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a 1 Why to care aboutmodules
Reason 0 modulesgeneralize various classicalobjects
abeliangroupsvectorspacesvectorspaces equipped w linear
operator F modules collectionof commuting operators
F xp Xn modules

Reason 1 modulesprovide a generalframework fordiscussingsome
properties ofideals in A or Aalgebras Forexample for ideals we
care about whether they are principal This is apropertywhich

onlyrequires the module structure

Reason2 Modules are important fromthepoint ofAlgebraic

geometryFor example an important classof modules we'llstudylater
in this course projectivemodules geometricallycorrespondtovector

jundles
an object of primary importancefor variouspartsofGeometry



e2 What's next
When we study vector spaces in Linearalgebra we almost

always concentrate on finite dimensional ones One can ask
about an analogof finitedimensional for modules The 1st
guess is that one shouldwork w finitelygeneratedmodules
However suchmodules may

havepathologicalbehavior a
submodule in a finitelygeneratedmodule may fail to be
finitelygenerated in Problem 2 ofHWI we havetheregular
module generatedby a singleelement with a submodule ideal
that isn't fin generatedWe are going to studythe condition
on modules andthering A itself that guarantees that
this doesn't happen

1 Noetherian rings modules

1 1 Main definitions examples
Definition Let A be a commutative ring
1 AnA module M is Noetherian if submodule ofM
includingM is finitely generated
ii A is a Noetherian ring if it's Noetherian as amodule
over itself i e every ideal isfinitelygenerated

Examples

e Every field F is Noetherianring ideals in F are 0 F 1

1 A TL is Neetherian 61C ideal is principal
I



12 Equivalentcharacterizationsof Noetherianmodules
Definition M is A module

By an ascendingchain AC of submodulesof M we mean

collection Nilize ofsubmodules of M St NisNo ie
N SNasN S
Wesay that the AC Nilize terminates if kno st

N Nk jsk
If every ACterminates wesayM satisfies ACtermination

Proposition For an Amodule M TFAE
1 M is Noetherian

2 M satisfiesACtermination AC ofsubmodulesofM
terminates
3 nonempty set of submedules ofM has amaximal

element war t inclusion lie NEX sit N N forN'EXN N

Proof

1 2 AC Ni in N SN s N Ni is a sub
module e.g if noheN i j n eNi neNg 9 noheNmexci

nth ENmaxci.scN This N is fin gen'd so Me meENW
N Spang me Me Now KilmieNK Me Meekfor K
Max K N Spangme me N so AC Ni terminates at Nk
2 3 PickMEX if it's not maximal w.at pickMe My
if M isn't maximalpick MRMa etc We arrive at AC of

346
modulesthat doesn't terminate



3 A let N be a submoduleofM Let Xbe the set of
all finitilygeneratedsubmodulesofN N be its maximal elit

If N N we are done Otherwise let me MEN begenerators pick
MineNIN Set N Spang M Mk Then N N N isfin
generatedwhichcontradicts themaximalityof N

Corollary Every nonzero Noetherianringhas a maximal ideal

Proof The set ICA ideals A has a max elit by 3

2 Hilbert basis theorem
2 1 Statement proof
It turns out that there are a lot ofNoetherianrings infactmost
rings we are dealingwith are Noetherian Thefollowing is abasicresult in thisdirection

Thm Hilbert 1800
If A is Noetherian then so is Alx

Proof Let I C A x be an ideal Assume it's notfinitely
generated We construct a sequence of elements f fic EI as
follows f to is an element of I withminimalpossibledegree Once
f fr are constructed we choose fice I f fic this set is

nonempty 61C I f fi again ofminimalpossible degree Letα
deg f h a to bethecoefficient of x in fi f aix lowerdegterms

u



Weneedtwo observationsabout theprocess
I If get degg degf geffii.fi otherwise we choose g
insteadoffk k

II dedic K same reason
Now let I ay ax CA K 0 This is an ascending chainofideals

in A Since A is Noetherian it must terminate So Amae 9 am
forsome m am Ebiai tied Set

g fm Eg 6x madif
By I dmpdigxdm.deA x fje I j 1 mil Soget
Butg fmvfbia.lt lowerdgterms degg dm By 1

ge fate fm
pm g 6 xdmndif.ieftpfm contradiction

22 Finitely generatedalgebras
Weproceed to a generalization oftheHilbertbasisThm

Definition Let B be a commutative A algebra ring w fixed
homomorphism from A Then B is calledfinitelygenerated as an

A algebra if 61 6EB s.t 6GB FEA Xc S.t
6 F 61 6k

Hence 9 A x Xc B F to F61 6 issurjective So B
is fingen'd Aalgebra K B aringquotientofA x X51



Corollary Let A beNoetherian Bbe a finitelygenerated
Aalgebra Then B is a Noetherianring

Proof Use Hilbert's Thm K times to see that A he is

Noetherian Let ICB be idealneedto show it'sfingen'd
J P I C A Xp he is ideal so J E Fe Butthen

I J P F Fe is finitelygenerated

Since fields 72 are Noetherian rings anyfinitelygenerated
algebra over these are Noetherian This is one butnottheonly
sourceof Neetherian rings

3 Further properties ofNoetherianmodules
Let A be a ring maynotbeNoetherian M be Amodule
Thefollowing result comparesthe property ofbeingNoetherian
for M its subs quotients

Proposition let NCMbe a submodule TFAE
1 M is Neetherian

2 Both N MINare Noetherian

We'llprove it in thenext lecture for now let'sdeduce a Corollary

forollary Assume A is
Noetherian TFAE



a M is Noetherian

6 M is finitelygenerated
Proof
a 6 followsfrom definition of Noetherianmodules
b a we do induction on thenumberofgenerators R ofM
If k 1 then M Spang m A M via ateam SinceA isNoe

therian so is M by 1 21 ofProposition
Now suppose everyAmodulegeneratedby r elements isNoetherianM Spang M Mica Take N Spangm My CM Noetherian

byinduction Notethat MIN isgeneratedby mitN i 1 ki byRem

2 in Sec3.1ofLec4 ButonlyMetNto soMINis spannedbyoneelit
henceNoetherian By 2 t of Proposition M is Noetherian I



BONUS I NonNoetherianrings in Complex analysis
Most ofthe rings we deal with in Commutativealgebra

are Noetherian Here is however a very natural example ofa
non Noetherian ring that appears in Complex analysis

Complex analysis studies holomorphic a.k.a complexanalytic
or complex differentiablefunctions Let Hd C denote

the set of holomorphicfunctions on These canbe thought
aspowerseries that absolutely converge everywhere
HdG has a natural ringstructure vie addition

multiplicationoffunctions

Proposition Hd C is not Netherian

Proof We'llproduce an AC of ideals Ij f z eHolla
f 24 Fik o integerkaj je th It's easy to check

that all ofthese are indeedideals It is alsoclearthat
theyform an AC when we increase j we relax the condition
on zeroes We claim that I Ij

hencethisACdoesn't
terminate Hd G is not Noetherian Equivalently we
needto show that foreachj there fj.cz e7ld C suchthat f 2H Fik o k j while fj 20Fij Fe
Consider thefunction f z e 1 Thisfunction is periodic
withperiod 2H51 Also f t Eg Z So z o is an

getter 1 zero offee
Since 2HFP is aperiod every 2H FI K



KER is an order 1 zero We set

fj.cz et 1 2HFij Thisfunction is still

holomorphicon theentire we have fj 20Fij to fj2H Fik
so for ktj
BONUS I WhydidHilbert care about theBasistheorem
Hilbert was interested in Invarianttheory oneofthecentral
branchesof Mathematicsofthe 19thcentury Let Gbe agroup
acting onfindim vectorspace V by linear transformations g agu
We want to understand when two vectors u v lie inthesame
orbit

Definition Afunction f V G is invariant if f is constant
on orbits figu far geG veV

Exercise viKEV lie in the same orbit for fluinvariantfunction f we say Ginvariants separate Gorbits

Unfortunately all invariant functions are completely out of
control However we can hope to controlpolynomialfunctions
Those are functions that are written aspolynomials in coordinates
of v in a basis if we change a basis then coordinateschangevia
a linear transformation so if a function is apolynomial
one basis then it's apolynomial in every basis The Calgebra



ofpolynomial functions will bedenotedby V3 ifdim V n
then a choice ofbasis identifies V with x A
By V we denote thesubsetof Cinvariant functions inCV

Exercise It's a subring of V3

Example1 Let V G G Sn thesymmetricgroupactingon by
permuting coordinates Then V3 consistsprecisely ofsymmetric
polynomials

Example2 Let V C 140 w.atmultiplication
Let G act on Vby rescalingthecoordinates t A

1 txt We have fly Xn v3 fthe tn f x A
ted X he This isonlypossible when f isconstant

As Example 2 showspolynomial invariantsmay fail toseparate
orbits However to answer our originalquestion it's still worth
to studypolynomial invariants

Premium exercise When G isfinite thepolynomialinvariants
still separate Gorbits

Now suppose wewant to understand when for V.V EV we have
r five fee V39 It's enoughtocheckthisforgenerators



fof the C algebra CCV So a naturalquestion is whether
this algebra is finitelygenerated

Hilbertproved this for reductivealgebraicgroups G
hedidn't know theterm butthis iswhathisproofuses
Finitegroups are reductivealgebraic andso are Gln C
thegroup of all nondegeneratematrices SG C matrices
of determinant 1 On G orthogonalmatrices andsome
others for these infinitegroups one needs to assume that
their actions are reasonable in somepreusesense Later
mathematiciansfoundexamples where thealgebraofinvariants
are not finitelygenerated counterexamples to Hilbert's16th
problem for non reductive groups
Basis theorem is an essential ingredient in Hilbert's
proofoffinitegeneration For more details on this see
E 1.4.1 1 5 1.3 containssome more background on
Invariant theory

x ̅


