Lecture 7: modules over PID's, I 1) Proof of the main Thm. Ref: [V], Sec 9.3. Dummit & Foote, Chapter 12. BUNUS: Finite dimensional modules over Clx, y]. 1.0) Statement Let A be PID. Let M be a fin. gen'd A-module. Our goal in this lecture is to prove: Thm: 1) $\exists \kappa \in \mathbb{Z}_{70}$, primes $p_1, p_l \in A$, $d_1, d_l \in \mathbb{Z}_{70}$ s.t $\mathcal{M} \simeq \mathcal{A}^{\oplus \kappa} \oplus \bigoplus_{i=1}^{\ell} \mathcal{A}/(p_i^{d_i})$ 2) K is uniquely determined by M, $(p_i^{d_i}),...,(p_e^{d_e})$ are uniquely determined up to permutation. 1.1) Strategy of the proof of existence. Since M is finitely generated, there's a surjective A-linear map or: A M ->> M. Let N:= Ker or, this is a submodule in M. The main part of the proof is to prove: Proposition 1: 3 basis e,...e, of A, integer re lo...n3 and f,...f, ∈ A\lo3 s.t. N= Span (f,e',...f,e').

After proving this, we will show that:

• $A^{\oplus n}/N \simeq A^{\oplus n-r} \oplus \bigoplus_{i=1}^r A/(f_i)$

• and if $f = p_i^{d_i} p_e^{d_e} \in A$, where $p_1,...,p_e$ are primes w. $i \neq j \Rightarrow (p_i) \neq (p_j)$, then $A/(f) \simeq \bigoplus_i A/(p_i^{d_i})$

These two claims combined with Prop 1 imply I) of Theorem.

We will deduce Proposition 1 from a statement about matrices with coefficients in A.

Definition: Let $n, m \in \mathbb{Z}_{>0}$ & $M_1, M_2 \in Mat_{n,m}(A)$. We say that M_1 , M_2 are equivalent $(M_1 \sim M_2)$ if \exists invertible $B \in Met_n(A)$, $C \in Mat_m(A)$ s.t. $M_2 = BM_1C$.

Note that B is invertible \Leftrightarrow det B \in A is invertible - for the same reason as for fields.

We will give examples of equivalent matrices below. We'll deduce Proposition 1 from

Proposition 2: # ME Matnin 3 rao & f. fr \ A\ \ \ \ \ \ So3 s.t.

 $M \sim M' = \begin{pmatrix} f_1 & 0 \\ 0 & f_r \end{pmatrix}$ (w. f_i in entry (i,i) & all other entries equal 0)

1.2) From Proposition 2 to Proposition 1.

First we introduce some notation. We write a tuple of elements of $A^{\oplus n}$ as a vector: $\vec{u} = (u_1, ..., u_m)$. For $M \in Met_{m \times k}(A)$, we have the R-tuple $\vec{u}M = (\sum_{i=1}^{m} m_i, u_i)_{i=1}^{k}$, $(M = (m_{ij}))$, note that it consists of linear combinations of $u_1, u_2, ..., u_m$.

Second, observe that $A^{\oplus n}$ is a finitely generated, hence Noetherian, A-module (Corollary in Sec 3 of Lec 5). Therefore, N is finitely generated. Let $\vec{v} = (v_1 ... v_m)$ be a tuple of generators of N.

Finally, let $\vec{e} = (e_1 ... e_n)$ denote the standard basis of $A^{\oplus n}$ Form the matrix M with columns v_i so that $\vec{e}M = \vec{v}$. For this M we find non-degenerate matrices $B \in Mat_n(A)$, $C \in Mat_m(A)$ s.t. M = BM'C, where M' is as in Prop'n 1.

Set &'= (e',...,e'): = &B, &'= (v',...,v'): = &C.' Note that

- · EBM'C=v ⇔ e'M'=v' ← v'=f;e; for i < r & v'=0, else.
- since B is non-degenerate & e is a basis of A^{®n} E' is also a basis
- · since C is non-degerate, Span, (v) = Span, (v) = N.
 Proposition 1 follows.

1.3) Proof of Proposition 2

We start by highlighting two important examples of equivalent matrices.

- 1) If M' is obtained by permuting rows & columns from M, then M'~M. Indeed, M'=BMC for permutation matrices B, C & they are non-degenerate
- 2) Suppose $M = \begin{pmatrix} \hat{k} \end{pmatrix}$, a 2×1 -matrix. Let d := GCD(a, 6). We claim that $M \sim \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$. Indeed, d = x a + y 6 for some $x, y \in A$. We set $B := \begin{pmatrix} x \\ -6/d & a/d \end{pmatrix}$. Since det $B = x \frac{a}{a} + y \frac{6}{d} = \frac{d}{d} = 1$, B is invertible Similarly, $(a \cdot b) \sim (d \cdot 0)$.

Proof of Prop'n 2:

Step 1: To Y = Matn m (A) = (yij) we assign the ideal Iy: = (ym) cA. Consider the set of ideals In for Y~M, where M is a given matrix. Since A is Noetherian, ∃ Y s.t I, is maximal w.r.t. ⊆ (Sec 1.2 in Lec 5). Let $d \in A$ be s.t. $I_y = (d)$. Step 2: We claim that d divides y . It i=2...n. Assume the contrary. By permuting rows 28i, we can assume i=2. Let $B \in Mat_2(A)$ be s.t. B is nondegenerate & $B(y_2,)=(d')$, where $d'=GCD(d,y_2,)$. Set B to be block diagonal matrix diag (B,1,.1), nondegenerate. Then BY (~Y) has entry (1,1) equal to d'& (d') \(\rightarrow\) (d), leading to a contradiction. Similarly, of divides y, + j=2,...,m. Step 3: Now we are going to transform Y as follows: we make all entries (i,1), i79, equal 0. we multiply Y by (-y20/d 1) from the left leading to an equivalent matrix Then we multiply by (1-yn/d...-ynm/d) making entries (1,j) equal 0 (and keeping entries (i,1) equal 0) We arrive at an equivalent matrix of the form (do... o) w. M, ∈ Matn-1,m-1 (A). This allows us to finish the proof by

1.4) Finishing proof of existence

doing induction on n.

At this point we have a basis $e'_1,...e'_n$ of $A^{\oplus n}$ & f_n . $f_r \in A \setminus \{0\}$

s.t. N= Span $(f_{i}e'_{i},...,f_{i}e'_{i})$ Note that if L_{1},L_{2} are A-modules & N_{i} $\subset L_{i}$ are submodules then there is a natural isomorphism (exercise): (*) $(L_{1}\oplus L_{2})/(N_{1}\oplus N_{2}) \xrightarrow{\sim} L_{1}/N_{1}\oplus L_{2}/N_{2}$,

 $S_{o} A^{\oplus n/N} = (\bigoplus_{i=1}^{n} Ae'_{i})/(\bigoplus_{i=1}^{r} Af_{i}e'_{i}) \xrightarrow{(*)} \bigoplus_{i=1}^{n} Ae'_{i}/Af_{i}e'_{i} \oplus \bigoplus_{i=r+1}^{n} Ae'_{i} \xrightarrow{(*)} Ae'_{i}/Af_{i}e'_{i} \oplus \bigoplus_{i=r+1}^{n} Ae'_{i}/Af_{i}/Af_{i}e'_{i} \oplus \bigoplus_{i=r+1}^{n} Ae'_{i}/Af_{i}/Af_{i}/Af_{i}$

It remains to prove

Lemma: if $f = p_i^{d_i}$ $p_i^{d_i} \in A$, where $p_1,...,p_e$ are primes s.t. $(i \neq j \Rightarrow (p_i) \neq (p_j)$, then $A/(f) \simeq \bigoplus_{i=1}^e A/(p_i^{d_i})$

The main ingredient is a version of the Chinese remainder theorem:

Proposition 3: Let A be a comm've ring R I_1, I_2 be ideals s.t. $I_1+I_2=A$. Then the map $A/I_1I_2 \xrightarrow{\varphi} A/I_1 \times A/I_2$, $a+I_1I_2 \mapsto (a+I_1, a+I_2)$ is an A-module isomorphism.

Proof of Proposition: The map is A-linear so it's enough to construct an inverse. Pick $b_i \in I_i$ w. $b_1 + b_2 = 1$ & consider a map $\varphi' \colon A/I_i \times A/I_2 \longrightarrow A/I_iI_z, (a_i + I_i, a_i + I_i) \longmapsto b_i a_i + b_i a_i + I_iI_z$ It's well-defined b/c b_iI_2 , $b_iI_i \subset I_iI_2$. And it's inverse to $\varphi: \varphi' \circ \varphi(a + I_iI_2) = \varphi'(a + I_i, a + I_i) = (b_i + b_i)a + I_iI_2 = a + I_iI_2.$ $\varphi \circ \varphi'(a_i + I_i, a_i + I_i) = \varphi(b_ia_i + b_ia_i + I_iI_i) = (b_ia_i + b_ia_i + I_i, b_ia_i + b_ia_i + I_i)$ $[= b_ia_i + b_ia_i - a_i = b_ia_i + b_ia_i - (b_i + b_i)a_i = (a_i - a_i)b_i \in I_i$ & similar for and coordinate $]=(a_i + I_i, a_i + I_i)$

Proof of Lemma: Set $g_i = p_1^{d_1}$, $g_i = p_2^{d_1}$. $p_e^{d_e}$ so that $f = g_i g_i$. Then set $I_1 = (g_1)$, $I_2 = (g_2)$. Observe that g_1, g_1 are coprime \Leftrightarrow $L(D(g_i, g_1) = 1 \Leftrightarrow$ $I_1 + I_2 = A$. So $A/(f) \xrightarrow{\sim} A/(g_i) \times A/(g_2)$ by Proposition 3. We can then argue by induction on ℓ to decompose $A/(g_2)$

This finishes the proof of (1) of Thm.

Exercise: The isomorphism in Proposition 3 is that of rings.

1.5) Proof of uniqueness

We'll prove 2) of Thm by producing invariants of M & read R & $(p_1^{d_1}),...,(p_e^{d_e})$ from these invariants.

Fix a prime ideal (p) $\subset A$ & $s \in \mathbb{Z}_{>0}$. Consider $p^sM = (p)^sM$, an Asubmodule of M (a special case of taking products of ideal and
submodule, Sec 2.7 in Lec 4.)

We have $p^{S+1}M \subset p^SM$ is finitely generated over A/(p). The ideal (p) annihilates the quotient, so it can be viewed as A/(p)-module (Sec 2.3 of Lec 4). Note that (p) is maximal ideal (same proof as for $A = \mathcal{H}$, see Sec 2.2 in Lec 2) so A/(p) is a field. Also p^SM is fin. gen-d over $A \Rightarrow p^SM/p^{S+1}M$ is finitely generated over A/(p),

dρ,s(M):=dim / p 5M/p 5+1 M < ∞.

Proposition: For $M \cong A^{\bigoplus \kappa} \oplus \bigoplus A/(p_i^{d_i})$, we have $d_{p,s}(M) = \kappa + \#\{i \mid (p_i) = (p) \& d_i > s \}$.

So

Once we know the numbers on the right, 2) of Thm is proved: the number of occurrences of $A/(p^s)$ is $d_{p,s-1}(M) - d_{p,s}(M)$ and $K = d_{p,s}(M)$ for all s s. t. s? d: t i

Example: A = F[X] (F is alg. closed field), M finite dim'l/F ($\Rightarrow \kappa = 0$), $p = x - \lambda$ ($\lambda \in F$), λ is the operator given by λ . $P^{S}M = Im (X - \lambda I)^{S} \Rightarrow d_{p,s}(M) = r\kappa (X - \lambda I)^{S} - r\kappa (X - \lambda I)^{S+1}$ From Proposition we deduce that matrices λ , $\lambda \in Mat_n(F)$ are conjugate $\Leftrightarrow r\kappa (\lambda - \lambda I)^{S} = r\kappa (\lambda - \lambda I)^{S} + \lambda \in F$, $s \in \mathbb{Z}_{70}$.

(b/c conjugate matrices \iff isomorphic $F[\chi]$ -modules).

BONUS: Finite dimensional modules over Clx, y].

Fix $n \in \mathbb{Z}_{70}$. Our guestion: classify $\mathbb{C}[x,y]$ -moduly that have $\dim_{\mathbb{C}} = n$. In the language of Linear algebra: classify pairs of commuting matrices X,Y (up to simultaneous conjugation).

For n large enough, there's no reesonable solution. However, various geometric objects related to the problem are of great importance, and we'll discuss them below.

Set $C:=\{(X,Y)\in Mat_n(\mathbb{T})^{\oplus 2}|XY=YX\}$. Consider the subset $C_{cycl}\subset C$ of all pairs for which there is a cyclic vector $v\in \mathbb{T}^n$ meaning that v is a generator of the corresponding C[X,Y]-module. The group $G'_{ln}(\mathbb{T})$ acts on C by simultaneous conjugation: $g.(X,Y)=(gXg^{-1},gYg^{-1})$

Exercise: Cayol is stable under the action & all the stabilizers for the resulting Gln (C)-action are trivial.

Premium exercise: the set of $GL_n(C)$ -orbits in C_{cycl} is identified with the set of codim n ideals in C[x,y].

It turns out that this set of orbits, equivalently, the set of ideals has a structure of an algebraic variety. This variety is called the Hilbert scheme of n points in \mathbb{C}^2 and is denoted by Hilbn (\mathbb{C}^2). It is extremely nice & very important. For example, it is "smooth" meaning it has no singularities.

One can split Hilbn (C2) into the disjoint union of affine
spaces (meening C?). The affine spaces are labelled by the
partitions of n (in C[x,y] spanned by monomials)
& for each partition we can compute the dimension - thus
achieving some kind of classification of points.
One of the reasons why Hilb, (CZ) is important is that it
appears in various developments throughout Mathematics: Algebraic
geometry (not surprising), Representation theory, Meth Physics,
and even Algebraic Combinatorics & Knot theory (!!)
The structure of the orbit space for the action of GLACE)
on C is FAR more complicated, yet the resulting geometric
object is still important.