Lecture 17: Categories, functors & functor morphisms, II. 1) Functors. 2) Functor morphisms. Ref: [R], Sec. 1.3, 1.4. 1) Functors Motto: a relation between a category and a functor gene. valites a velation between a monoid & a homomorphism. 1.1) Definition Let C, D be categories. Definition: A functor F: C -D is (Data) • an assignment $X \mapsto \mathcal{F}(X)$: $\mathcal{O}(\mathcal{E}) \longrightarrow \mathcal{O}(\mathcal{D})$ • $\forall X, Y \in O(E)$, a map $Hom_{E}(X, Y) \longrightarrow Hom_{E}(F(X), F(Y))$ (Axioms) - compatibility between compositions & units · $\forall f \in Hom_{e}(X,Y), g \in Hom_{e}(Y,Z) \Rightarrow \mathcal{F}(g \circ f) = \mathcal{F}(g) \circ \mathcal{F}(f)$ equelity in Hom (F(X), F(Z)). · F(1)=1F(x) + XEOG(C)

Example: Let C, D be categories w. single object corresponding to monoids M, N (Example 3) in Sec 2.2 of Lec 16). A functor $E \rightarrow D$ is the same thing as a monoid homomorphism.

Remarks: i) Have the identity functor $Id_e: C \to C$ ii) For functors $F: C \to D$, $G: D \to E$ can take the composition $G \circ F: C \to E$ ($G \circ F(X) = G(F(X))$, $G \circ F(f) = G(F(f))$) it's a functor (exercise).

iii) A functor $F: C \to D$ is the same thing as a

iii) A functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ is the same thing as a functor $\mathcal{C}^{opp} \to \mathcal{D}^{opp}$

1.2) Examples of functors

1) Let C'be a subcategory in C. Then have the inclusion Linctor C'C>C sending objects/morphisms in C'to the same objects/morphisms now in C; axioms are clear.

2) Forgetful functors: forget a part of the structure 2a) For: Groups -> Sets;

On objects: For (G) = G viewed as a set.

On morphisms: For (f) = f, viewed as a map of sets.

Axioms: clear

26) Let A be a commutative ring. Then have the forgetful functor For: A-Alg -> A-Mod, forgetting the ring multiplication.

2c) Let A, B be commutative rings & $\varphi: A \to B$ be a ring homom'm. Then we can consider the pullback functor $\varphi^*: B\text{-Mod} \to A\text{-Mod}$. It sends $M \in Ob(B\text{-Mod})$ to M viewed as an A-module & $\psi \in Hom_B(M,N)$

to $\psi \in Hom_{\Lambda}(M,N)$. Forgets part of the action.

- 3) Let C be a category. For $X \in Ob(C)$ define the Hom functor F_{χ} (:= Hom_e (X, \cdot)): $C \longrightarrow Sets$.

 On Objects: F_{χ} (Y):= Hom_e (X, Y), a set.
- On morphisms: $Y_1 \xrightarrow{f} Y_2 \xrightarrow{} map F_{\times}(f)$: $Hom_{\varepsilon}(X, Y_1) \xrightarrow{} Hom_{\varepsilon}(X, Y_2)$ $\psi \longmapsto f \circ \psi$

Check axioms: composition: $F_{\chi}(g \circ f) = F_{\chi}(g) \circ F_{\chi}(f)$ for $\chi \xrightarrow{f} \chi \xrightarrow{g} \chi_{3}$. For $\psi \in Hom_{e}(\chi, \chi_{3})$ have $[F_{\chi}(g \circ f)](\psi) = (g \circ f) \circ \psi \in Hom_{e}(\chi, \chi_{3})$. $[F_{\chi}(g) \circ F_{\chi}(f)](\psi) = [F_{\chi}(g)](f \circ \psi) = g \circ (f \circ \psi)$. By associativity axiom for morphisms, the two coincide. The unit axiom is left as exercise.

 3^{opp}) We can apply this construction to $C^{opp} \rightarrow F^{opp}$: $Y \mapsto Hom_{e^{opp}}(X,Y) = Hom_{e}(Y,X)$ $f \in Hom_{e^{opp}}(Y_{1},Y_{2}) = Hom_{e}(Y_{2},Y_{3}) \rightarrow F^{opp}(f)$: $Hom_{e}(Y_{1},X) \longrightarrow Hom_{e}(Y_{2},X) - map$ of sets

We can view F_{χ}^{opp} as a functor $E \longrightarrow Sets^{opp}(cf. Remark iii)$ in Sec 1.1).

A traditional name: contravariant functor $E \longrightarrow Sets$.

- 4) Algebra constructions as functors:
- 42) The "free" functor:

Let A be a ring. Want to define a functor Free: Sets \rightarrow A-Mod I, set, \sim Free (I):= $A^{\oplus I}$

 $f: T \to J \to Free(f): A^{\oplus I} \to A^{\oplus J}$ - the unique A-linear map sending the basis element e_i ($i \in I$) to $e_{f(i)} \in A^{\oplus J}$. Checking axioms of functor: exercise.

4b) Localization of moduly is a functor: $S \subset A$ multiplicative $\neg \cdot [S^{-1}] : A - Mod \rightarrow A[S^{-1}] - Mod,$ a functor that sends an A-module M to the $A[S^{-1}] - module$ $M[S^{-1}]$ and an A-module homomorphism $\psi \colon M \to N$ to $\psi[S^{-1}] \colon M[S^{-1}] \to N[S^{-1}]$ (see Sec 2.1 of Lec 9) $\psi[S^{-1}](\frac{m}{S}) := \frac{\psi(m)}{S}$. Checking the exioms was a part of the very important exercise there

2) Functor morphisms.

Motto: A relation between functors & functor morphisms is like a relation between modules & module homomorphisms.

2.1) Definition: Let C, D be categories & $F, G: C \rightarrow D$ be functors. Defin: A functor morphism $y: F \Rightarrow G$ is Functors F, G send the objects $X \in Ob(C)$ to $F(X), G(X) \in Ob(D)$. We can relate F(X), G(X) by taxing a morphism between them: (Data) $\forall X \in Ob(C)$, a morphism $y \in Hom_D(F(X), G(X))$

Picking morphisms which are totally unrelated is pointless. We
Picking morphisms which are totally unrelated is pointless. We need to relate p_x, p_y for $X, Y \in Ob(e)$. The relations we need
come from morphisms between X, Y: f = Hom, (X, Y) ~
$F(f) \in Hom_{\mathcal{D}}(F(x), F(y)), G(f) \in Hom_{\mathcal{D}}(G(x), G(y))$
(axiom) s.t, + X, Y = Ob(L), f = Home (X, Y), the following diagram
is commutative: $F(X) \xrightarrow{F(f)} F(y)$
$\int \mathcal{E}_{x}$
$G(X) \xrightarrow{G(f)} G(Y)$
4(n) $ 4(9)$

Example: Let C = Groups, D = Sets & F = G is the forgetful functor. Let $n \in \mathbb{N}$. We are going to construct $y_n : F \Rightarrow F$. For a group H, set $y_{n,H} : H \to H$ (map of sets), $h \mapsto h^n$. The axiom is satisfied: we need to check that for every group hemomorphism $T : H \to H'$ the following diagram commutes: $H \xrightarrow{T} H'$ $T(h)^n = T(h^n)$ $h \mapsto h^n$ $h \mapsto h^n$ $h \mapsto h^n$ $h \mapsto h^n$

Remarks:

1) In many (but not all) examples, & is "natural" meaning it's "uniform" & "independent of additional choices". Hence the name "natural transformation" for a functor morphism that was used in the past.

2) An analogy w. module homomorphisms is as follows. Let A be a ring, M, N be A-modules. For $a \in A$, we write 5

and, an for the operators of multiplication by a in M, N. Then
a group homomorphism $y: M \rightarrow N$ is an A-module homomorphism iff $\forall a \in A$, the following is commutative: $M \xrightarrow{a_M} M$
shier iff # 061 the lill is coment to the
phism 1/1 V WEN, the following is commutative.
$ \begin{array}{ccc} & & \downarrow \ell \\ & & \downarrow \nu \\ & & \downarrow \nu \\ & & & \downarrow \nu \end{array} $
$\mathcal{N} \xrightarrow{\mathcal{N}} \mathcal{N}$
Here elements of A are analogs of elements of Home (X, Y) &
M,N are analogs of functors
71,1000 1010003
Exercise: let MN he cotecomes in one object are
Exercise: Let M, N be categories w. one object a.r.a.
monoids & F: M -> N be a functor (a. k.a. monoid homomorphism)
Then a functor endomorphism $y: F \Rightarrow F$ is the same thing
as an element $y \in N \mid y \vdash F(m) = \vdash F(m)y \vdash m \in M$
2.2) Important example.
Let $X, X' \in Ob(C) \rightarrow functors$
·
$F_{x}:=Hom_{e}(X,\bullet), F_{x}:=Hom_{e}(X,\bullet): E \longrightarrow Sets.$
Goal: from $g \in Hom_{\mathcal{E}}(X,X)$ produce a functor morphism $p^{g} \colon F \Rightarrow F_{x}, \text{ (note that the order is swapped)}$
$p^g: F \Rightarrow F$, (note that the order is swapped)
i.e. for each Y = Ob(C) we need to define a map
$n^{g}: Hom_{g}(X,Y) \longrightarrow Hom_{g}(X,Y): X' \xrightarrow{g} X \xrightarrow{\psi} Y$
i.e. for each $Y \in O6(\ell)$ we need to define a map $ \eta^{8}: Hom_{e}(X,Y) \longrightarrow Hom_{e}(X,Y): X' \xrightarrow{g} X \xrightarrow{\psi} Y $ $ \psi \longmapsto \psi \circ g \longleftarrow essentially the only natural $
y y essentially the only hardraf
way to give such a map.

Now we need to check the axiom (commutative diagram): + f E Homp (4, 4), Fx(1)=fo? Fx(1)=fo? & we have that $\psi \in Hom_{e}(X, Y_{1}) \xrightarrow{f_{o}?} Hom_{e}(X, Y_{2})$ $\downarrow \chi_{y_{1}}^{g}(?) = ? \circ g \qquad \qquad \downarrow \chi_{y_{2}}^{g}(?) = ? \circ g \qquad \qquad \downarrow \text{is commutative}$ Hom, (X, Y,) +o? Hom, (X, Y)

y y y y og to fo (wog) : y > foy > (foy) og category is associative.

We've checked: pg is a functor morphism.

2.3) Remarks

1) Can compose functor morphisms: p: F ⇒ G, z: G ⇒ H ~, zop: $F \Rightarrow H: (\xi \circ \chi)_{x} := \xi_{x} \circ y_{x}$. To check this is a morphism is an exercise. Also have the identity Morphism $1_F: F \Rightarrow F$. This allows us to talk about functor isomorphisms: functor morphisms w. two-sided inverse. Notin for isomorphisms: $F \xrightarrow{\sim} G$. The following is very important:

Exercise: Let F,G: C→D be functors. For p: F => C TFAE 1) y is an isomorphism

2) $F(x) \xrightarrow{\chi_X} G(x)$ is an isomorphism in $\mathcal{D} + \chi \in \mathcal{O}b(\mathcal{C})$ Moreover, we have $(y^{-1})_{x} = (y_{x})^{-1}$