Lecture 18: categories, functors & functor morphisms, III.

1) Yoneda lemma and applications.

- 2) Products in categories.

Refs: [R], Secs 2.1-2.3; [HS], Sec II.5.

BONUS: category equivalences.

1) Yoneda lemme and applications

Let C be a category. Recall that to XE Ob(C) we can assign a functor F: C → Sets sending Y ∈ Ob(e) to Home (X, Y) & a movphism x + x to the map Home (X, Y,) - Home (X, Y,), \upper + \upper \psi. Next, for $g \in Hom_{e}(X,X)$ we have a functor morphism $y^{g}: F \Rightarrow F_{\chi'}: p^{g}: Hom_{e}(X,Y) \rightarrow Hom_{e}(X,Y), p^{g}(\psi):=\psi \circ g.$

The following foundational result is extremely important

Thm (Yoneda lemma): Every functor morphism $y: F_{\times} \Rightarrow F_{\times}$, is of the form yo for unique g ∈ Home (X,X).

1.1) Proof of Yoneda lemma:

Step 1: y gives y_x : $Hom_e(X,X) = F_x(X) \longrightarrow F_x(X') = Hom_e(X',X)$ Set go = px (1x). We need to show:

11 282 = Z.

Step 2:
$$g_{28} = [p^{8}]_{X}(1_{X}) = 1_{x} = g$$

Step 3: We show that $p^{g_2} = p \iff \forall \in Ob(e)$ have $(p^{g_2})_y = p_y$ an equality of maps $Hom_e(X,Y) \longrightarrow Hom_e(X,Y)$

Note that (y^{g_2}) , sends $f \in Hom_e(X, Y)$ to $f \circ g_{\times}(1_{\times})$. Now recall that y satisfies the following: $\forall Y, Y' \in Ob(C)$ & $Y' \xrightarrow{f} Y$ the diagram below is commutative

$$Hom_{e}(X,Y') \xrightarrow{F_{x}(f) = f_{o}?} Hom_{e}(X,Y)$$

$$\downarrow z_{y'} \qquad \qquad \downarrow z_{y}$$

$$Hom_{e}(X',Y') \xrightarrow{F_{x'}(f) = f_{o}?} Hom_{e}(X',Y)$$

We use this for Y'=X, and apply the equal morphisms to 1x.

$$1_{x} \in Hom_{e}(X,X) \xrightarrow{f \circ ?} Hom_{e}(X,Y)$$

$$\downarrow 2_{x} \qquad \qquad \downarrow 2_{y}$$

$$Hom_{e}(X,X) \xrightarrow{f \circ ?} Hom_{e}(X,Y)$$

$$\downarrow \xrightarrow{:} f \circ p_{X}(1_{X}) = (p^{g_{2}})_{y}(f) \in Hom_{e}(X, Y)$$

$$\downarrow : p_{Y}(f \circ 1_{X}) = p_{Y}(f) \in Hom_{e}(X, Y)$$

The equality (292) = 2, follows finishing the proof. []

1.2) Yoneda lemma us compositions & isomorphisms

Lemme: 1) Let $X, X', X'' \in Ob(\mathcal{C}), X \xrightarrow{g} X' \xrightarrow{g'} X''$ be morphisms yielding $g^{g'}: F_{X''} \Rightarrow F_{X'}, g^{g}: F_{X'} \Rightarrow F_{X}.$ Then $g^{g'} = g^{g} \circ g^{g'}$

2) pg is a functor isomorphism = the morphism g is isomorphism.

Proof: 1) For $Y \in Ob(C)$, $\psi \in Hom_{e}(X,Y) \Rightarrow$ $y^{g} \circ y^{g} (\psi) = y^{g} (\psi \circ g) = (\psi \circ g) \circ g = \psi \circ (g \circ g) = y^{gg} (\psi)$

2) \Leftarrow : by 1) $p^{g_0}p^{g'=}p'^{x'}=1_{F_{X'}}$ & similarly in the other direction. \Rightarrow : by Yoneda Cemma $\exists! h \in Hom_e(X',X) w. p^{-1}=p^h$ Then $p^{1}x'$ =1_{Fx}= pop-1 = pgoph=[1)]=pgh By the uniqueness part of Thm gh=1x1. Similarly, hg=1x.

1.3) Objects representing functors

An important use of the Yoneda lemma is to relate (abstract) constructions in categories & (concrete) constructions w. sets. An important role in this relation is played by the following defin:

Definition: Let $F: C \to Sets$ be a functor. We say $X \in Ob(C)$ represents F if F is isomorphic to F_X .

A representing object may fail to exist (see an exercise below).

If it exists, we say that F is representable.

Lemma: An object, X, representing F is unique up to isom m if it exists. Proof: Let XX \in Ob(l) represent F: y: F \Rightarrow F \Rightarrow F, : y' \rightarrow functor isomorphism p'op': F, => F. By Yoneda lemma, p'op'=p8 By 2) of Lemma in Sec 1.2, X = X' is an isomorphism. Example: The forgetful functor For: C= Groups -> Sets 15 represented by I. Indeed, for any group Gwe have a bijection (of sets) $\xi_{\mathcal{L}}: Hom_{Croups}(\mathcal{T},\mathcal{L}) \xrightarrow{\sim} \mathcal{L}, \varphi \mapsto \varphi(1)$. (3) is a functor morphism - what we need to check is that $\forall group homomorphism f: C \rightarrow H$, the diagram $Hom_{Croups}(\mathcal{Z}, C) \xrightarrow{\varphi \mapsto f \circ \varphi} Hom_{Groups}(\mathcal{Z}, H)$ is commutative, which is left as an exercise. Since ze is bijective & G, by Sec 2.3 of Lec 17, it's a functor isomorphism, implying our claim. Exercise: Consider the functor Rings -> Sets: · sending every ring R to a fixed set w. one element. · and every homomorphism of rings to the identity map. Show that it's represented by 7%.

Exercise: Show that the forgetful functor to sets from the full subcategory in Groups consisting of finite and (for simplicity) abelian groups is not representable.

Example contid. We use the isomorphism Fr => For to compute the monoid of all endomorphisms of For By Yoneda lemma, every endomorphism of F- comes from a unique endomorphism of 12 & by Sec 1.2, this bijection is compatible w. compositions (reversing the order). So our job is to compute Hom Groups (72,72). As a set, it's $F_{\mathbb{Z}}(\mathcal{Z}) \xrightarrow{\sim} For(\mathcal{Z}) = \mathcal{Z}$. The isomorphism $f_{\mathbb{Z}}$ sends $\varphi: \mathcal{Z} \to \mathcal{Z}$ to $\varphi(1) \in \mathbb{Z}$ so $m \in \mathbb{Z}$ corresponds to the homomorphism $x \mapsto mx : \mathbb{Z} \to \mathbb{Z}$. composition in Hom Groups (72,72) corresponds to the product in Z. It follows that the monoid of functor endomorphisms of F2 & hence of the isomorphic functor For is 72 w.r.t. multiplication. What does the endomorphism of For corresponding to MEZ (to be denoted by 2m) do? The identification Hom Groups (72, G) = F2 (G) w. G is by $\varphi \mapsto \varphi(1)$. And $p_{m,G} : F_{2}(G) \to F_{2}(G)$ sends φ to $[x \mapsto \varphi(mx) = \varphi(x)^m]$. So $p_m: G \to G$ is $q \mapsto g^m$, cf. Example in Sec 2.1 of Lec 17.

2) Products in categories.

The concept of a representing object allows to carry constructions from the category of sets to a general category. Here we consider a basic such construction-products.

Recall that in our usual categories: Sets, Groups, Rings, A-mod we have the notion of direct product. In all of them, this is characterized by universal property. E.g. if A_1 , A_2 are rings, then $A_1 \times A_2$ is a ring w. ring homomorphisms $\mathfrak{R}_i : A_1 \times A_2 \to A_i : s.t. + rings$ B w. homomorphisms $\varphi_i : B \to A_i : A_2 \times A_3 \times A_4 = \mathfrak{T}_i \circ \varphi$.

Now let C be a category and F, F. C -> Sets be functors.

Define their product F, × F2 by

· Sending X ∈ Ob(e) to F₁(x)×F₂(x)

• Sending $\varphi \in Hom_e(X,Y)$ to $F_i(\varphi) \times F_i(\varphi) : F_i(X) \times F_i(X) \to F_i(Y) \times F_i(Y)$. $F_i \times F_i$ is a functor, to check the axioms is an exercise.

Now take $X_i, X_i \in Ob(\ell)$ and let $F_i := F_{X_i}^{opp}$ be the Hom functor $Hom_{popp}(X, \bullet) (= Hom_{\ell}(\bullet, X)) : \ell^{opp} \to Sets.$

Definition: If $X \in Ob(\mathcal{E})$ represents $F_{X_1}^{opp} \times F_{X_2}^{opp}$, then we say that X is the product $X_1 \times X_2$.

The to Lemma in Sec 2, X, xX, is unique (up to 150) if it exists (that may foil to be the case).

Here's an alternative characterization of products.

Lemma: 1) There are 9% & Home (X, Xi) s.t.

(*) $\forall Y \in Ob(\ell), \varphi_i \in Hom_e(Y, X_i), i=1,7, \exists ! \varphi \in Hom_e(Y, X) | \varphi_i = \mathcal{T}_i \circ \varphi.$

2) Conversely, let $(X, \mathcal{I}_1, \mathcal{T}_2)$ satisfy (*). Then $X = X_1 \times X_2$

Note that (*) is the usual universal property of direct products. In particular, in our usual categories: Sets, Groups, Rings, A-Mod products are just direct products - and they exist & X, Xz.

Proof (of Lemma): 1) Let $y: F_{\chi}^{opp} \xrightarrow{\sim} F_{\chi_{\chi}}^{opp} \sim for \ Y \in \mathcal{O}6(\ell)$ $p_{\chi}: Hom_{e}(Y, X) \xrightarrow{\sim} Hom_{e}(Y, X_{\chi}) \times Hom_{e}(Y, X_{\chi}).$ We define $(\pi_{\chi}, \pi_{\chi}) \in Hom_{e}(X, X_{\chi}) \times Hom_{e}(X, X_{\chi})$ as $y_{\chi}(1_{\chi})$. As in Step 3 of the proof of Yoneda lemma in Sec 1.1, $\forall \varphi \in Hom_{e}(Y, X)$, we have commive diagram

Home (X,X) $\xrightarrow{?\circ\varphi}$ Home (Y,X) $Z \times \downarrow S$ $S \downarrow Z \times Y$ Home $(X,X_1) \times Hom_{E}(X,X_2)$ $\xrightarrow{(?\circ\varphi,?\circ\varphi)}$ Home $(Y,X_1) \times Hom_{E}(Y,X_2)$

which we apply to 1, getting: $y_{\gamma}(\varphi) = (\mathcal{P}_{\gamma} \circ \varphi, \mathcal{P}_{\gamma} \circ \varphi)$. (*) follows b/c \mathcal{P}_{γ} is a bijection: $\forall \varphi_{\gamma}, \varphi_{\gamma} \exists ! \varphi \text{ w. } \mathcal{P}_{\gamma}(\varphi) = (\varphi_{\gamma}, \varphi_{\gamma})$

2) We essentially reverse the argument. Define p_x : Home $(Y,X) \longrightarrow Hom_e(Y,X) \times Hom_e(Y,X)$, $\varphi \mapsto (\mathfrak{I},\circ\varphi,\mathfrak{I},\circ\varphi)$ By (*), p_x is a bijection. To check that p_x constitute a functor morphism is an exercise. So $p_x = (p_y)$ is a functor isomorphism. \square

BONUS: Category equivalences.

Our question here: when are two categories the "same"? Turns out, functor isomorphisms play an important role in answering this question.

Before we address this, we should discuss an easier question: when are two sets the same? Well, they are literally the same if they consist of the same elements. But this definition is quite useless: sets arising from different constructions won't be the same in this sense. Of course, we use isomorphic instead of being literally the same.

Now back to categories. Again, being the same is useless. How about being isomorphic? Turns out, this is not useful Let's see why. Let C, D be categories. We say that C, D are isomorphic if there are functors $F: C \to D$, $G: D \to C$ such that $FG = Id_D$, $G: F = Id_C$. The issue is: two functors obtained by different constructions are never the same (compare to sets). The solution: replace "equal" w. "isomorphic" (as functors).

Definition: • Functors $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ are quasi-inverse if $FG \cong Id_{\mathcal{D}}$, $GF \cong Id_{\mathcal{C}}$ (isomorphic).

• We say C, D are equivalent if there are quasi-inverse functors (called equivalences) $F: C \to D$, $G: D \to C$.

Now we are going to state a general result. For this we need another definition.

Definitions: A functor $F: \mathcal{C} \to \mathcal{D}$ is called • fully faithful if $\forall X, X' \in \mathcal{O}b(\mathcal{C}) \Rightarrow$ $f \mapsto F(f)$ is a bijection $Hom_{\mathcal{C}}(X, X') \xrightarrow{\sim} Hom_{\mathcal{C}}(F(X), F(X'))$ • essentially, surjective if $\forall Y \in \mathcal{O}b(\mathcal{D}) \supseteq X \in \mathcal{O}b(\mathcal{C})$ such that F(X) is isomorphic to Y.

Thm: A functor F: C -> D is an equivalence (=>)
F is fully faithful & essentially surjective.

We won't prove this, but we will give an example - that illustrates how the proof works in general.

Example: Consider the category D = F-Verto, of finite Limen'l vector spaces over a field F and its full subcategory C W. objects F''(n > 0). We claim that the inclusion functor $F: C \hookrightarrow D$ is an equivalence. It's fully faithful by define and it's essentially sinjective by the existence of basis.

Now we produce a guasi-inverse functor, G. In each $V \in \mathcal{O}(D)$ we fix a basis, which leads to an isomorphism $\gamma: V \xrightarrow{\sim} \mathcal{F}''$ We define G(V) as \mathcal{F}'' For a linear map $f: U \to V$ (w.

Jim U=m, dim V=n) we set (f):=p~ofopu.

Exercise: Check Gis a functor

Now we are going to simplify our life a bit & assume that $\gamma_{F^n}: F^n \xrightarrow{\sim} F$ is the identity.

Exercise: GF: C -> C is the identity functor (not just isomorphic to it).

Now we produce a functor isomorphism $y: Id_{\mathcal{D}} \xrightarrow{\sim} FG$ So we need to have $y: V \to F^{\dim V}$ and this is the isomorphism from above.

Exercise: prove that y is indeed a functor morphism

Then y is an isomorphism of functors. So F is indeed a category equivalence.

Another exercise: prove that the duality functor * is an equivalence F Verty -> F-Verty.