Lecture 5, Noetherian rings & modules, I.

- 0) Modules: Why to care and what's next?
- 1) Noetherian rings & modules
- 2) Hilbert's Basis theorem
- 3*) Further properties of Noetherian modules.

References: [AM], Chapter 6, intro to Chapter 7

BONUS: · Non-Noetherian rings in Complex Analysis.

· Why Hilbert cared.

0.1) Why to care about modules?

Reason 0: modules generalize various classical objects: abelian groups, vector spaces, vector spaces equipped w. linear operator (IF[x]-modules), collection of commuting operators (F[x,...xn]-modules).

Reason 1: modules provide a general framework for discussing (some) properties of ideals in A or A-algebras. For example, for ideals we care about whether they are principal. This is a property which only requires the module structure.

Reason 2: Modules are important from the point of Algebraic geometry. For example, an important class of modules we'll study later in this course - projective modules - geometrically correspond to vector bundles, an abject of primary importance for various parts of Ceometry. 0.2) What's next?

When we study vector spaces in Linear algebre, we almost always concentrate on finite dimensional ones. One can ask about an analog of finite dimensional for modules. The 1st guess is that one should work w. finitely generated modules. However such modules may have pathological behavior: a submodule in a finitely generated module may fail to be finitely generated: in Problem 2 of HW1 we have the regular module (generated by a single element) with a submodule (= ideal) that isn't fin. generated. We are going to study the condition on modules (and the ring A itself) that guarantees that this doesn't happen.

1) Noetherian rings & modules

1.1) Main definitions & examples.

Definition: Let A be a commutative ring.

i) An A-module M is Noetherian if I submodule of M (including M) is finitely generated.

ii) A is a Noetherian ring if it's Noetherian as a module over itself, i.e. every ideal is finitely generated.

Examples:

0) Every field IF is Noetherian ring (ideals in IF are {0}, IF = (1)),

1) A = 7/2 is Noetherian: 6/c + ideal is principal.

1.2) Equivalent characterizations of Noetherian modules

Definition: M is A-module.

· By an ascending chain (AC) of submodules of M we mean: collection (Ni) iso of submodules of M s.t Ni SNix + i >0: $N_1 \subseteq N_2 \subseteq N_2 \subseteq \dots$

· We say that the AC (Ni) iso terminates if I K70 s.t $N_j = N_k + j > k$.

· If every AC terminates, we say M satisfies AC termination.

Proposition: For an A-module M TFAE:

1) M is Noetherian.

2) M satisfies AC termination = #AC of submoduly of M terminates

3) \forall nonempty set X of submodules of M has a maximal element w.r.t. inclusion (i.e $N \in X$ s.t. $N \not= N'$ for $N' \in X$, $N' \not= N$). Proof:

 $(1) \Rightarrow (2): AC \left(N_{i}\right)_{i \neq 0}: N_{i} \leq N_{i} \leq \dots \longrightarrow N: = \bigcup N_{i} \text{ is a sub-}$ $module (e.g. if n_{i}, n_{i} \in N \Leftrightarrow \exists i, j \mid n_{i} \in N_{i}, n_{i} \in N_{j} \xrightarrow{AC} n_{i}, n_{i} \in N_{max(i,j)} \Rightarrow$ n,+n, ∈ Nmax(i,j) < N). This N is fin. gen'd so ∃ m, me ∈ N w. N= Span (My... Me). Now 3 Ki | Mi ENK; AC My... Me ENk for K= $\max\{\kappa_i\} \Rightarrow N = \operatorname{Span}_{\Lambda}(m_i, m_e) \subseteq N_k$ so $AC(N_i)$ terminates at N_{κ} . (2) \Rightarrow (3): Pick $M, \in X$; if it's not maximal wirt. \subseteq , pick $M_2 \not\supseteq M_4$, if M, isn't maximal, pick M37M2, etc. We arrive at AC of submodules that doesn't terminate.

(3) \Rightarrow (1): Let N be a submodule of M. Let X be the set of all finitily generated submodules of N & N' be its maximal elit. If N'=N, we are done. Otherwise let m_{r} ... $m_{r} \in N'$ be generators & pick $m_{k+1} \in N \mid N'$. Set $N'':=Span_{p}(m_{r},...,m_{k+1})$. Then $N'' \not\supseteq N' \not\in N''$ is fin. generated which contradicts the maximality of N'.

Corollary: Every nonzero Noetherian ring has a maximal ideal.

Proof: The set {I < A | ideals = A} has a max elit by (3).

2) Hilbert basis theorem.

2.1) Statement & proof

It turns out that there are a lot of Noetherlan rings, in fact most rings we are dealing with are Noetherlan. The following is a basic result in this direction.

Thm (Hilbert, 1890)

If A 15 Noetherian, then so is A[x]

Proof: Let $I \subseteq A[x]$ be an ideal. Assume it's not finitely generated. We construct a sequence of elements $f_1, \dots f_k, \dots \in I$ as follows: $f_1 \neq 0$ is an element of I with minimal possible degree. Once $f_1, \dots f_{k-1}$ are constructed, we choose $f_k \in I \setminus (f_1, \dots f_{k-1})$ (this set is nonempty by $I \subseteq I \neq (f_1, \dots f_{k-1})$) - again of minimal possible degree. Let $d_i := \deg f_i \& a_i \neq 0$ be the coefficient of x^{d_i} in $f_i : f_i = a_i x^{d_i} + lower \deg terms$.

We need two observations about the process:

I) If $g \in I$ & deg $g < deg f_k \Rightarrow g \in (f_1, ... f_{k-1})$ - otherwise we choose ginstead of f_k ($\forall k$)

II) dk > dk-1 + K - same reason

Now let $I_k = (a_k, a_k) \subset A$, K70. This is an escending chair of ideals in A. Since A is Noetherian, it must terminate. So $a_{mn} \in (a_k, a_m)$

for some $m \Rightarrow a_{mn} = \sum_{i=1}^{m} b_i a_i, b_i \in A$ Set

 $g:=f_{m+1}-\sum_{i=1}^{m}b_{i}x^{d_{m+1}-d_{i}}f_{i}$ $\text{By }II),\ d_{m+1},d_{i}\Rightarrow x^{d_{m+1}-d_{i}}\in A[x]\ \&\ f_{i}\in I\ \forall\ j=1,...m+1.\ \ \text{So }g\in I.$ $\text{But }g=(A_{m+1}-\sum_{i=1}^{m}b_{i}A_{i})x^{d_{m+1}}+\text{lower }\text{deg. terms}\Rightarrow \text{deg }g< d_{m+1}.\ \&\ y=1),$ $g\in (f_{1},f_{2}-f_{m})$

 $g \in (f_1, f_2 - f_m)$ $f_{m+1} = g + \sum_{i=1}^{m} b_i \times d_{m+1} - d_i f_i \in (f_1, f_m), \text{ contradiction } \square$

2.2) Finitely generated algebras.

We proceed to a generalization of the Hilbert basis Thm.

Definition: Let B be a (commutative) A-algebra (= ring w. fixed homomorphism from A) Then B is called finitely generated (as an A-algebra) if $\exists b_1,...b_k \in B$ s.t. $\forall b \in B \exists F \in A[x_1...x_k]$ s.t. $b = F(b_1,...b_k)$.

Hence $P: A[x_1...x_k] \rightarrow B$, $F \mapsto F(b_1...b_k)$, is surjective. So B is fin gen'd A-algebra $\Rightarrow \exists k \mid B \cong a$ ring quotient of $A[x_1...x_k]$

Corollary: Let A be Noetherian & B be a finitely generated A-algebra. Then B is a Noetherian ring.

Proof: Use Hilbert's Thm K times to see that Alx, xx] is Noetherian Let ICB be ideal, need to show it's fin gen'd J:=9-1(I) CALX,...X, Is ideal so J=(F1,...Fe). But then $I = \mathcal{P}(\mathcal{I}) = (\mathcal{P}(\mathcal{F}_1), \dots \mathcal{P}(\mathcal{F}_e))$ is finitely generated

Since fields & 72 are Noetherian rings, any finitely generated algebra over those are Noetherian. This is one (but not the only) source of Noetherian rings.

3) Further properties of Noetherian modules.

Let A be a ring (may not be Noetherian) & M be A-module. The following result compares the property of being Noetherian for M & its subs & quotients.

Proposition: let NCM be a submodule. TFAE

- (1) M is Naetherian
- (2) Both N, M/N are Noetherian.

We'll prove it in the next lecture, for now let's deduce a Corollary.

Corollary: Assume A is Noethernan TFAE:

a) M is Noetherian
b) M is finitely generated.
Proof:
a) \Rightarrow b) follows from definition of Noetherien modules
b) $\Rightarrow a$): we do induction on the number of generators, R, of M.
If K=1, then M= Span (M) (A -> M VIR a Ham, Since A is Noe-
thenan, so is M by (1) \Rightarrow (2) of Proposition.
Now suppose every A-module generated by k elements is Noethe-
rian & M= Span (m, mx+1). Take N= Span (m, mx) < M, Noetherian
by induction. Note that M/N is generated by m;+N (i=1, K+1) by Rem.
2) in Sec 3.1 of Lec 4. But only $M_{K+1}+N\neq0$, so M/N is spanned by one elit
hence Noetherian. By $(z) \Rightarrow (1)$ of Proposition, M is Noetherian.
•

BONUS I: Non-Noetherian rings in Complex analysis.

Most of the rings we deal with in Commutative algebra are Noetherian. Here is however, a very natural example of a non-Noetherian ring that appears in Complex analysis.

Complex analysis studies holomorphic (a.k.a. complex analytic or complex differentiable) functions. Let Hol (C) denote the set of holomorphic functions on C. These can be thought as power series that absolutely converge everywhere.

Hol(T) has a natural ring structure -vie addition & multiplication of functions.

Proposition: Hol (C) is not Neetherian

Proof: We'll produce an AC of ideals: $I_j = \{f(z) \in \mathcal{H}ol(\mathbb{C})\}$ $f(2\pi\sqrt{-1}K) = 0$ f integer $K\pi j$ $\}$, $j \in \mathbb{Z}_{70}$. It's easy to check that all of these are indeed ideals. It is also clear that they form an AC (when we increase j we relax the condition on zeroes). We claim that $I_j \not= I_{j+1}$ hence this AC doesn't terminate & $\mathcal{Hol}(\mathbb{C})$ is not Noetherien. Equivalently, we need to show that, for each j, there $f(z) \in \mathcal{Hol}(\mathbb{C})$ such that $f(2\pi\sqrt{-7}K) = 0$ $f(z) = e^{\frac{z}{2}} = 1$. This function is periodic with period $2\pi\sqrt{-7}$. Also $f(z) = \frac{z}{2} = \frac{1}{1!} z^i$. So z = 0 is an order f(z) = f(z). Since $2\pi\sqrt{-7}$ is a period, every $2\pi\sqrt{-7}$ K

($K \in \mathbb{Z}$) is an order 1 zero. We set $f_j(z) = (e^z - 1)/(z - 2975-7j)$. This function is still holomorphic on the entire C, we have $f_j(2975-7j) \neq 0$ & $f_j(2775-7K)$ = 0 for $K \neq j$.

BONUS II: Why did Hilbert care about the Basis theorem.

Hilbert was interested in Invariant theory, one of the central branches of Mathematics of the 19th century. Let G be a group acting on fin. dim C-vertor space V by linear transformations, (q,v) -gv he want to understand when two vectors V, V, lie in the same orbit.

Definition: A function $f: V \to \mathbb{C}$ is invariant if f is constant on orbits: $f(gv) = f(v) + g \in G$, $v \in V$.

Exercise: $v_i, v_i \in V$ lie in the same orbit \iff $f(v_i) = f(v_i) + invariants$ ant function f. (we say: G-invariants separate G-orbits).

Unfortunately, all invariant functions are completely out of control. However, we can hope to control polynomial functions.

Those are functions that are written as polynomials in coordinates of v in a basis (if we change a basis, then coordinates change via a linear transformation, so if a function is a polynomial in one basis, then it's a polynomial in every basis). The C-algebra

of polynomial functions will be denoted by C[V], if $dim\ V=n$, then a choice of basis identifies C[V] with $C[x_1...x_n]$. By $C[V]^G$ we denote the subset of C-invariant functions in C[V]

Exercise: It's a subring of C[V].

Example 1: Let $V = \mathbb{C}^n$, $G = S_n$, the symmetric group, acting on V by permuting coordinates. Then $\mathbb{C}[V]^G$ consists precisely of symmetric polynomials.

Example 2: Let $V = \mathbb{C}^n \& G = \mathbb{C}^\times (= \mathbb{C} \setminus \{0\}) \text{ w.r.t. multiplication}$ Let G act an V by rescaling the coordinates: $t.(x_1, x_1) = \{tx_1, tx_1\}$. We have $f(x_1, x_1) \in \mathbb{C}[V]^G \iff f(tx_1, tx_1) = f(x_1, tx_1) \in \mathbb{C}[V]^G \iff f(tx_1, tx_1) = f(tx_1, tx_1) \in \mathbb{C}[V]^G \iff f(tx_1, tx_1) = f(tx_1, tx_1) \in \mathbb{C}[V]^G \iff f(tx_1, tx_1) \in \mathbb{C$

As Example 2 shows polynomial invariants may fail to separate orbits. However, to answer our original question, it's still worth to study polynomial invariants.

Premium exercise: When G is finite, the polynomial invariants Still separate G-orbits.

Now suppose we want to understand when, for $V_1, V_2 \in V$, we have $f(v_1) = f(v_2) + f \in \mathbb{C}[V]^G$ It's enough to check this for generators

f of the C-algebra C[V]. So a natural question is whether this algebra is finitely generated.

Hilbert proved this for "reductive algebraic" groups G.

- he didn't know the term but this is what his proof uses.

Finite groups are reductive algebraic and so are Gln(C),

the group of all nondegenerate matrices, Sln(C), matrices

of determinant 1, On(C), orthogonal matrices, and some

others (for these infinite groups one needs to assume that

their actions are "reasonable"-in some precise sense). Later,

methematicians found examply, where the algebra of invariants

are not finitely generated (counterexamply to Hilbert's 14th

problem) for non-reductive groups.

Basis theorem is an essential ingredient in Hilbert's proof of finite generation. For more details an this see [E], 1.4.1 & 1.5.; 1.3 contains some more background on Invariant theory.