Lecture 26: exactness, projective & flat modules, IV

- 1) Completion of proof of Serve's theorem
- 2) Projective modules over Dedekind domains
- 3) Invertible modules

1) Completion of proof of Servers theorem

Let A be a commutative ring.

In Sec 1.3 of Lec 24 we have stated:

Thm 2 (Serre): Let P be a finitely presented A-module. TFAE

- 1) P is projective
- 2) P is locally free, i.e. Pm is free over Am + max ideal m < A.

In Sec 3 of Lec 25 we've proved 1) \Rightarrow 2) and reduced 2) \Rightarrow

1) to the following (Step 2 in Sec 3.2)

Lemma: Let $\widetilde{M}, \widetilde{N}$ be A-modules & $\widetilde{\varphi}: \widetilde{M} \to \widetilde{N}$ be A-linear map. If $\varphi_m: \widetilde{\mathcal{M}}_m \to \widetilde{\mathcal{N}}_m$ is surjective + max. ideals m < A, then q is surjective.

Proof: Step 1: assume C is an A-module s.t. $C_m = \{0\}$ \forall max ideals $m \in A$. We claim that $C = \{0\}$. Indeed, take $c \in C$. Since $C_m = \{0\}$, we have $\frac{C}{7} = \frac{0}{7} \iff \exists u \in A \setminus m \mid uc = 0 \text{ in } C$. Consider the subset $Ann_A(c) = \{a \in A \mid ac = 0\}$. This is an ideal (exercise). If $c \neq 0$, then $1 \notin Ann_A(c) \implies \exists m \text{ s.t. } Ann_A(c) \in M$. But we've seen $\exists u \in Ann_A(c) \setminus m$, contradiction.

Step 2: Set C: = N/im G. By Sec 1.1 of Lec 10:

· im (qm) = (im q) t max. ideal mc A &

· (N/K) = Nm/Km + submodule KCN (e.g. K= im G) & + m

Since $\tilde{\varphi}_m$ is surjective, we see that $C_m = \{0\}$ \forall max. ideal m. By Step 1, $C = \{0\}$ finishing the proof.

2) Projective modules over Dedekind domains

In this section A is a Dederind domain. We'll need two facts about A:

- 1) A is Noetherian (by definition)
- 2) H max ideal McA, the localization Am is a PID (Problem 3 in HW3)

In Sec 1.3 of Lec 24 we've stated the following

Theorem: Let M be a finitely generated A-module. If M is torsion-free ($a \in A \mid \{0\}$, $m \in M \mid \{0\} \Rightarrow am \neq 0$), then M is projective. Proof:

Step 1: We first consider a special case: A is PID. Here we have a complete classification of finitely generated modules, Sec 3.3 of Lec 6: $M \simeq A^{\oplus l} \oplus A/(p_i^{d_i})$. Such a module is torsion-free iff K=0 (6/c $p_i^{d_i}$ (1+ $(p_i^{d_i})$)=0). In particular, if M is torsion-free, then it's free.

Step 2: Since A is Noetherian, P is finitely presented. So we can use the Serve theorem: P is projective iff it's locally free. Note that A_m is a PID so, the to Step 1, it's sufficient to prove P_m is torsion-free.

Step 3: Well prove a more general claim: if A is a domain, M is a torsion-free A-module, then $M[S^{-1}]$ is a torsion-free $A[S^{-1}]$ -module + multiplicative subset $S \subset A[S]$. Indeed, take non-zero elements $\frac{A}{S} \in A[S^{-1}]$, $\frac{M}{t} \in M[S^{-1}]$. If $\frac{AM}{St} = \frac{O}{t}$, then $\exists u \in S$ s.t. uam = 0. But $u, a \neq 0 \Rightarrow ua \neq 0$ & $m \neq 0$ leads to a contradiction. \Box

3) Invertible modules

3.1) Definition & examples

Let A be a commutative ring.

Definition: An A-module L is called invertible if $\exists A$ -module L' w. $L \otimes L' \simeq A$ (an A-module isomorphism).

Examples: 1) Let A be a field F. We claim that an F-vector space L is invertible \Leftrightarrow dim $_{F}L=1$. This follows from the computation of tensor products of free modules in Sec 2.3 of Lec 20: if e_i , $i \in I$, is a basis of L & e_j' , $j \in J$, is a basis of L', then $e_i \otimes e_j'$ form a basis in $L \otimes L'$ so, in our case, $|I \times J| = 1 \Rightarrow |I| = 1$.

2) Let A be a Dederind domain, and L be an ideal. We claim it is an invertible A-module.

By Thm in Sec 2, \angle is a projective, hence flet A-module. In particular, if \angle' is another ideal, then the inclusion $\angle' \hookrightarrow A$ gives rise to $\angle \otimes_A \angle' \hookrightarrow \angle \otimes_A A \xrightarrow{\sim} \angle$ and the map is given by $\ell \otimes \ell' \mapsto \ell \ell'$, so its image is $\angle \ell'$, the product of ideals. We claim that we can find \angle' such that $\angle \ell'$ is a principal ideal so that $\angle \otimes_A \ell' \xrightarrow{\sim} \angle \ell' \xrightarrow{\sim} A$. For this, we decompose \angle into the

product of prime ideals $\beta_1...\beta_k$. It's enough to find β_i s.t. $\beta_i\beta_i$ is principal. Take $a \in \beta_i \mid \{0\}$. Then β_i occurs in the decomposition of (a) (exercise): $(a) = \beta_i q_1 ... q_e$ & we take $\beta_i' = q_1' ... q_e$. This finishes the proof of the claim that \mathcal{L} is invertible. And, in fact, every invertible A-mo-dule is isomorphic to some ideal in A, as we will sketch below.

Rem: Here are motivations to consider invertible modules.

A categorical motivation is that the functor $L \otimes_{A} \circ : A - Mod \rightarrow A - Mod$ has an "inverse", $L' \otimes_{A} \circ - by$ algebra properties of tensor products. So these functors can be viewed as "symmetries" of A-Mod.

A geometric motivation is that counterparts of invertible modules, line bundles, a special class of vector bundles, are extremely important, in Algebraic geometry.

Side remark: using invertible modules and the description of invertible modules over Dedekind domains, one can generalize the class group of a Dedekind domain to arbitrary rings. We consider the Picard group: its elements are isomorphism classes of invertible modules and the product comes from taxing the tensor products

3.2) Properties of invertible modules

Proposition: Every invertible module is projective.

Proof:

Let L, L' be s.t. $L \otimes_{A} L' \xrightarrow{\sim} A$, let L' denote an isomorphism. We are going to establish a functor isomorphism $Hom_{A}(L, \bullet) \xrightarrow{\sim} L' \otimes_{A} \bullet$.

The functor $L' \otimes_{A} \bullet$ is right exact, so this would imply L' is projective.

In the proof we will need the following construction. For A
modules L_{A} , M, N consider the A-linear map $\theta_{L}^{M,N}$: $Hom_{A}(M,N) \longrightarrow Hom_{A}(L_{A} \otimes_{A} M, L_{A} \otimes_{A} N)$, $\psi \mapsto id_{L} \otimes \psi$.

Claim: If L'is invertible, then of is an isomorphism.

With this claim the proof is as follows: we get isomorphisms $\theta_{L}^{L,N}$: Hom, $(L,N) \stackrel{\sim}{\to} Hom_{A}(L'\otimes_{A}L, L'\otimes_{A}N)$ that constitute a functor morphism (exercise) and then use that $L'\otimes_{A}L \stackrel{\sim}{\to} A & functor isomorphism <math>Hom_{A}(A, \cdot) \stackrel{\sim}{\to} id_{A-Mod}$ to get $Hom_{A}(L, \cdot) \stackrel{\sim}{\to} L'\otimes_{A} \cdot .$

Proof of Claim: Observe that:

(i) $\theta_{A}^{M,N}$ becomes the identity under the identifications $A \otimes_{A} M \xrightarrow{\sim} M$, $A \otimes_{A} N \xrightarrow{\sim} N$.

(ii) $\theta_{L_{0}AL_{2}}^{M,N} = \theta_{L_{1}}^{L_{2}\otimes_{A}M,L_{2}\otimes_{A}N} \circ \theta_{L_{2}}^{M,N} : both sides send <math>\psi \in Hom_{A}(M,N)$

to $id_{L_{1}\otimes_{A}L_{2}}\otimes\psi=id_{L_{2}}\otimes id_{L_{2}}\otimes\psi\in Hom_{A}(L_{1}\otimes_{A}L_{2}\otimes_{A}M,L_{1}\otimes_{A}L_{2}\otimes_{A}N)$ Apply (ii) to $L_{1}=L$, $L_{2}=L'$. Since $L\otimes_{A}L'\xrightarrow{\sim}A$, by (i), $\theta_{L\otimes_{A}L'}$ is an isomorphism. So (ii) implies $\theta_{L}^{M,N}$ is injective \forall M,N. But L, L' play symmetric voles, so for $M'=L'\otimes_{A}M$, $N'=L'\otimes_{A}N$, the map $\theta_{L}^{M',N'}$ is injective as well. If the composition of two injections is a bijection, then both injections are bijections. \square of Claim.

Corollary: Let A be a Dedexind domain & L be an invertible A-module. If L is finitely generated, then it's isomorphic to an ideal in A.

Sketch of proof: We'll prove that Lembeds into Frac (A) as an A-submodule, so it's isomorphic to a fractional ideal (Sec 1.1 of Lec 13). Every fractional ideal is isomorphic to an actual one: an isomorphism is given by multiplying w. suitable element of A.

Since L is projective it's torsion-free so the natural homomorphism $L \to L[S^{-1}]$ is an embedding for every multiplicative $S \subset A$ including $S := A[\{0\}]$. So we need to show that for this S, we have $L[S^{-1}] \xrightarrow{\sim} Frac(A)$. Then to Example 1) in Sec 3.1, this will follow once we show that $L[S^{-1}]$ is invertible as an $A[S^{-1}]$ -module. This in turn follows from:

Exercise: For any A-modules M, N, we have a natural 150-morphism $M[S^{-1}] \otimes_{A[S^{-1}]} N[S^{-1}] \xrightarrow{\sim} (M \otimes_A N)[S^{-1}]$. Hint: use universal properties to produce homomorphisms in 60th directions.

Remark: In fact, every invertible module over a Noetherian ring is automatically finitely generated, equivalently, Noetherian module. The shortest proof is categorical: the functor $\angle \otimes_A \circ : A\text{-Mod} \longrightarrow A\text{-Mod}$ is an "equivalence" of "abelian categories" & being Noetherian is a property inherent to an abelian category so doesn't change under equivalence. Since \angle is the image of a Noetherian object, A, it's also Noetherian.