique f g In this case f is called an

isomorphism wesayX Y are isomorphic X 27 behave the
same from thepointof view of e eg Z 0b e is
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Home Z N Home Z Y

Y fly inverse is y of p

Notation X Y means fe Home X Y

14 Subcategories C is a category
Defin i By a subcategory e in e we mean

Data A subcollection 06 e in 06 e
XY 06 e a subset Home XY Home XY s.t

Axioms If feHome XY gettome YZ gotettome XZ
1 6Home XX Xeable

ii A subcategory C in C is called full if Home XY
Home XY XY 06et

Asubcategory C has a natural categorystructure

Examples
1 A monoid M category w one object
A nonempty subcategory M in M a submonoid

M is full M M

2 TLMod aka categoryofabeliangroups is a full sub
category in Groups



3 The category ofcommutative rings CommRings is a full
subcategory in Rings

1 5 Constructions w categories
Definition 1 For categories G E theirproduct E C2 is
definedby 0.69 5 06 e 06 E

Home X4114.71 HomeX Y Home X Y
composition is componentwise

Definition2 For a category e its oppositecategory Capp
consists of the sameobjects as E

Homeopp X Y Home YX

gooppf fog fe Homeopp XY Home YX

ge
Homeopp YZ Home Z Y

Notethat eoprj.pe e

Example Let C be thecategoryofalgebraicsubsets 22 in
Sec 12 We aregoingto describe its oppositebasedon Problem 5
inHW3 Consider thecategory D where

objects are finitelygenerated F algebras w o nontevenilpotent
elements together w a system ofgenerators etSec2 inLec 5
andmorphisms are F algebrahomomorphisms w usualcomposition
ofmaps
We can identify D w CPP 06101 06 e by Rem in Sec2



ofLee 15 and the identification of Home XY w Hemp YX is
Problem 5 inHW3 Details are left as an exercise

Notethat thedescriptionof D doesn't lookvery natural First
inthedefinition ofobjects wehave a collection ofgenerators which

play no furtherrole RemovingthisfromthedefinitionofD weget
the categoryDPPof affinevarieties 5 The choice ofgenerators
of thealgebra F of polynomial functions on an algebraic
subset XCF correspondedto the inclusion XCF so affine
varieties shouldbethoughtof as algebraic subsetsirrespectiveof
an embedding into F
Second we impose conditions on an algebrathat can inprinciple

be removed If wedon'trequire absenseofnonzeronilpotentelement
then D PPbecomes the category of finitetypeaffineschemes F
while removingthe condition that thealgebra is finitely generated
wegetthe categoryof affineschemesoverF

BONUS homotopy category of topologicalspaces
Wewould like to sketch an important exampleof a

categorywhere objects are sets w additional structure but morphisms
aren't maps ratherthey are equivalence classesofmaps

B1 Equivalence on morphisms

Let C be a category Suppose that XY 06 e theset
T



Home XY is endowed with an equivalence relation ns.t
1 If gg eHome YZ are equivalent feHome XY then
got gof
2 If f f eHome XY are equivalent andgeHome YZ

thenget got

We write f for theequivalence class of f
Given such an equivalence relation we can form a new category
to be denoted by C as follows

able 06e
Home XY Home XY thesetofequivalence

classes

g f got well definedprecisely bc of 1 2

Wenote that there is a natural functor it e C

given by X X f a f

Example Let M be amonoid Note that theequivalence
classof EM is a submonoidsayM moreover 1 2 imply
that MM Mom meM Such submonoids are callednormal
forgroups we recover the usual condition And if Mo I

s normal then 1 and 2 held an exercise For a normal
submonoidMe we can MMewith a natural monoidstructure

just as we do forgroups The category C corresponds to
thequotient monoid MIM andthefunctor it isjust thex ̅



naturalepimorphism M MMe

Rent C looks like a quotientcategory But in situations
where the term quotient is usedand that are closer to
quotients ofabeliangroups Servequotients ofabeliancategories
the construction is different andmoredifficult

B2 Homotopy categoryof topological spaces
Let's recall the usual category of topologicalspaces Let
Xbe a set One can define thenotion oftopologyon X we

declare some subsets ofX to beopen these are supposed
to satisfy certain axioms Aset w topology is calleda
topologicalspace A map f X Y of topological spaces
is called continuous if UCY isopen f U CX isopen
We define the category Top of topological spaces w
06Top topologicalspaces
Hom
top
XY continuous

maps Y
Composition composition ofmaps
Oneissue this category is hardto understand hardtostudy
topological spaces up to homeomorphisms

Now we introduce our equivalence relationof Homtop XY

Definition Continuous
maps f if X Y are calledhometopic

if a continuous map F Xx 0,13 Y s.t f x F xol
x ̅



f x F xM

Informally fat are homotopic if one can continuouslydeform
f to f It turns out that being homotopic is an equivalence
relation satisfying 1 2 from B1 The corresponding
category Top is known as the homotopy categoryoftopol l
spaces Note that in this category morphisms are notmaps

Hereis why we care about the homotopycategory Isomorphic
here means hematopic X is homotopic to Y if X Y
Y X set fg ishomotopic to Ty gf is homotopicto 1 and
this is easier tounderstandthenbeinghomeomorphic Secondtheclassical
invariants such as homologyandhomotopygroups only dependon
homotopy type Amove educatedwayto state this
these invariants are functors from the homotopy categoryof
topological spaces to Groups true as statedfor homology for
homotopy it's more subtle this requiresfixing apoint in
andhenceneed to work w an auxiliary category ofpointed
topological spaces upto homotopy
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