Lecture 22: tensor products, II.

- 1) Tensor-Hom adjunction, contid.
- 2) Tensor products of algebras.

Refs: [AM], Secs 2.8, 7.11

BONUS: Induction of group representations.

1) Tensor-Hom adjunction, contid.

1.1) Generalization of tensor-Hom adjunction

This is a continuation of Sec 2.2 in Lec 21. Let $\varphi: A \rightarrow B$ be a homomorphism of commutative rings. This gives rise to the forgetful functor q*: B-Mod -> A-Mod.

Now let 1 be a B-module. In Sec 2.2 of Lec 11, we interpreted LOA? as a functor A-Mod -> B-Mod (the B-action on L& M is uniquely determined by b(l&m) = (6l)&m). On the other hand, we have a functor $\varphi^* \underline{Hom}_{\mathcal{B}}(L, \cdot) : \mathcal{B} - Mod \to A - Mod$

Thm (Tensor-Hom adjunction): The functor Logo: A-Mod - B-Mod is left adjoint to $\varphi^* \underline{Hom}_B(L, \cdot) : B-Mod \longrightarrow A-Mod.$

Sketch of proof: the proof closely follows that in Sec 2.1, Lec. 21. We need to show Tm: L→N & Tq: L®M →N are B-linear. Both claims fellow directly from the construction of the B-action on LogM, П

1.2) Base change

Taxe L=B. Then $Hom_B(B,N)$ is naturally isomorphic to N for any B-module N, i.e. $Hom_B(B, \cdot)$ is isomorphic to the identity endo-functor of B-Mod. We arrive at the following:

Corollary: The functor Box: A-Mod -B-Mod (base change or induction functor) is left-adjoint to φ^* : B-Mod \to A-Mod.

We encounter base change first when in Linear algebra we replace vector spaces over a field F w. vector spaces over the algebraic closure \overline{F} (e.g. F=R, $\overline{F}=C$), this is basically done by applying $F\otimes_{\overline{F}}$.

Here's another appearance of base change from this course.

Proposition: Let SCA be a multiplicative subset. Then the functor $A[S^{-1}] \otimes_{A} \cdot : A-Mod \longrightarrow A[S^{-1}]-Mod is isomorphic to the localization$ functor · [5-1].

By Example 2 in Sec 2.2 in Lec 19, ·[5] is left adjoint to the pullback functor A[5-1]-Mod -> A-Mod. By Corollary above, so is A[5-1] &. Now the uniqueness of adjoints (Sec 23 of Lec 19) guarantees ·[5-1] → A[5-1]&.

Rem: Here's a concrete way to think about BOM (under

mild assumptions on M). Namely assume I RlE/1, & A-linear map T: A BR S.t. M ~ A A I'm T. Then T is given by a mat. rix $T = (a_{ij}) \in Mat_{\kappa * e}(A)$ (we view elements of $A^{\oplus \epsilon}$, $A^{\oplus \epsilon}$ as column vectors). This is a way to present M by generators & relations We write $\varphi(T)$ for the element $(\varphi(a_{ij}))$ ∈ Mat_{k=e} (B) & let ${}^{\varphi}T$ be the corresponding B-linear map Both The following gene-Valizes Sec 1.3 in Lec 10.

Exercise: $B \otimes_{A} (A^{\oplus k}/im\tau) \xrightarrow{\sim} B^{\oplus k}/im^{\varphi} \tau$.

2) Tensor product of algebres.

2.1) Construction.

Let A be a commutative ring, B, C be A-algebras (8 so A-modules) ~ A-module B& C

Proposition: 3! A-algebra structure on BO, C s.t. (6,0C,)·(620C2) = 6,620C, Q +6,62∈B, G,C2∈C (w. unit 101).

Proof: Uniqueness will follow 6/c B&C = Span, (6@c/6EB, cEC) (Sec 1.1 of Lec 21) & any bilinear map is uniquely determined by images of generators.

Now we need to show the existence. The product map $B \times B \longrightarrow B$ is A-bilinear $\longrightarrow 3!$ A-linear

 $\mathcal{M}_{\mathcal{B}}: \mathcal{B} \otimes_{\mathcal{A}} \mathcal{B} \to \mathcal{B}, \ w. \ 6,062 \mapsto 6,62.$

Similarly, we have Mc: COC -> C ->

$ \mathcal{A}_{\mathcal{B}} \otimes \mathcal{A}_{\mathcal{C}} : (\mathcal{B} \otimes_{\mathcal{A}} \mathcal{B}) \otimes_{\mathcal{A}} (\mathcal{C} \otimes_{\mathcal{A}} \mathcal{C}) \longrightarrow_{\mathcal{B}} \mathcal{B} \otimes_{\mathcal{A}} \mathcal{C} $ $ \mathcal{A}_{\mathcal{B}} \otimes \mathcal{A}_{\mathcal{C}} : (\mathcal{B} \otimes_{\mathcal{A}} \mathcal{C}) \otimes_{\mathcal{A}} (\mathcal{C} \otimes_{\mathcal{A}} \mathcal{C}) \longrightarrow_{\mathcal{A}} \mathcal{B} \otimes_{\mathcal{A}} \mathcal{C} $ $ \mathcal{A}_{\mathcal{A}} \otimes \mathcal{A}_{\mathcal{A}} \otimes \mathcal{C} \otimes_{\mathcal{A}} \mathcal$	(6,6,)&(c,C ₁)
$(x,y) \in (B \otimes C) \times (B \otimes C)$ our multiplication	п тер
So we've shown existence of A-bilinear product map. As a unit axioms can be checked on clementary tensor, e.g. a part of unit axiom:	
(101)(60c) = (106)Q(10c) = 60c.	Д
Rem: B, C are commutative \Rightarrow so is $B \otimes_{A} C$. 2.2) Coproduct.	
Theorem: Let B, C be commutative. Then $B \otimes_{A} C$ is the of $B \otimes_{A} C$ in $E := A - CommAlg$ (the category of commutal algebras).	coproduct ative A-
Recall (Sec 1 of Lec 19) that this means that the functors are isomorphic	
Home (BO_AC, \cdot) , Home $(B, \cdot) \times$ Home (C, \cdot) : $E \longrightarrow Sets$. Equivalently: $\exists A$ -algebra homomorphisms $C^B: B \longrightarrow B \otimes_A C$, $C^C: C \longrightarrow C$ s.t. $\forall alg. homom's g^B: B \longrightarrow D$, $g^C: C \longrightarrow D$, where G is G .	
4	

```
a commutative A-algebra, 3! A-alg. homom q:
\nu. \varphi^{B} = \varphi \circ \iota^{B}(: B \to D) \& \varphi^{C} = \varphi \circ \iota^{C}(: C \to D).
         Proof: Construction of CBCC:
                         LB(6):=601, LC(c):=10C.
                  The conditions on \varphi \colon B \otimes_{\mathcal{C}} C \to \mathcal{D} we need to achieve:
                                      \varphi(6\otimes i) = \varphi^{B}(6), \varphi(1\otimes c) = \varphi^{C}(c) \iff [6\otimes c = (6\otimes i)(1\otimes c)]
                                                                   \varphi(\dot{b}\otimes c) = \varphi^{g}(b)\varphi^{c}(c).
   We need to show ∃! A-algebra homom'm \( \varphi : B\omega C \rightarrow \mathbb{D} \) satisfying
(*). The map B \times C \to D, (6,c) \mapsto \varphi^{B}(6) \varphi^{C}(c) is A-bilinear, so
 ]. A-linear of satisfying (*)
 What remains to check is: of respects ring multiplication (unit
is clear) enough to do this on elementary tensors
                    \varphi(6, 0, 0, 0, 0) = \varphi(6, 6, 0, 0, 0) = \varphi^{(6,6)} \varphi^{(6,6)} = \varphi^{(6,6)} \varphi^{(6,6)} = \varphi^{(6,6)} \varphi^{(6,6)} = \varphi^{(6,6)
  = \varphi^{B}(b_{1})\varphi^{B}(b_{2})\varphi^{C}(\zeta_{1})\varphi^{C}(\zeta_{2}) = [D \text{ is commutative}] = (\varphi^{B}(b_{1})\varphi^{C}(\zeta_{1})).
 (\varphi'^{\mathcal{B}}(b_{z})\varphi'(c_{z})) = \varphi(b_{1}\otimes c_{1})\varphi(b_{2}\otimes c_{2})
    Example: B = A[x,...,x,]/(f,...fx), C=Aly,...ye]/(g,...ge,).
      Then BOXC ~ A[x, x, y, ye]/(t, f, g, g, ge), denote the
       right hand side by D.
                                                                                                                                               on X, Xx on y, ye
```

Will show isomorphism of functors: F = F × Fc (where F = Home (D.): E → Sets & FB, Fc are defined similarly), then we are done by the uniqueness of representing object, Sec 1.3 of Lec 18.

Define another functor $F_B': \mathcal{E} \to Sets$ sending a commive A-algebra R to $\{(r_1,...,r_k)\in R^k\mid f_i(r_1,...,r_k)=0, i=1,...,k'\}$ and an A-algebra homomorphism $\psi\colon R^1\to R^2$ to $F_B'(\psi)\colon F_B'(R^1)\to F_B'(R^2), (r_1,...,r_k)\mapsto (\psi(r_1),...,\psi(r_k))$.

-well-defined map 6/c $f_i(\psi(r_1),...,\psi(r_k))=\psi(f_i(r_1,...,r_k))=0$.

Then $F_B \Longrightarrow F_B' : \varphi \in Hom_{A-Alg}(B,R)$ is sent to $(\varphi(\bar{x}_i),...,\varphi(\bar{x}_r)) \in R^k$ here $\bar{x}_i = image$ of x_i in B; $(\varphi(\bar{x}_i),...,\varphi(\bar{x}_r) \in F_B'(R)$ Similarly to the above. the map $p_R : \varphi \mapsto (\varphi(\bar{x}_i),...,\varphi(\bar{x}_r))$ is a bijection (by the description of homomorphisms from algebras given by generators & relations, Exercise 2 in Sec 0 of $ext{lec 2}$). To show (p_R) constitute a functor (iso) morphism is an exercise.

Similarly, we have $F_c \xrightarrow{\sim} F_c'$, $F_D \xrightarrow{\sim} F_D'$. That $F_D \xrightarrow{\sim} F_B' \times F_c'$ is an exercise. This completes the example.

Concrete example: Take A=C[x], B=C[x]/(f), C=C[x]/(g). Here R=l=0 (f,g are elements of A), so $B\otimes_{A}C=C[x]/(f,g)=C[x]/(GCD(f,g))$. Cf. Example A') in Sec 2.3 of Lec 20.

Exercise: Let g_i^B be the image of $g_i \in A[x_1...x_e]$ in $B[x_1...x_e]$. Note the $B \otimes_A C$ is a B-algebra via C^B . Show that $B \otimes_A C \simeq B[x_1...x_e]/(g_1^B,...,g_e^B)$

Bonus: induction of group representations.
This bonus is aimed at students who took Math 353 in
(or know relevant representation theory). It's also
based on Bonuses to Lecs 3 and 20.
Let 1,B be general (associative unital) rings & q: A -> B be
a homomorphism. Then it still makes sense to consider functor
Box .: A-Mod -> B-Mod
An interesting situation is as follows. Let H=G be finite
groups. Let F be a field. Set A=FH, B=FC and let q be the
inclusion A - B. The resulting functor is known as the induction
of group representations. The claim that it's adjoint to the
pullback functor (a.k.a. the restriction functor) is known as
the Frobenius reciprocity.
, d