Lecture 10.1: (x+y) P-xP-y!

- o) Introduction.
- 1) Free Lie algebra
- 2) Primitive elements.
- 0) The goal of this note is to prove part 3 of Thm in Sec. 1.2 of Lec 10: if F is a characteristic p field, A is an associative (unital) F-algebra A A, A then $(X+Y)^P-X^P-Y^P$ is a Lie polynomial in A, A that is "universal" -independent of A, A.

Example: p=2: $(x+y)^2 - x^2 - y^2 = xy + yx = [x,y]$ p=3: $(x+y)^3 - x^2 - y^3 = x^2y + xyx + yx^2 + xy^2 + yxy + y^2x = [x,[x,y]] + [y,[y,x]].$

Our strategy is as follows:

1: We introduce the free Lie algebra on the alphabet x_i , $i \in I$.

The universal enveloping algebra of this Lie algebra is the free associative algebra. Our problem becomes to show that for the free Lie algebra l_i w. generators x_i , y_i the element $(x_i + y_i)^p - x_i^p - y_i^p$ of $U(l_i) = F(x_i, y_i)^p$ is in l_i . This is Section 1.

2: We have $(x+y)^p-x^p-y^p\in U(l_x)_{\leq p-1}$. For an arbitrary Lie algebra of over F, of is recovered inside $U(\sigma)_{\leq p-1}$ as the subspace of "primitive elements." This is Section 2.

1) Free Lie algebras.

The construction: Pick an alphabet x_i , $i \in I$. Consider the free (non-associve) IF-algebra Free: it is basis consists of finite bracketed monomials in the alphabet x_i , e.g. $(x_i x_i) x_3 \neq x_i (x_2 x_3)$, and the product of basis elements is given by $a \cdot b = (a)(b)$.

The free Lie algebra l_I is the quotient of $Free_I$ by the 2-sided ideal spanned by the elements [a,a], [la,b], c]+[b,[c,a]]+[c,[e,6]] for $a,b,c \in Free_I$. It's universal property: for all Lie algebras of and elements $a_i \in \sigma_i$, $i \in I$, $\exists !$ Lie algebra homomorphism $l_I \to \sigma_I$ w. $x_i \mapsto a_i$.

Now we describe $U(L_I)$.

Lemma: We have an associative algebra isomorphism $U(l_I) \stackrel{\sim}{\to} \mathbb{F} \langle x_i \rangle_{i \in I}$ (the free associative algebra) w. $x_i \leftrightarrow x_i$.

Proof: To give a homomorphism $U(l_1) \longrightarrow F < x_i > of associative$ algebras is the same as to give a homomorphism $l_1 \longrightarrow F < x_i > of lie$ algebras. Now we use the universal property of l_1 and get the unique homomorphism $U(l_1) \longrightarrow F < x_i > w$. $x_i \mapsto x_i$. The homomorphism in the opposite direction comes from the universal property of $F < x_i > o$.

2) Primitive elements

2.1) Hopf algebra structure on U(g) & primitive elements.

Here F is an arbitrary field.

Lemma: There are unique algebra homomorphisms:

· S: U(q) → U(q) & U(q) w. Δ(x)=x01+10x,

· $S: \mathcal{U}(g) \to \mathcal{U}(g)^{epp}$, S(x) = -x,

· p: U(q) → F, p(x)=0,

for xEOJ. They equip U(oj) w. a Hopf algebra structure.

Definition: An element a \in U(g) is primitive if \(\(\alpha \) = a\omega 1+1\omega a.

Example: of consists of primitive elements.

Exercise: if char F=p, and $a \in U(o_f)$ is primitive, then so is a_i^p

2.2) Primitive elements in U(g) =p-1

Thm: Let char F=p. The only primitive elements in U(og) zp-, are in og.

Rem: if char F = 0, then the claim holds for the entire U(og).

Here's an important observation for the proof of the theorem.

As was mentioned in Lecture 8.5, Section 1, the subspaces U(g) = (d zo) form an algebre filtration. We have a natural algebra homomorphism $S(o_{\!\!
m i}) o gv \; U(o_{\!\!
m i})$ and by the PBW theovem, it's an isomorphism.

Proof of Thm: Pick a degree $i \le p-1$ element $a \in U(og)$ and let $\overline{a} := a + U(og)_{\le d-1} \in gr$ U(og) = S(og), a degree d homogeneous element in S(og). Assume the contrary: $a \notin og$. Next, assume $d \ne 1$.

Pick a basis X_i , $i \in I$, in og and equip it with a total order. Then $U(\sigma)$ has a basis of ordered monomials in X_i 's.

Consider $\Delta(a) \in U(g) \otimes U(g)$. It has the form (exercise) $\Delta(a) = a \otimes 1 + 1 \otimes a + \sum_{i \in I} x_i \otimes a_i + ..., \text{ where } ... \text{ stands for the sum of tensor monomials with the first factor of degree j w.r.t. <math>x_i$'s, where $2 \le j \le d-1$. Clearly if $\Delta(a) = a \otimes 1 + 1 \otimes a$, then $a_i = 0 \ \forall i$.

Exercise: Show that $a+U(g)_{< d-1} = \frac{\partial \overline{a}}{\partial x_i}$. Deduce d=1.

The primitive elements in $U(g)_{< 1}$ are in o_7 .

2.3) Completion of proof.

We set $\sigma = l_2$. By Exercise in Section 2.1, $(x+y)^p - x^p - y^p$ is primitive. This to Thin in Sec 2.2, we'll be done if we show $(x+y)^p - x^p - y^p \in U(\sigma)_{\leq p-1}$. But gr $U(\sigma)$ is commutative so $(x+y)^p - x^p - y^p + U(\sigma)_{\leq p-1} = 0$ in gr $U(\sigma) \iff (x+y)^p - x^p - y^p \in U(\sigma)_{\leq p-1}$.

This finally shows $(x+y)^p-x^p-y^p\in L$. This is the Lie polynomial we need.