
MATH 380, HOMEWORK 3, DUE OCT 17

There are 6 problems worth 28 points total. Your score for this homework is
the minimum of the sum of the points you’ve got and 20. Note that if a problem
has several related parts, you can use previous parts to prove subsequent ones
and get the corresponding credit. You can also use previous problems to solve
subsequent ones and refer to problems in Homeworks 1,2 (unless it is specified
otherwise). The text in italic below is meant to to be comments to a problem
but not a part of it.

All rings are assumed to be commutative.

Problem 1, 6pts total. This problem is related to localization of quotient rings. The
general setup is as follows.
1, 2pts) Let A be a ring, S ⊂ A be a multiplicative subset. Let I ⊂ A be an ideal, and let

π denote the projection A↠ A/I. Note that I[S−1] is an ideal in A[S−1], while π(S) ⊂ A/I
is a multiplicative subset, you don’t need to prove this. Establish a natural isomorphism
between A[S−1]/I[S−1] and (A/I)[π(S)−1].

The next two parts consider special cases of this situation.

2, 2pts) Let A = C[x, y]/(xy). We write x̄, ȳ for x+ (xy), y + (xy) ∈ A. Set S := {x̄n|n ⩾
0}, I = (ȳ). Establish an isomorphism between A[S−1] and the ring of Laurent polynomials
C[x±1].

3, 2pts) Let still A = C[x, y]/(xy) but now S = {(x̄ + ȳ)n|n ⩾ 0}. Construct a ring
isomorphism

A[S−1]
∼−→ C[x±1]× C[y±1].

A hint: Construct a homomorphism from the l.h.s. to the r.h.s. by first answering a ques-
tion of how homomorphisms to direct products look like. Then show that this homomorphism
is injective and surjective.

A geometric picture: the locus {(x, y)|xy = 0, x+y ̸= 0} is the disjoint union of {(x, 0)|x ̸=
0} and {(0, y)|y ̸= 0}. We may revisit this in our discussion of connections to Algebraic
geometry later in the class.

Problem 2, 7pts total. Hom modules vs localizations, and how this helps to compute the
modules of homomorphisms. Let M,N be A-modules and S be a multiplicative subset in A.

1, 1pt) Prove that the map ψ 7→ ψ[S−1] : HomA(M,N) → HomA[S−1](M [S−1], N [S−1]) is
A-linear.

The following two parts are harder.
2, 2pts) Suppose that M is finitely presented meaning that there are k, ℓ and an A-linear

map φ : A⊕k → A⊕ℓ such that M ∼= A⊕ℓ/ imφ. Prove that the A-linear map from part
1) factors into the composition of the natural homomorphism ιHomA(M,N) : HomA(M,N) →
HomA(M,N)[S−1] and an isomorphism HomA(M,N)[S−1]

∼−→ HomA[S−1](M [S−1], N [S−1]).
Hint: something from HW1 should help...
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3, 2pts) Now suppose that A is a Noetherian domain and I ⊂ A is an ideal. Use the
previous two parts to produce an A-module embedding of HomA(I, A) into Frac(A) whose
image is {α ∈ Frac(A)|αI ⊂ A}.
4, 1pt) Use part 3) to reprove a claim of Problem 8 in Homework 1: for the ideal I =

(2, x) ⊂ A = Z[x], we have an isomorphism of A-modules HomA(I, A) ∼= A (do not refer to
your HW1 solution).

5, 1pt) Let A = Z[
√
−5], I = (2, 1 +

√
−5). Use part 3) to re-establish an A-module

isomorphism HomA(I, A) ∼= I from Problem 7 in HW1 (do not refer to your HW1 solution).

Problem 3, 4pts. Prime ideals and localizations at complements of prime ideals. Let A be
a commutative ring and p a prime ideal in A. Show that the map q 7→ qp defines a bijection
between

• the set of prime ideals of A contained in p,
• and the set of all prime ideals in Ap.

The following problem introduces “locally free” modules over rings, the official definition
will be given in the class later. Also later we will see that, in a reasonable class of modules,
being locally free is equivalent to being projective. Suppose A is a ring, and letM be a finitely
generated A-module. Consider the following conditions

(*) There are elements f1, . . . , fk ∈ A such that (f1, . . . , fk) = A and M [f−1
i ] is a free

A[f−1
i ]-module for every i = 1, . . . , k.

(**) For every maximal ideal m ⊂ A, the Am-module Mm is free.

It is the condition (*) that is used to relate projective modules to Algebraic geometry. This
may be discussed as a bonus later in the class.

Problem 4, 7pts. 1, 1pt) First, an example. Consider the ring A = Z[
√
−5] and its ideal

I = (2, 1 +
√
−5). Prove that the A-module M := I satisfies (*) for k = 2, f1 = 2, f2 = 3.

We proceed by showing that (*) implies (**). The first two parts have to do with transitivity
of localization, an important property on its own.

2,1pt) Now we get back to the general situation, where A is a commutative ring. Let

S ⊂ S̃ ⊂ A be multiplicative subsets. Establish a natural isomorphism of rings A[S̃−1]
∼−→

A[S−1][ι(S̃)−1], where ι : A → A[S−1] is the natural homomorphism. We use this isomor-
phism to identify these two rings.

3, 1pt) Let M be an A-module. Establish an isomorphism M [S̃−1]
∼−→ M [S−1][ι(S̃)−1] of

modules over the ring in part 1).

4, 1pt) Show that (*) implies (**).
Now we show that if A is Noetherian, then (**) implies (*).

5,1pt) Without the Noetherian assumption on A, prove that if M is a finitely generated
module, and S is a multiplicative subset of A such that M [S−1] = {0}, then there is s ∈ S
such that M [s−1] = {0}.
6,1pt) Until the end of the problem suppose that A is Noetherian. Let M,N be finitely

generated A-modules and ψ :M → N be an A-linear map. Suppose that S is a multiplicative
subset such that ψ[S−1] : M [S−1] → N [S−1] is an isomorphism. Show that there is s ∈ S
such that ψ[s−1] : M [s−1] → N [s−1] is an isomorphism. Hint: you should reduce this to the
previous part.
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7, 1pt) This is harder. Prove that (**) implies (*).

The next two problems deal with functors from the category of sets (or its opposite) to the
category of commutative algebras.

Problem 5, 2pts. Let F be a field. To a set X we assign the algebra F[X] of all functions
X → F with pointwise addition and multiplication. To a map of sets φ : X → Y we assign
a map φ∗ : F[Y ] → F[X] given by [φ∗(g)](x) = g(φ(x)) for all g ∈ F[Y ] and x ∈ X.

Check that X 7→ F[X] and φ 7→ φ∗ defines a functor Setsopp → F -CommAlg (the category
of commutative F-algebras). You are responsible for checking all relevant conditions and
axioms.

We may see this construction again in our discussion of connections to Algebraic geometry,
most likely as a bonus.

Problem 6, 2pts. Sending a finite set I to the ring of polynomials Z[xi]i∈I gives a functor
FinSets → CommRings, here the source category is that of finite sets. You are responsible for
explaining what this functor does on the level of morphisms, but not for checking axioms.


