Lecture 8: localization of rings & modules, I 1) Completion of proof from last lecture 2) Localization of rings. See refs for Lec 7; + [AM], Intro to Sec 3. 1) Completion of proof from last lecture Let A be a PID & M be a finitely generated A-module. We already know that $\mathcal{M} \simeq \mathcal{A}^{\oplus k} \oplus \bigoplus_{i=1}^{k} \mathcal{A}/(\rho_i^{d_i})$ for some K70, primes p,...pe∈A & d,...de∈Nzo & we want to recover these from M. For this purpose in Sec 1.5 of Lec 7 we defined, for 2 prime p∈A& S∈ 7/20 dp,s (M) = dim A/CD) psM/ps+1M and stated the following proposition whose proof will complete the proof of Thm in Sec 3.3 of Lec 6. Proposition: For $M \cong A^{\bigoplus \kappa} \oplus \bigoplus_{i=1}^{\ell} A/(p_i^{d_i})$, we have $d_{p,s}(M) = \kappa + \#\{i \mid (p_i) = (p) \& d_i > s \}.$ Proof of Proposition: Step 1: explain how dps behaves on direct sums: Claim: $d_{p,s}(\bigoplus_{i=1}^{p} M_{i}) = \sum_{i=1}^{r} d_{p,s}(M_{i}) + fin. generated A-modules$

Proof of the claim: Enough to consider r=2. $p^{S}(M_{1} \oplus M_{2})/p^{S+1}(M_{1} \oplus M_{2}) \simeq [\text{Similar to Problem 5 in HW1, exercise}]$ psM,/ps+1M, @psMz/ps+1Mz and the claim follows: the dimension of the direct sum of vector spaces is the sum of dimensions of summands Step 2: Need to compute dps of possible summands of M: $A, A/(p^t), A/(q^t), (q) \neq (p).$ A P' psA is a module isomorphism b/c A is domain $(p) \xrightarrow{\sim} p^{s+1} A \xrightarrow{p^s.?} A/(p)$ as vector spaces over the field $A/(p) \Rightarrow d_{p,s}(A) = 1$. ii) $A/(p^t) = : M'$, if $s > t \Rightarrow p^s M = \{o\} \Rightarrow d_{p,s}(M') = o$ if $s < t \Leftrightarrow (p^s) \not\supseteq (p^t)$ so psM/ps+1M' ~ psA/ps+1A as A/(p)-modules; dp, s (M') = 1 by i) (ii) $M'' = A/(g^t)$ but g, p are coprime so $(g^t) + (p) = A \Rightarrow pM'' = \{pa + (g^t) | q \in A\} = ((p) + (g^t))/(p) = A/(p) = M'' \Rightarrow p^sM'' = p^{s+1}M''$ $\Rightarrow p^{s}M'/p^{s+1}M''=\{0\}$

Summing the contributions from the summands (0 or 1) together, we arrive at the claim of the theorem.

- 2) Localization We've seen a bunch of constructions of rings:
 - -direct products
 - rings of polynomiely
 - guotient rings
- completions (HW1)

Now we discuss another construction w. rings - localization. It generalizes the construction of Q from I and amounts to formally inverting elements from suitable subsets in a commutative

2.1) Multiplicative subsets

We start by explaining what kind of subsets we need. Here & below A is a commutative ring.

Definition: A subset $S \subset A$ is multiplicative if

- ·1ES&
- ·s,t∈S ⇒ steS

Examples (of multiplicative subsets)

- 1) All invertible elements of A.
- 2) All non-zero divisors of A.
- 3) For $f \in A$, $S := \{f^n | n \times 0\}$. More generally for $f_n ... f_k \in A$, can $take S: = \{f_{k}^{n_{k}}, f_{k}^{n_{k}} | n_{k}, n_{k}, n_{k}, n_{k}\}$

4) If β is a prime ideal (abe $\beta \Rightarrow \alpha \in \beta$ or $6 \in \beta$), then $S:=A\setminus \beta$ is multiplicative.

2.2) Construction of localization.

Now we proceed to constructing the localization, A[S-1]. Consider $A \times S$ (product of sets), equip it we equivalence relation \sim defined by

relation \sim defined by (*) (a,s) \sim (b,t) \iff \exists $u \in S \mid u t a = u s b$.

~ is indeed an equivalence relation: the only nontrivial thing is transitivity:

 $\int (a_1, s_1) \sim (a_2, s_2) \Rightarrow us_1 a_2 = us_2 a_3 \longrightarrow (uu's_2)s_1 a_3 = \overline{u}\underline{u}'s_3 \overline{s}_1 \overline{a}_2 = \overline{u}\underline{u}'s_3 \overline{s}_2 \overline{a}_3 = \overline{u}\underline{u}'s_3 \overline{s}_3 = \overline{u}\underline{u}'s_3 =$

Let $A[S^-]$ be the set of equivalence classes. The class of (a,s) will be denoted by $\frac{a}{s}$.

Addition & multiplication in $A[S^{-1}]$ are given by usual formulas $\frac{a_i}{S_i} + \frac{a_2}{S_2} := \frac{S_2 q + S_1 a_2}{S_1 S_2}, \quad \frac{q}{S_1} \frac{a_2}{S_2} := \frac{qa_2}{S_1 S_2}$

Proposition: These operations are well-defined (the result depends only on $\frac{a_i}{S_i}, \frac{a_i}{S_z}$, not on (a_i, s_i) , (a_i, s_i)) & equip $A[S^{-1}]$ w. structure of a commutative ring (w. zero $\frac{1}{4}$ & unit $\frac{1}{4}$).

Moreover, $L: A \rightarrow A[S^{-1}], a \mapsto \frac{a}{4}$, is a ring homomorphism.

Proof: omitted in order not to make everybody very bored ...

Defin: The ring A[S"] is called the localization of A (w.r.t. S). We view it as an A-algebra via c.

Remarks: 1) If $0 \in S$, then $\frac{a}{s} \sim \frac{0}{7}$ if $a \in A$, $S \in S \Rightarrow A[S^{-1}] = \{0\}$. Conversely, if $0 \notin S$, then $(1,1) \not\sim (0,1) \Rightarrow A[S^{-1}] \neq \{0\}$.

2) Ker (= {a∈A| \(\frac{a}{7} \simple \frac{1}{7} \ightarrow \(\frac{1}{3} \) u∈S/ ua=0\(\frac{3}{1} \)

3) The elements $\frac{a}{7} = L(a) & \frac{1}{5}$ generate $A[S^{-1}]$ as a ring.

4) If S consists of invertible elements, then $C: A \to A[S^{-1}]$ is injective by 2) & surjective by 3): $\frac{1}{5} = \frac{S^{-1}}{1}$, hence is an isomorphism.

Example/exercise: Let 1 = 71/671 & S = {1,2,4}. Then ker L = {0,3} & c is surjective as $((-1) = \frac{2}{-2} = \frac{2}{4} = \frac{1}{2}$, so $A[S^{-1}] \simeq \mathbb{Z}/3\mathbb{Z}$.

2.3) Case when S consists of non-zero divisors

Here the description of ~ Simplifies: (a,s)~(6,t) \ ta=sb. Also c is injective. More generally, let S={all non-zero divisors} so that $S \subseteq \widehat{S}$. The simplified description of ~ shows that the equivalence on A×S is the restriction of the equivalence of A×S hence A[S-1] is naturally a subring of $A[\tilde{S}^{-1}]$ (of all elements $\frac{R}{S}$ w. $S \in S$)

Assume A is a domain $\Rightarrow \tilde{S} = A | \{0\}$. Then every nontero element of $A[\tilde{S}^{-1}]$ is invertible: $(\frac{2}{6})^{-1} = \frac{6}{2}$ so $A[\tilde{S}^{-1}]$ is a field called the fraction field of A and denoted by Frec (A). For example, for A = 7% we recover Frec (A) = Q and then for general S (not containing 0), $A[S^{-1}]$ is the subring of Q consisting of all retional numbers W denominator in S.

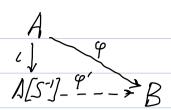
Example: Let B be a commutative ring, $A = B[x] & S = \{x^n | n_{70}\}$ Clearly, x^n are non-zero divisors. So the equivalence relation on $A \times S$ is $(f, x^n) \sim (g, x^m) \Leftrightarrow x^m f = x^n g$. An equivalence class (f, x^n) can be viewed as a Laurent polynomial $x^{-n}f$ and ring structures of $A[S^{-1}] & B[x^{\pm 1}]$ match so that $A[S^{-1}] = B[x^{\pm 1}]$.

2.4) Universal property of localization

Let A be a commutative ring & SCA be multiplicative \sim ring homomorphism $(:A \rightarrow A[S^{-1}].$ Note that $\forall s \in S \Rightarrow C(s) \in A[S^{-1}]$ is invertible (w. inverse $\frac{1}{S}$)

Proposition: Let $\varphi: A \to B$ be a ring homomorphism s.t. $\varphi(s) \in B$ is invertible $\forall s \in S$. Then the following hold:

1) ∃! ring homom'm g': A[S] → B that makes the following diagram commutative:



2)
$$\varphi'$$
 is given by $\varphi'\left(\frac{a}{s}\right) = \varphi(a) \varphi(s)^{-1}$

Sketch of proof:

Existence: need to show that formula in 2) indeed gives a well-defined ring homomorphism.

• φ' is well-defined: WTS $\frac{Q}{S} = \frac{6}{t} \Rightarrow \varphi(a)\varphi(s)^{-1} = \varphi(6)\varphi(t)^{-1}$ Indeed: $\frac{Q}{S} = \frac{6}{t} \iff \exists u \in S \text{ s.t. } uta = usb \Rightarrow \varphi(u)\varphi(t)\varphi(a)$ $= \varphi(u)\varphi(s)\varphi(b)$. But $\varphi(u), \varphi(t), \varphi(s)$ are invertible. It follows that $\varphi(a)\varphi(s)^{-1} = \varphi(b)\varphi(t)^{-1}$. So φ' is well-defined.

Exercise - on addition & multiplication of fractions. Check that co' is a ring homomorphism.

Note that of makes the diagram in 1) commutative.

Uniqueness: φ' makes diagram commive $\Rightarrow \varphi'(\frac{a}{7}) = \varphi(a) \forall a \in A$ $\Rightarrow \varphi'(\frac{s}{7}) = \varphi(s) - invertible \Rightarrow \varphi'(\frac{1}{5}) = \varphi(s)^{-1} \Rightarrow$ $\varphi'(\frac{a}{5}) = \varphi'(\frac{a}{7}) \varphi'(\frac{1}{5}) = \varphi(a) \varphi(s)^{-1}$

We'll discuss applications of this proposition to computing loca-
We'll discuss applications of this proposition to computing loca- Grations in the next lecture
Remark: One can strengthen the statement as follows: the maps $\varphi' \in \{\text{ring homomorphisms } \varphi: A[S^{-1}] \to B\} \ni \varphi \circ \iota \longleftrightarrow \psi$
φ = [ring nomomorphisms φ: ALS] > B) > φ = [[[] [] [] [] [] [] [] [] [
$\varphi \in \{r \text{ing homomorphisms } \varphi : A \to B \varphi(s) \in B \text{ is invertible } \forall s \in S \}$ are mutually inverse. The proof is an exercise.
We mucually criverse. The proof is an exercise.