Lecture 9: Localization of rings & modules, I 1) Localization of rings, control 2) Localization of modules. Refs: [AM], Sec 3 (up to "Local properties") 1) Localization of rings, contid 1.1) Localizations A[5"] for S={f^|nzo} These are usually denoted by A[f-1]. The following lemma gives an alternative description. Lemma: We have ring isomorphism $A[f'] \simeq A[x]/(xf-1)$ Proof: We write I for (xf-1). We produce homomorphisms between A[f-'] & A[x]/I using universal properties & show they are mutually inverse. Let φ be the composition $A \hookrightarrow A[x] \longrightarrow A[x]/I$. Then $\varphi(f)=$ f+I is invertible w. inverse x +I. By universal property of localizations (Sec 24 of Lec 8) $\exists !$ homomorphism $\varphi' : A[f'] \rightarrow A[x]/I$ s.t $\varphi'(\frac{a}{1}) = \varphi(a)$, it sends $\frac{1}{f}$ to $\varphi(f)^{-1} = x + I$. On the other hand, consider the homomorphism $A[x] \longrightarrow A[f^{-1}], F(x) \mapsto F(\frac{1}{f}).$ It sends xf-1 to If-1=0 hence uniquely factors through $\varphi'': A[x]/(xf-1) \longrightarrow A[f^{-1}], F(x)+I \mapsto F(\frac{1}{f})$ Now we show that φ' and φ'' are mutually inverse. By Rem. 3)

in Sec 2.1 of Lec 8 A[f] is generated (as a ring) by the elements $\frac{2}{7}$ & $\frac{1}{7}$ (6/c $\frac{1}{7}$ n=($\frac{1}{7}$) while A[x]+I is generated by the elements a+I & x+I. By the construction, the homomorphisms cp' & q" are mutually inverse on the generators (e.g. $\varphi'(\frac{1}{7})=x+I$ & $\varphi''(x+I)=\frac{1}{7}$) so they are mutually inverse.

Example: Let $A = C[y, \pm 1/(y \pm) & f = \pm + (y \pm)$. By Lemma, $A[f^{-1}] \simeq A[x]/(xf-1) \simeq C[x, y, \pm]/(y \pm, x \pm -1) = [y = x \cdot y \pm - y \cdot (x \pm -1) \Rightarrow (y \pm, x \pm -1) = [y, y \pm, x \pm -1) = (y, x \pm -1)] = C[x, y, \pm]/(y, x \pm -1) \simeq C[x, \pm]/(x \pm -1) \simeq C[\pm 1[\pm^{-1}] \simeq C[\pm^{\pm 1}].$

Exercise: Let $f_1...f_k \in A \ S = \{f_1,...f_k \mid n_1 > 0\}$. Then we have a ring isomorphism $A[S^{-1}] = A[(f_1...f_k)^{-1}]$ (hint: universal property).

1.2) Localizations A[S-1] for S=A|B

The remaining multiplicative subset mentioned in Sec 2.1 of Lec 8 is $S:=A|\beta$, where β is a prime ideal. This case is very important in the theory and has its own notation: we write $A_{\beta}:=A[(A|\beta)^{-1}]$, cf. Problem 6 of HW2. We'll continue to discuss this case later in the course.

2) Localization of modules.

2.1) Definition

Let A be a commutative ring & SCA be a multiplicative sub-Set. Let M be an A-module. Define the localization M[S-1] as the set of equivalence classes $M \times S/\sim w. \sim defined by:$ (*) $(m,s) \sim (n,t) \stackrel{\text{def}}{\Longrightarrow} \exists u \in S | utm = usn$ Equiv. Class of (m,s) will be denoted by $\frac{m}{s}$.

Proposition: $M[S^-]$ has a natural $A[S^-]$ -module strive (w. addition of fractions) & $A[S^-] \times M[S^-] \rightarrow M[S^-]$ given by $\frac{a}{s} \frac{m}{t} := \frac{am}{st}$.

Proof: for the same price as the ring structure on A[S-1]. []

Remark: Localizing the regular module A, we get the regular module A[S-1]

2.2) Basic properties of M[5-1]

The ring homomorphism (: $A \rightarrow A[S^{-1}]$ gives an A-module structure on $M[S^{-1}]$: $a \xrightarrow{M} = \underbrace{am}_{S}$. The map $M \xrightarrow{l_{M}} M[S^{-1}]$, $m \mapsto \frac{m}{l}$, is A-module homomorphism ($l = l_{A} : A \rightarrow A[S^{-1}]$ is a special case).

The next result is analogous to Proposition in Sec 2.4 of Lec 8. Proposition:

- 1) $\ker C_M = \{ m \in M \mid \exists u \in S \text{ s.t. } um = 0 \}$. In particular, C is injective iff $um = 0 \Rightarrow m = 0$ (S acts by non-zero divisors on M).
- 2) im C_{H} generates $M[S^{-1}]$ as $A[S^{-1}]$ -module. So, $M[S^{-1}] = \{0\} \Leftrightarrow C_{H} = 0 \Leftrightarrow \text{ker } C_{H} = M \Leftrightarrow [1]\} \neq \text{me} M \exists u \in S \text{ w. } um = 0.$

3) Universal property of (Let N be A[S-1]-module and
3) Universal property of La: Let N be A[S-1]-module and $3 \in Hom_{A}(M,N)$. Then $\exists ! \ j' \in Hom_{A[S-1]}(M[S^{-1}],N)$ making the following diagram commutative:
following diagram commutative:
following diagram commutative: M M[S-] = N
M[S ⁻¹] > N
We have $S'(\frac{m}{s}) = \frac{1}{s}S(m)$.
4) The maps 3 +> 5' & φ +> φο G are mutually inverse
4) The maps $\zeta \mapsto \zeta' \& \varphi \mapsto \varphi \circ \zeta_M$ are mutually inverse $Hom_A(M,N) \Longrightarrow Hom_{A[S^{-1}]}(M[S^{-1}],N)$.
Sketch of proof:
Sketch of proof: 1) exercise (cf. remark 2) in Sec 2.1 of Lec 8).
2) Span _{A[s-1]} im $L_{\mu} = \frac{1}{s} \cdot \frac{m}{1} = \frac{m}{s}$ so coincides w. M[s-1]. The
2) $Span_{A[S^{-1}]}$ im $L_M \supseteq \frac{1}{S} \cdot \frac{M}{T} = \frac{M}{S}$ so coincides w. $M[S^{-1}]$. The remaining Claims in 2) follow.
3) This is similar to the universality property for localization
of rings, details are an exercise.
4) We need to show 5'0 (m=5 & (youn) = y. The former follows
from the commutative diagram in 3). The letter follows 6/c for
5:= 404 both 5' & 4 make the diagram in 3) commutative &
3) states that this property determines a homomorphism M[5-1]
$\rightarrow N$ uniquely.
4 (

We apply 3) to produce, from an A-linear map $\psi: \mathcal{M}_1 \longrightarrow \mathcal{M}_2$, an $A[S^{-1}]$ -linear map $\psi[S^{-1}]: M_{i}[S^{-1}] \rightarrow M_{i}[S^{-1}].$ Take $\widetilde{\psi}:=L_{M_{i}}\circ \psi:$ $M_{s} \rightarrow M_{s}[S^{-1}], \text{ and set } \psi[S^{-1}] := \widetilde{\psi}', \text{ explicitly}$ $\psi[S^{-1}](\frac{m_{1}}{S}) = \frac{\psi(m_{1})}{S}, \text{ } \forall m_{1} \in M_{s}, \text{ } S \in S.$

Important exercise: Check that

- a) idy [S-1] = idy(s-1).
- 6) For ψ, M, →M, ψ, M, →M, have (ψ, ψ,)[S-']=ψ[S-']·ψ,[S-'].
- c) For 'ψ, ψ': M, →M, have (ψ+ψ')[S-1]= ψ[S-1]+ψ'[S-1].

Rem: A lot of results in this section (and below in this entire topic) will be revisited when we discuss category theory in the 2nd part of the class. For example a) & b) will essentially imply that "localization is a functor", c) that it is an "additive functor" and 3) of Proposition means that certain functors are "adjoint."

2.3) Submodules in M[S-1]

Let M be an A-module, NCM A-submodule. Note that for $m, n \in \mathbb{N}$, $s, t \in S$ we have $(m, s) \sim (n, t)$ in $\mathbb{N} \times S \Leftrightarrow (m, s) \sim (n, t)$ in M×S. So N[S-1] can be viewed as a subset in M[S-1], in fact, it's an A[S-']-submodule (exeruse).

Recall that the localization of the regular A-module A is the regular A[S-1]-module A[S-1]. So, for an ideal ICA, get an ideal I[s-1]<A[s-1].

Exercise 1: Show that for submodules $N_1, N_2 \subset M$ we have $(N_1 + N_2)[S^{-1}] = N_1[S^{-1}] + N_2[S^{-1}]$ (hint: common denomir), and similarly for intersections. Also $N_1 \subset N_2 \Rightarrow N_1[S^{-1}] \subset N_2[S^{-1}]$.

It turns out that every $A[S^{-1}]$ -submodule of $M[S^{-1}]$ is of the form $N[S^{-1}]$. Namely, for an $A[S^{-1}]$ -submodule $N' \subset M[S^{-1}]$, consider $C_M^{-1}(N') \subset M$, this is an A-submodule as the kernel of the A-linear map obtained as composition of C_M 8 proj'n $M[S^{-1}] \longrightarrow M[S^{-1}]/N$.

Proposition: The maps $N' \mapsto C_{M}^{-1}(N') \& N \mapsto N[S^{-1}]$ are mutually inverse by ections between: $\{A[S^{-1}]^{-}submodules \ N' \subset M[S^{-1}]\} \&$

{A-submodules $N \subset M \mid SM \in N \text{ for } S \in S, M \in M \Rightarrow M \in N$ }

condition (t)

Proof: Step 1: Show that C'(N') satisfies (t): $SM \in C_M'(N') \iff C(SM) \in N' \iff \frac{S}{7} C(M) \in N' \iff C(M) = \frac{1}{5} \frac{S}{7} C_M(M) \in N' \iff M \in C_M'(N').$

So we have two maps between the two sets, need to show that they are mutually inverse

Step 3: $(L_M^{-1}(N'))[S'] = N' : (c^{-1}(N'))[S'] = \int_{S}^{\infty} \int_{T}^{T} \in N'$	\Leftrightarrow
[$\frac{S}{I}$ is invertible] $\iff \frac{M}{S} \in N'$ $S = N'$.	
Corollary: Suppose M is a Noethernan A-module. Then ME	5-17
is a Noetherian A[5"]-module. In particular, if A is a	
Noetherian ring, then so is A[5-1].	
Proof:	
Let NCM be a submodule so that N= Span (m, mk). Then I	V[s ⁻ ']
= Spand (m) (mk) (exercise) By Proposition, every A[S-1]-	546-
= $Span_{A[S^{-1}]}(\frac{M_1}{1},,\frac{M_k}{1})$ (exercise). By Proposition, every $A[S^{-1}]^{-1}$. module of $M[S^{-1}]$ is of the form $N[S^{-1}]$, hence finitely general	ted.
Exercise 2: Prove a similar claim for Artinian modules (hint:	the
bijections in Proposition respect inclusions).	
Jest the second	