Lecture 2: Rings, ideals & modules II. a) Quotient rings: contid. 1) Operations with idealy. 2) Maximal ideals 3) Prime ideals Ref's: [AM], Chapter 1, Sections 3 and 6; BONUS: Non-commutative counterparts 2. 0) Recall Proposition & Exercise 1 from Sec 3.2 of Lec 1. Examples (of quotient rings) 1) A= Z, I= (n) (=nZ), A/I= Z/nZ - residues mod n. 2) A = IL[x], $d \in IL$ not a complete square, $I:=(x^2-d) \in A$. Claim: A/I is isomorphic to the subring 7/[√d]:={a+6√d | a6∈7/2 of C Proof: homomorphism $\varphi: \mathcal{H}[x] \to \mathcal{H}[J], f(x) = f(JJ)$ • $\varphi(x^2-d)=0 \Rightarrow I \subset \ker \varphi \rightarrow \varphi : \mathcal{I}[x]/I \rightarrow \mathcal{I}[J]$ • (a+6x) = a+6 √Z so cp is surjective ⇒ [Exer 1] q is surject. • $\# f \in \mathcal{H}(x) \exists ! a, b \in \mathcal{H} \& g(x) \in \mathcal{H}[x] | f(x) = a + 6x + g(x)(x^2 - d)$ (division w. remainder) \Rightarrow Ker $\varphi = I \Rightarrow [Exer 1] \varphi$ is injective. So $\varphi: \mathcal{H}[x]/I \longrightarrow \mathcal{H}[JJ]$, an isomorphism.

Exercise 1 (to be used below in this lecture)

Here we compare sets of ideals in A & in A/I. Namely show that the following maps are mutually inverse bijections:

 $J'(J) \in \{ ideals \ J \subset A | J \supset I \} \Rightarrow J$ $J \in \{ ideals \ \underline{J} \subset A/I \} \Rightarrow \pi(J) = J/I$

Exercise 2: Let $F_y \in A[x_1,...x_n]$, $y \in Y$, where Y is a set Then there's a bijection between:

(i) Ring homomorphisms $A[x_1,...,x_n]/(F_g|_{y \in Y}) \rightarrow B$ and (ii) $\{\varphi, b_1,...b_n\}$, where $\varphi: A \rightarrow B$ is a ring homomorphism & $b_i \in B$ are s.t. $F_g(b_1,...b_n) = 0$ $\forall g \in Y$. Here $F_g \in B[x_1...x_n]$ is obtained from $F_g \in A[x_1...x_n]$ by applying φ to the coefficients.

This generalizes Example 2 from Section 2 of Lec 1.

1) Operations with ideals

Def: A is commutative ring, pick ideals $I, J \in A$. Then define:

The sum $I+J:=\{a+b \mid a\in I, b\in J\} \in A$,

The product $IJ:=\{\sum_{i=1}^{n}a_{i}b_{i}\mid \kappa\in\mathbb{Z}_{70}, a_{i}\in I, b_{i}\in J\}$,

The ratio $I:J:=\{a\in A\mid aJ\subset I\}$,

The radical $\sqrt{I}:=\{a\in A\mid \exists n\in\mathbb{Z}_{70}, w. a^{n}\in I\}$.

Proposition: INJ, I+J, IJ, I:J, JI are ideals.

Example (generators): $I = (f_1, f_n), J = (g_1, g_m).$ Then: $I + J = (f_1, f_n, g_1, g_m): O \in I, J \Rightarrow f_i, g_i \in I + J \Rightarrow$ $(f_1, f_n, g_1, g_m) \subset I + J;$ $I + J \subset (f_1, f_n, g_n, g_m)$ is menifest.

Exercise: Show that IJ = (fig; | i=1,-h, j=1,-m)

Rem: For INJ, I:J, JI - generators may be tricky...

Example: $A = \mathcal{H}$, I = (a). Want to compute \sqrt{I} : $a = p_1^{d_1} p_k^{d_k}, p_i; primes, d_i \in \mathbb{Z}_{70}.$

 $b \in \sqrt{I} \iff b^n: a \text{ for some } n \iff b: p_1 \dots p_k \iff \sqrt{(a)^2} = (p_1 \dots p_k).$ divisible by

Exercise: for general A, I, show $\sqrt{II} = \sqrt{I}$.

2) Maximal ideals

2.1) Definition

Def: An ideal m < A is maximal if:

· $m \neq A$.

· If m' another ideal s.t m = m' & A, then m'= m.

i.e. maximal = maximal w.r.t. inclusion among ideals = A.

Lemma (equivalent characterization): TFAE:

(1) Kn 15 maximal

(2) A/m is a field

Proof: We claim that both (1)&(2) are equivalent to:

(3) The only two ideals in A/m are Eo 3 & A/m.

(1) (3): 6/c of byection {ideals in A containing m} = {ideals in A/hi}, Exercise 1 in Sec O.

(3) \((2): Kemark & exercise in the end of Section 3.1 of Lecture 1.

2.2) Examples of maximal ideals.

- 1) $A = \mathbb{Z}$, so every ideal is of the form (a):= $a\mathbb{Z}$ for $a\in\mathbb{Z}$. (a) is maximal \iff a is prime. Indeed, the inclusion (a) \subseteq (b) is equivalent to b: a.
- 2) A = F[x] (F is field), (f) is maximal \Leftrightarrow f is irreducible, for the same reason as in the previous example. For example, for F = C (or any alg. closed field), the maximal ideals are exactly (x-d) for $d \in F$.

3) $A = F[x_1, x_n]$ $d = (d_1, ..., d_n) \in F^n \longrightarrow M_n := \{f \in F[x_1, ..., x_n] | f(x) = 0\} \text{ is an ideal}$ (exercise). We claim it's maximal \iff ideal $I \not\supseteq M_n$ contains 1. $\exists f \in I \text{ w. } f(x) \neq 0 \text{ Write } f \text{ as polynomial in } x_1 - d_1, ..., x_n - d_n (\in M_n)$ $r : f = f(x) + g \text{ w. } g \in M_n \subset I \implies f(x) \in I \implies 1 \in I$.

In fact, this way we get all max ideals in F[x, x], if F is algebraically closed. This claim, to be proved later in the class, is one of most basic connections between Commutative algebra & Algebraic geometry.

2.3) Existence.

Proposition: Every nontevo (commutative) ring has at least one maximal ideal.

We will prove this later for "Noetherian" rings (all ideals

are finitely generated), a justification is that essentially every ring we encounter in this course is Noetherian. The general proof, based on Zorn's lemme from Set theony (= axiom of choice) is provided below as a bonus. Definitions: let X be a set. · A partial order < on X is a binary relation s.t. $- x \leq y & y \leq x \Rightarrow x \leq y$ $- x \leq y & y \leq z \Rightarrow x \leq z$ · Y=X is linearly ordered (under <) if #x, y ∈ Y have · poset = a set equipped with partial order. Example: X = { ideals I = A | I = A}, < := = Zorn lemma: Let X be a poset. Suppose that: (*) I linearly ordered subset $Y \subseteq X \supseteq An$ upper bound in X, i.e $X \subseteq X$ s.t. $Y \subseteq X \neq Y \subseteq Y$ Then I a maximal element Z∈X (i.e. x∈X & z≤x ⇒ Z=x). Note that both the condition & the conclusion are essentially vacuous for finite sets

Proof of Proposition: X, \(\) are as in Example. Want to show (*): let I be linearly ordered subset of X, being linearly ordered in our case means: # I,J = Y have I = J or J = T. Set I = U I. We claim this is an ideal, # A (note: unlike the intersection, the union of ideals may fail to be an ideal). Need to show: (i) Î is an ideal = a+6€Î as long as g6€I. Check: $a, 6 \in \widetilde{I} = UI \Rightarrow \exists I, J \in Y s.t a \in I, 6 \in J.$ Can assume $I \subseteq J \Rightarrow a, b \in J \Rightarrow a+b \in J \subseteq \widetilde{I}$. This shows (i). (ii) Ĩ≠A<> 1¢Ĩ I is an ideal But $1 \notin I$ for every $I \in Y \Rightarrow I = UI \not = 1$ Apply Zorn's lemma to finish the proof of Proposition. 3) Prime ideals A 15 commire ring. Definitions: · a ∈ A is a zero divisor if a ≠ 0 &] b ∈ A s.t. 6 \$0 but ab=0. · A is domain if A has no zero divisors. · Ideal & CA is prime if \$ # A & A/\$ is domain. Lemma: TFAE (the following are equivalent) i) & is prime ii) If a, b∈ A are s.t abeβ ⇒ a ∈ β or b ∈ β (note \widetilde{z}

```
that "=" is automatic).
              iii) If I,JCA are ideals, IJSB ⇒ ISB or JSB.
    Proof: or: A -> A/B, a+> a+B.
i) \Leftrightarrow ii): a \notin \beta \Leftrightarrow \pi(a) = 0, \quad ab \in \beta \iff \pi(a)\pi(b) = \pi(ab) = 0.
(ii) \Rightarrow (ii): I, J \not= \beta \Rightarrow \exists \alpha \in I \setminus \beta, 6 \in J \setminus \beta \Rightarrow \alpha \beta \not= \beta \Rightarrow IJ \not= \beta.
iii ⇒ ii): I:=(a), J:=(b). Then I ≠β ⇔ a ≠β; IJ ⊆β ⇔ ab∈β. □
 Examples: · M < A max'l (=> A/m is field (so domain) => M is prime.
                    · {0} CA is prime A is domain.
 · A = \mathbb{Z}. Every ideal is (n) for n \in \mathbb{Z}; (n) is prime \rightleftharpoons \pm n is prime or n = 0. So every prime is maxil or \{0\}.

· Same conclusion for A = \mathbb{F}[x] if \mathbb{F} is field.
                  · A= IF[x,y], (x) is prime (but not maximal):
 [F[x,y]/(x) ~ F[y] (domain but not held)
                   · The ideal (xy) < [F[x, y] is not prime.
```

BONUS: Non-commutative counterparts part 2.

B1) Proper generalizations or what we discussed in this lecture will be for two-sided ideals. For two such ideals I, I it still many sense to talk about INI, I+I, II, I: I - those are still 2-sided ideals. For II the situation is more interesting: the Lefinition we gave doesn't produce an ideal (look at I= 803 in Met_(C)]. Under some additil assumptions, still can define a 2-sided ideal. We'll explain this for I= (0), for the general case just take the preimage of VF03' = A/I under A-nA/I.

Definition: A two-sided ideal ICA is called inspotent if A n∈ Z/20 In= {03.

Exercise: The sum of two nispotent ideals is a nispotent ideal.

Under additional assumption: A 15 "Northerian" for 2-sided ideals there's an automatically unique maximal nilpotent ideal. We take this ideal for $\sqrt{103}$?

B2) Now we discuss maximal ideals.

Definition: A ring A is called <u>simple</u> if it has only 2 two-sided ideals, £03 & A.

Exercise: Mat (F) is simple for any hald F
Exercise: Matn (F) is simple for any field F.
Premium exercise: Weyl = [F < x, y > / (xy - yx - 1) is simple if char [F > 0.
Charle - U & not simple if charle >0.
1 transital ideal and I is more made it the is small
A two-sided ideal mcA is maximal if A/m is simple.