MATH380 index
A
B
C D F
G
H
I
L
M N
O
P
Q R S
Z
Algebra (over a commutative ring): Lecture 3, Section 2.3.
Algebraic subset: Lecture 14, Section 1.4.
Ascending chain (AC) of submodules: Lecture 5, Section 1.2.
AC termination: Lecture 5, Section 1.2.
Algebra of polynomial functions: Lecture 15, Section 2.
Artinian module: Lecture 6, Section 2.1.
Artinian ring: Lecture 6, Section 2.3.
Basis of a module: Lecture 4, Section 3.2.
Category: Lecture 16, Section 2.1.
Class group: Lecture 13, Section 1.4.
Commutative ring: Lecture 1, Section 1.1.
Dedekind domain: Lecture 12, Section 1.1.
Descending chain (DC) of submodules: Lecture 6, Section 2.1.
DC termination: Lecture 6, Section 2.1.
Direct product of modules: Lecture 3, Section 2.4.
Direct product of rings: Lecture 1, Section 1.2.
Direct sum of modules: Lecture 3, Section 2.4.
Domain: Lecture 2, Section 3.
Finite algebra: Lecture 10, Section 2.1.
Finitely generated ideals: Lecture 1, Section 3.1.
Finitely generated algebras: Lecture 5, Section 2.2.
Finitely generated modules: Lecture 4, Section 3.1.
Fractional ideal: Lecture 13, Section 1.1
Free modules: Lecture 4, Section 3.2.
Full subcategory: Lecture 16, Section 2.4.
Functor: Lecture 17, Section 1.1.
Functor morphism: Lecture 17, Section 2.1.
Generators (a.k.a. spanning set) of a module: Lecture 4, Section 3.2.
Hom module: Lecture 4, Section 1.
Ideal: Lecture 1, Section 3.1.
Integral algebra: Lecture 10, Section 2.1.
Integral closure: Lecture 11, Section 2.1.
Irreducible algebraic subset: Lecture 15, Section 1.1.
Irreducible component: Lecture 15, Section 1.2.
Irreducible element (of a domain): Lecture 3, Section 1.
Localization of a ring: Lecture 8, Section 2.2.
Localization of a module: Lecture 9, Section 2.1.
Localization of a module homomorphism: Lecture 9, Section 2.2.
Maximal ideal: Lecture 2, Section 2.1.
Module: Lecture 3, Section 2.1.
Module homomorphism: Lecture 3, Section 2.1.
Monoid: Lecture 16, Section 2.
Multiplicative homomorphism: Lecture 8, Section 2.1.
Noetherian module: Lecture 5, Section 1.1.
Noetherian ring: Lecture 5, Section 1.1.
Normal domain: Lecture 11, Section 2.3.
Opposite category : Lecture 16, Section 2.5.
Prime ideal: Lecture 2, Section 3.
Principal ideal: Lecture 1, Section 3.
Principal ideal domain: Lecture 6, Section 3.1.
Product of categories: Lecture 16, Section 2.5.
Product of functors: Lecture 18, Section 2.
Product of objects: Lecture 18, Section 2.
Product of ideals: Lecture 2, Section 1.
Product of ideal and submodule: Lecture 4, Section 2.2.
Quotient module: Lecture 4, Section 2.2.
Quotient ring: Lecture 1, Section 3.2.
Radical ideal: Lecture 14, Section 1.4.
Radical of an ideal: Lecture 2, Section 1.
Reducible algebraic subset: Lecture 15, Section 1.2.
Representable functor: Lecture 18, Section 1.3.
Representing object: Lecture 18, Section 1.3.
Ring : Lecture 1, Section 1.1.
Ring homomorphism : Lecture 1, Section 2.
Ring of algebraic integers: Lecture 11, Section 2.2.
Ring of polynomials : Lecture 1, Section 1.2.
Small category: Lecture 16, Section 2.3.
Subcategory: Lecture 16, Section 2.4.
Subring: Lecture 1, Section 1.2.
Submodule: Lecture 2, Section 2.1.
Sum of ideals: Lecture 2, Section 1.
Sum of submodules: Lecture 4, Section 2.2.
Zero divisor: Lecture 2, Section 3.