Lecture 6: Noetherian rings & modules, IT/Modules over PID, I. 1) Further properties of Noetherian modules. 2) Artinian modules & rings. 3) PID's & their modules References: [AM], Chapters 6-8 (for 1) & 2)); [V] Sec 9.3, Dummit & Foote, Ch. 12 for 3). 1) Further properties of Noetherian modules. Let A be a ring (may not be Noetherian) & M be A-module. In Sec 3 of Lec 5 we've stated: Proposition: let NCM be a submodule TFAE: (1) M is Naetherian (2) Both N, M/N are Noetherran. Proof: (1) => (2): M is Noetherion => N is Noethin (tautology) Check M/N is Noetherian by verifying AC termination. Let D: M -> M/N, m +> m+N. Let (Ni)in be an AC of submodules in M/N, Ni: = Ir (Ni) $N_i \subset N_{i+1} \implies N_i \subset N_{i+1}$ so $(N_i)_{i \neq 0}$ form an AC of submodules of M, it must terminate: = K70 | N; = Nx + j7K. But N; = $\mathcal{T}(N_i)$ so $\underline{N}_i = \mathcal{T}(N_i) = \mathcal{T}(N_k) = \underline{N}_k$. So $(\underline{N}_i)_{i\neq 0}$ terminates (2) ⇒ (1): Have (Ni) is an AC of submodules in M. Then (NiNN) is aC in N & (Tr(Ni)) is AC in M/N.

2) Artinian modules & rings.
2.1) Definition of Artinian moduly

Recall: Noetherian => satisfies A (condition (Sec 1.2 of Lec 5)

Definition: Let M be A-module. A descending chain (DC) of submodules is $(N_i)_{i>0}$ s.t. $N_k \supseteq N_{k+1} \neq k > 0$.

Definition: M is an Artinian A-module if #DC of submoduly terminates ("DC termination")

Example: A = F (a field). Claim: Artinian \iff finite dim'l. \iff is clear 6/c dimensions decrease in DC's. \implies : Let dim $M = \infty \iff \exists$ lin. in dep. vectors $m_i \in M$, i.70. Define $N_i = Span_f(m_i | i \neq j) - a DC$ of subspaces that doesn't terminate. 2.2) Basic properties.

The first result is analogous to Proposition in Sec 1.2 of Lec 5, the proof is exercise.

Proposition 1: For A-module M TFAE:

- 1) M is Artinian
- 2) I nonempty set of submoduly of M has a min'l clit (w.r.t. C)

Proposition 2: M 15 D-module, NCM 15 an D-submodule.

TFAE: 1) M is Artinian.

2) Both N& M/N are Artinian.

Proofs: repeat those in Noethin case from Sec 1 (exercise).

2.3) Artinian rings.

Definition: A ring A is Artinian if it's Artinian as A-module.

Examples: 1) Any field F is Artinian. More generally, let A be an F-algebra s.t. $\dim_F A < \infty$. Then A is Artinian ring (b/c A-submodule is a subspace). E.g. we can take A = F[x]/(f) + nonzero $f \in F[x]$ or $A = F[x,y]/(x^2,xy,y^2)$.

3) A = 72/n 72 is Artınıan (6/c itis a finite set so every DC of subsets terminates).

4) Every nonzero elit, a, of Artinian ring is either invertible or zero-divisor. Indeed, let $a \in A$, then $(a) \supseteq (a^2) \supseteq (a^3) \supseteq ...$

a DC of ideals. It terminates $(a^{\kappa}) = (a^{\kappa + 1}) \implies \exists b \in A \text{ s.t. } a^{\kappa} = 6a^{\kappa + 1} \iff (1 - ab)a^{\kappa} = 0$ $\iff a \text{ is zero divisor or } 1 = ab \text{ (so } a \text{ is invertible)}.$

Remork: In particular, every Artinian domain is a field. So 4) gives a lot of non-examples of Artinian rings (e.g. Z). This is a stark contrast with the Noetherian condition, where "almost any reasonable" ring is Noetherian.

Here's a further interesting fact:

Thm: Every Artinian ring is Noetherian.

For proof, see [AM], Prop 8.1-Thm 8.5 (comments: milradical = 50' = = Nall prime ideals by Prop. 1.8, Jacobson radical = Nall max. ideals).

2.4) Finite length modules.

Thm motivates us to consider moduly that are both Northerian (AC termin'n) & Artinian (DC termin'n) so satisfy (ACLDC" termin'n). They admit an equivalent characterization.

Definition: Let M be an A-module.

- i) Say that M is simple if {0} + M are the only two submodules of M.
- ii) Let M be arbitrary. By a filtration (by submoduly) on M we mean 63 = M < M, < M, < M, < M = M (finite AC of

su 6 modules). iii) A Jordan-Hölder (JH) filtrin is a filtrin {03=M, 4M, 4M, 4... 4 M,=M s.t. M;/Mi, 15 simple +i (so a JH filtrin is tightest possible) iv) M has finite length if a JH filtrin exists. Example: 1) When A=F is a field, an A-module M is simple A dim M=1 2) Let A= 7/2 & consider the A-module M = 1/47/2. It's JH filtration is M = {0}, M, =27/47/ M, = M. Proposition: For an A-module M TFAE: 1) M is Artinian & Noetherian. 2) M has finite length. Proof: 2) => 1): M has fin length ~ JH filtrin fo}=M, & M, &M, &... &M = M. We prove by industion on i that M: 15 Artinian & Northerian. Base: i=1: My is simple - Artinian & Noetherian. Step: i-1~i: Mi, 15 Artin & Noethin, so 15 M./Mi-1 b/c it's simple. => by Prop in Sec 1 M; is Noetherian & by Prop 2 in Sec. 2.1, Mi is Artinian. Use this for i=K~M:=M is Artinian & Noethin. So 2) => 1). 1 ⇒ 2): M is Artinian & Noetherian Want to produce a JH filtrin. By induction: M={0}.

Suppose we've constrid $M_i \subseteq M$. Need M_{inj} .

Note: M/M_i is Artinian & therefore & nonempty set of submodulus has a min elit. Assume $M_i \neq M$. Consider the set of all nonzero submodulus of M/M_i . It's $\neq \emptyset$ so has a min't element, N. This N must be simple. Now take M_{i+1} to be the preimage of N ander $M \longrightarrow M/M_i$.

So $M_{i+1}/M_i \cong N$, simple.

We've got is an AC $M_0 \neq M_1 \neq ...$, it must terminate 6/c M is Noethin. By constrin it can only terminate at $M_1 = M$. So we've got a JH filtration

Exercise: We can classify simple modules as follows; a map In $\mapsto A/m$ defines a bijection between the set of maximal ideals in A and the set of simple A-modules (up to isomorphism).

3) PID's & their modules

A highlight of the study of finitely generated abelian groups is their classification—we can completely describe all possible fin gen'd abelian groups. Recall that an abelian group is the same thing as a Z-module. One can ask: for which rings one can fully classify all finitely generated modules. Turns out that this revely happens.

Here's a class of rings for which the classification is possible.

3.1) Definition & examples

Definition: A ring A is a principal ideal domain (PID) if it's a domain & Hideal is principal (generated by one element)

Examply: • 7/, [F[x] ([f is field) are PID's; H"Euclidien domain" (≈ cen divide w remainder) is PID's (e.g. 7/[i]); [F[[x]] is a PID by Problem 1 in HW1

Non-examples: $\mathbb{Z}[\sqrt{-5}]$, $\mathbb{Z}[x]$, $\mathbb{F}[x,y]$ are not PTD: $(2,1+\sqrt{-5})$ (2,x) (x,y) - not principal.

3.2) Properties of PID's.

Let A be a PID. Take $a_1...a_n \in A \longrightarrow ideal (a_1...a_n) \in A$ $\exists d \in A \mid (a_1...a_n) = (d)$, defined uniquely up to invertible factor \Rightarrow · d divides $a_1,...,a_n$ b/c $a_1,...,a_n \in (d)$

if d'divides $a_1...,a_n \Rightarrow d'$ divides $d (= \sum_{i=1}^n X_i \Omega_i$ for some $X_1... X_n \in A)$. Besause of these, d is called the CCD of $a_1...a_n$.

Classical application of GCD: PID => UFD.

Remark PID > Noetherian.

3.3) Classification of modules

Let A be PID. Let M be a finitely generated A-module.

Thm: 1) $\exists \kappa \in \mathbb{Z}_{70}$, primes $p_1,...,p_e \in A$, $d_1,...,d_e \in \mathbb{Z}_{70}$ s.t. $M \simeq A^{\oplus \kappa} \oplus \bigoplus_{i=1}^{e} A/(p_i^{d_i})$. 2) κ is uniquely determined by M. $(p_i^{d_i})$... $(p_i^{d_i})$ are uniquely

2) K is uniquely determined by M, (p,d,),..., (pede) are uniquely determined up to permutation

Example: For A= 7/2, Thm = classifin of fin. genid abelian grips.

3.4) Case of A = F[x], F is alg. closed.

Assume $\dim_F M < \infty$ (so K = 0) & F is alg. closed \Rightarrow primes in F[x] are $X - \lambda$, $\lambda \in F$, (up to invertible factor).

Main Thm $\Rightarrow \exists \lambda_i \in \mathbb{F}, \ d_i \in \mathbb{Z}_{\geq 0} \text{ s.t. } M \cong \bigoplus_{i=1}^{\ell} \mathbb{F}[x]/((x-\lambda_i)^{d_i})$

Reminder (Lec 3, Sec 2.2)

A module over [F[x]] = [F-vector space & an operator X]. For a fixed [F-vector space M], operators X_{μ} , X_{μ} : $M \to M$ give isomorphic [F[x]]-module structures $\iff X_{\mu}$, X_{μ} are conjugate: $\psi: M \to M$ is a homomorphism between the 2 module structures iff $\psi \circ X_{\mu} = X_{\mu}$, $\circ \psi$ so ψ is an isomorphism $\iff \psi X_{\mu} \psi' = X_{\mu}$. So the Main Thm allows to classify linear operators up to conjugation.

Choose an $[-6asis in F[x]/((x-\lambda_i)^{d_i}): (x-\lambda_i)^j, j=0,...d_{i-1}$

	(1, 1, itl. 7 (, 1).	j ./ . / .
$(x-\lambda)^{j} = (x-\lambda) + \lambda = 7$	$\int_{0}^{\infty} (X - \lambda_{1}^{2})^{2} + \lambda_{1}^{2} (X - \lambda_{1}^{2})$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$X(x-\lambda_i)^j = [x=(x-\lambda_i)+\lambda_i] = \{$	$\left(\lambda_{i} \left(x - \lambda_{i} \right)^{J} \right)$	it] =di-1.

So X acts as a Jordan block: $J_{d_i}(\lambda_i) = \begin{pmatrix} \lambda_i & 0 \\ 1 & \lambda_i \\ 0 & 1 & \lambda_i \end{pmatrix}$

Main Thm in this case is:

Jordan Normal Form thm:

Let X be a linear operator on a fin. dim. F-vector space, M, where F is alg. closed. Then in some basis X is represented by a "Jordan matrix": diag $(J_{d_1}(\lambda_1),...,J_{d_\ell}(\lambda_\ell))$.

Can recover the pairs $(\lambda_1, \lambda_1),...,$ (d_e, λ_e) from X-will discuss in Lec 7.