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1. INTRODUCTION

The main subject of the class is Commutative Algebra. Commutative algebra mostly
studies commutative rings/algebras and their modules. Commutative rings generalize
fields: we drop the axiom that the multiplicative inverse exists. Classical examples include
the ring of integers as well as the rings of polynomials. Modules over rings generalize vector
spaces over fields. Unlike vector spaces, modules over a general ring have an intricate and
complicated structure.

Commutative algebra emerged in the second half of the 19th century. Two primary
origins of the subject were Number theory and Invariant theory. I refer you to the first
chapter in [E] for a more thorough discussions of the origins of Commutative algebra.
Nowadays, Commutative algebra is related to several other parts of Mathematics, includ-
ing Algebraic Number theory and Algebraic geometry. We will spend some time discussing
these connections.

Another topic to be covered in this course is a brief introduction to Category theory,
which, for the purposes of this class, is needed for a meaningful discussion of several
constructions with modules over commutative rings but is of paramount importance for
Mathematics in general.

2. CONTENT OF THE CLASS

Below I provide a more detailed — and technical— description of what we are going to
cover. The class naturally splits into two large and one smaller sections:

(1) Basics of Commutative algebra.

(2) Category theory with connections to Commutative algebra.
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(3) Results/constructions of relevance for Algebraic geometry (Nullstellensatz and

some consequences) and Number theory (Dedekind domains and factorization of
ideals).

All the terminology that appears in the description below without explanation will be
explained in the course.

2.1. Basics of Commutative algebra. The main players in Commutative Algebra are
rings (and their homomorphisms), ideals, and modules. The goal of this section of the
class is to explain basic constructions and examples of these objects and study their basic
properties. Here is what we are going to cover in more detail.

2.1.1. Examples and classes of rings, ideals and modules. The goal here is to introduce
a basic terminology related to rings and algebras, their ideals and modules; describe
important classes of these objects (such as, say, prime ideals and free modules) and give
examples.

2.1.2. Noetherian and Artinian rings and modules. A ring is Noetherian if every ideal is
generated by finitely many elements. These rings are ubiquitous in Commutative alge-
bra, in fact, most rings we encounter are Noetherian. Being Noetherian is equivalent to
the condition that every ascending chain of ideals terminates. We will establish basic
properties and introduce basic classes of Noetherian rings and discuss modules over these
rings. We will also briefly discuss another class, Artinian rings. These are defined by the
condition that every descending chain of ideals terminates.

2.1.3. Principal ideal domains (PID) and their modules. PID’s is an important yet easy
class of rings that includes the ring of integers and the rings of polynomials in a single
variable with coefficients in a field. The formal definition of a PID is that it is a domain
(no zero divisors) and every ideal is principal, i.e., is generated by a single element. A
remarkable feature of this class of rings is that it is easy to describe finitely generated
modules over them, this description generalizes the classification of finitely generated
abelian groups (=modules over Z).

2.1.4. Localization of rings and modules. To localize means to invert some elements. This
gives another important construction of rings. For example, the rational numbers are
obtained from the integers by localizing all nonzero elements. Localization can also be
applied to modules giving an example of a functor. We will explain construction and
basic properties of localization for rings and modules. We then discuss local rings, and a
fundamental result about their modules, the Nakayama lemma.

2.2. Category theory with connections to Commutative algebra. Category the-
ory is a common language of modern Mathematics. Various constructions and questions
of interest in Commutative algebra are categorical in nature. The goal of this part of the
course is to introduce basic notions of category theory and apply them to the study of
tensor product and Hom modules over commutative rings.

2.2.1. Categories, functors, functor morphisms. These are the basic objects that Category
theory studies. We will introduce these notions and give examples. Then we will prove
the Yoneda Lemma that is a foundational result about functor morphisms.
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2.2.2. Representing objects with application to tensor products. Many constructions in
Mathematics arise as “objects representing functors”, which makes sense thanks to the
Yoneda Lemma. We will apply this to revisit/ introduce various notions of products in
Commutative algebra, most importantly, tensor products of modules and rings.

2.2.3. Adjoint functors and tensor-Hom adjunction. In Linear algebra and beyond we talk
about adjoint linear maps (or operators). Similarly, it makes sense to speak about two
functors being adjoint to each other. This is a very important relationship giving rise
to various universal constructions in Algebra. We will discuss adjoint functors and give
several examples, including the adjunction between tensor product and Hom functors.

2.2.4. Additive functors, exactness of functors, projective and flat modules. Our main
focus is on functors between categories of modules over rings. Additive functors are
those which have a certain compatibility with the module structure. We will define and
give examples of additive functors. The main property of these functors we care about
in Commutative algebra is their exactness, i.e., how they behave on exact sequences
of modules. We will study the exactness of tensor product and Hom functors. This,
in particular, will allow us to define two important and interesting classes of modules:
projective and flat modules. We will then discuss a connection between projective and
free modules.

2.3. Connections with Algebraic geometry and Number theory.

2.3.1. Integral extensions/ closures. Taking integral extension/ integral closure is an im-
portant construction of rings, this is a ring counterpart of algebraic extensions/ closures
of fields studied in MATH 370. For example, the rings of algebraic integers that are of
paramount importance for algebraic Number theory are obtained via taking the integral
closure of Z in finite field extensions of . We will explain basics on integral extensions
and closures. We also prove the Noether normalization theorem: every finitely generated
algebra over a field that is a domain is an integral extension of the algebra of polynomials.

2.3.2. Connections to Algebraic geometry. Algebraic geometry starts with studying geo-
metric properties of sets of solutions to systems of polynomial equations. Its interactions
with Commutative algebra that can be traced back to the work of Hilbert in the end the
19th century are numerous and beneficial for both fields: oversimplifying, one can say
that Commutative algebra provides a foundation for Algebraic geometry, while Algebraic
geometry provides a geometric intuition for otherwise abstract Commutative algebra con-
structions. To illustrate this connection, we will prove Hilbert’s Nullstellensatz (translated
as “Theorem on location of zeroes”) and establish a bijection between radical ideals in the
algebra of polynomials in n variables over an algebraically closed field and the algebraic
subsets in the n-dimensional space.

2.3.3. Connections to Number theory. Connections to Number theory goes back at least
to the work of Dedekind (around 1870). It was understood that the unique factorization
in rings of algebraic integers is important for Number theory — for example, for the proof
of the Fermat last theorem. Dedekind realized, that while the unique factorization of
elements may fail, it still holds on the level of ideals. We plan to discuss Dedekind domains
(generalizations of the rings of algebraic integers) and the uniqueness of factorizations of
ideals into the product of prime ideals.
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3. PREREQUISITES

There are two official prerequisites for this class: MATH 350 (Introduction to Abstract
Algebra) and MATH 370 (Fields and Galois theory). The former covers finite groups and,
closer to the end, commutative rings and ideals. Abelian groups and their classification,
rings and ideals, unique factorization property, Euclidian rings, etc. studied in MATH
350 are directly related to what we are going to study in our class. MATH 370 covers
field extensions and Galois theory. Fields, rings of polynomials and their quotients also
appear often in our class. More advanced things such as finite and algebraic extensions of
fields, algebraic closures etc. appear somewhat in the background in our study of integral
extensions and closures of rings. And various things related to MATH 370 may appear
in homeworks (see the next section for more about homeworks). You can check Asher
Auel’s webpage at Dartmouth for syllabi, references and homeworks for MATH 350 (e.g.,
Fall 2017) and MATH 370 (e.g., Spring 2019).

You will also benefit from a good knowledge of Linear Algebra (and not just for this
class). E.g. a good understanding of the Jordan normal form theorem and of tensor
products of vector spaces will be helpful. At Yale, this is studied in MATH 240.

Students who took MATH 353 (Intro to Representation theory) in Spring 2023 will be
able to see some concepts (such as induction of representations) placed in a more general
context. But MATH 353 is not a prerequisite.

Even more importantly, previous Algebra classes give you an exposure to abstract
algebraic considerations. This is important for understanding the material in our class.
To put this somewhat differently, some mathematical maturity will help you to benefit
from our class.

4. HOMEWORKS

There will be six homeworks, the due dates to be announced. Each homework is worth
10% of the total, i.e., 10 points. You should expect that the total number of points in
a homework is bigger than the maximal score. In particular, you don’t need to solve all
problems correctly to get the maximal score. However, you strongly encouraged to try to
solve everything. Some of the homework problems may be used to prove statements in
class. And some are going to be on recurring topics.

You should expect a significant variety of homework problems. Some of them will be
routine exercise, while some others will be difficult and will require new ideas. Some prob-
lems will be closely related to what we cover in class, while some others will concentrate
on important topics that will not be covered in class due to lack of time.

You should also expect that solving the homework will require a significant time and
effort investment. Students generally find that this class is quite challenging...

I don’t plan to post complete solutions. Instead, after each homework I'll poll you and
ask your preferences for problems whose solutions you want to see.

5. REFERENCES

There is no required textbook, but there are five textbooks that may be useful. One
thing to keep in mind is that books on Category theory are generally require a more
extensive background than what is expected for this class. The same is true for books on
Algebraic geometry.
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— [AM] is a classical introductory textbook in Commutative algebra. It is clearly written
and concise. This is going to be our main reference for the basics of Commutative algebra
section.

— [E] is a very comprehensive introduction to Commutative algebra. It’s more mod-
ern than [AM] and also emphasizes connections to Algebraic geometry. It’s also more
advanced.

— [HS] is a classical textbook on Homological algebra and Category theory.

— [R] is a recent introductory textbook on Category theory.

— [V] is a general book on Algebra aimed at undergraduate students. It’s good for
background reading. We will also follow the exposition in this book for some of our
topics.

— [N] is a book on Algebraic Number theory, that we are going to use for the last two
lectures.

6. LECTURES AND OFFICE HOURS

Lecture notes will be posted on the course webpage. From time to time, posted lecture
notes are going to contain some additional material.

Generally, there will be two office hours per week. Times are to be determined via
collecting preferences early in the semester.

7. QUESTIONS AND INQUIRIES

Please do not hesitate to contact me if you have questions!
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