Kepresentations of algebraic groups & their Lie algebras, X. 1) Harish - Chandra (HC) isomorphism for the center of Ulog). 2) Proof, started. 3) Complements

1.0) Intro.

F: alg. closed char O field, of = Shy (F), Z: = center of U(og). Goal: Describe the algebra Z and understand its action on $\Delta(\lambda)$, and its unique inved. quotient $L(\lambda)$ ($\lambda \in \mathcal{J}^*$). Apply this description to prove that every finite dimensional of-representation is completely reducible.

1.1) Homomorphism Z -> U(5). To describe Z we construct an algebra homomorphism $Z \rightarrow U(5)$. Later we'll see it's injective and describe the image, hence describing Z. This homomorphism will also be used to describe how Z acts on $\Delta(\lambda)$.

Recall: for $d = \xi - \xi$ (i< j, a positive root) we write $f_{a} = E_{ji}, \xi = E_{jj}$. For i=1,..., n-1, h; = Ei - Ei, i+1, i+1; N= n(n-1)/2, B, -all positive roots. PBW Thm: Ung has basis net in the ministry of (1)

og, hence b, acts on Ulog) by ad: ad(x)a:=[x,a] (xeb, a E Uog).

Exercise: (1) is a weight vector of weight $\sum_{j=1}^{N} (m_j - \kappa_j) \beta_j$ (hint: $\forall x \in \mathcal{F}$, $a, b \in \mathcal{U}(o_j)$, have [x, ab] = [x, a]b + a[x, b].

Now we define a map $z \mapsto HC_z : Z \to U(b)$. By definition, HC_z is the sum of all monomials in the expansion of Z in (1) that only have his.

Example: for $C = \frac{1}{2}h^2 + h + 2fe \in \mathbb{Z} \subset \mathcal{U}(S_{2}^{1}) \Rightarrow HC_{c} = \frac{1}{2}h^2 + h.$

Note that all monomials in the expansion of Z-HCz must have K: 70, M;, 70 for some j, j': [x,]=0, #x Eb, => Z has weight 0, therefore every monomial in z must have weight 0. So, $HC_z \in U(\zeta)$ satisfies $z = HC_z + \sum_{j=1}^{N} e_{\beta_j}$. (2) (2)

Note that b is an abelian Lie algebra = U(b)=S(b)=F(b*). So we can view HCz as a polynomial on 5.

Proposition: 1) I ZEZ, LEL", Zaets on S(L) & L(L) by HCz (L). 2) Z → HCz is an algebre homomorphism.

Proof: 1) Have $\Delta(\lambda) = \mathcal{U}(o_1) \vee_{\lambda} \& z$ commutes w. $\mathcal{U}(o_1)$. So it's enough to show $z \vee_{\lambda} = HC_z(\lambda) \vee_{\lambda}$. But $\mathcal{C}_z \vee_z = 0$ \forall positive voots d, so $(2) \Rightarrow 2 \vee_z = HC_z(\lambda) \vee_{\lambda}$. The claim for $\mathcal{L}(\lambda)$ follows $\mathcal{U}(z \Delta(\lambda) \rightarrow \mathcal{L}(\lambda)$. 2) $z \mapsto HC_z$ is \mathbb{F} -linear by construction. By 1), $HC_{z_1 z_2}(\lambda) = HC_z(\lambda) HC_z(\lambda)$ $\forall \lambda \in \mathcal{J}, z_1, z_2 \in \mathbb{Z}$. So $HC_{z_1 z_2} = HC_z HC_{z_2}$. scalar by which $z_1 z_2$ $acts on \Delta(\lambda)$

1.2) Harish-Chandra isomorphism. Proposition in Sec 1.1 & Sec 1.2 of Lec 13 have an important consequence. 2]

For i=1,...,n-1, define $S_i \cdot \lambda = \lambda - (\langle \lambda, h_i \rangle + 1) \lambda_i$ so that $S_i \cdot is$ an affine map $5^* \rightarrow 5^* (s_i \cdot \lambda = \lambda_i'$ in the notation of Lec 13).

Proposition $\forall z \in \mathbb{Z}, \lambda \in \mathcal{J}^*$ have $HC_z(\lambda) = HC_z(s, \lambda)$.

Proof: Case 1: $\langle \lambda, h_i \rangle \in \mathbb{Z}_{z_0}$. By Sec 1.2 of Lec 13, \exists nonteno $U(o_j)$ -linear homomorphism $\Delta(s_i \cdot \lambda) \rightarrow \Delta(\lambda) \Rightarrow$ scalars of actions of $z \in U(o_j)$ on $\Delta(s_i \cdot \lambda), \Delta(\lambda)$ coincide. By Prop 1, $HC_z(\lambda) = HC_z(s_i \cdot \lambda)$. Case 2: general. The lows $\{\lambda \in \int^* | \langle \lambda, h_i \rangle \in \mathbb{Z}_{z_0} \}$ is a countable union of hyperplanes: $\{\lambda \in \int^* | \langle \lambda, h_i \rangle = m \}$ for $m \in \mathbb{Z}_{z_0}$. Any polynomial vanishing on such lows is identically 0. Apply this to the polynomial $\lambda \mapsto HC_z(\lambda) - HC_z(s_i \cdot \lambda) \&$ finish the proof. \Box

Example: For $\mathscr{S}_{L}^{:}$, $\mathscr{J} \simeq \mathbb{C}$ w. $h \leftrightarrow 1 \rightarrow \mathscr{J}^{*} \simeq \mathbb{C}$ w. $d=2, p=1, s \cdot \lambda = -\lambda - 2$. Since $HC_{c} = \frac{1}{2}h^{2} + h$, we get $HC_{c}(\lambda) = \frac{1}{2}\lambda^{2} + \lambda = HC_{c}(-\lambda - 2)$.

In fact, $\lambda \mapsto s_i \cdot \lambda$ extends to an action of the Weyl group $W(=S_n)$ on $\int_{-\infty}^{\infty} Set \ \rho = \frac{1}{2} \sum_{i < j} (\xi_i \cdot \xi_j) = \sum_{i=1}^{n} (\frac{n+i}{2} - i) \xi_i \in \int_{-\infty}^{\infty} so that <\rho, h_i > = 1$ $\Rightarrow s_i \rho = \rho - \lambda$. Then $s_i (\lambda + \rho) - \rho = \lambda + \rho - <\lambda + \rho, d_i > -\rho = \lambda - (\langle \lambda, h_i \rangle + 1) d_i = s_i \cdot \lambda$.

Definition: The shifted action of W on 5th is given by w. 2:=w(1+p)-p.

Consider the subalgebra $F[5^{*}]^{(W,\cdot)} = \{f \in F[5^{*}] \mid f(w \cdot \lambda) = f(\lambda), \forall \lambda \in 5^{*}, w \in W\}$ of invariant polynomials. Since the elements s_i generate W, Proposition above $\overline{3}$

implies $HC_z \in F[5^*]^{(W, \cdot)}$ $\forall z \in \mathbb{Z}$. The following will be proved next time.

Thm (Harish-Chandre) $z \mapsto HC_z : Z \xrightarrow{\sim} F[f^{*}]^{(w, \cdot)}$

Corollary: For 2, MEL* TFAE (1) $\lambda \in W \cdot \mu$ (2) $H(\chi(\lambda) = H(\chi(\mu)), \forall \neq \in \mathbb{Z}.$ Proof: (1) \Rightarrow (2) is a direct consequence of the theorem. (2) \Rightarrow (1) becomes: if f())=f(m) & f E F[5*](W,·), then DEW.M. This is exercise (hint: find a polynomial f that is 1 on W. L, O on W. M. and average w.r.t. W-action: $f \mapsto \frac{1}{|w|} \sum_{w \in w} f(w \cdot ?),$

1.3) Application: complete reducibility. Thm: Every finite dimensional representation of of is completely reducible.

Proof: Let $\lambda, \mu \in \Lambda^+$. Then $\lambda + \rho$, $\mu + \rho$ are strictly decreasing so $\lambda \in W \cdot \mu$ (C) l+p∈ W(14+p) for the usual action <⇒ l+p is obtained from μ+p by permutation) implies $\lambda = \mu$. So, the to Corollary in Sec 1.3, if $\lambda \neq \mu \exists z \in Z$ acting on $L(\lambda), L(\mu)$ by different scalars. Once we know we can prove the complete reducibility of finite dimensional of-representations similarly to the Sh-case. There are no new ideas just technicalities, the proof is in the complement section. I

The following establishes some claims made in Lec 13. 4

Corollary: 1) Every nonzero finite dimensional quotient of a Verma module is irreducible. In particular, $L(\lambda) \xrightarrow{\sim} L(\lambda)$ (see Sec 1.3 of Lec 13). 2) Let $\lambda \in \Lambda^+$, \mathcal{U} a finite dimensional of representation, $u \in \mathcal{U}_{\lambda}$ s.t. hu=0 (⇔e,u=0, + positive root a). Then Ulog)u⊂U is irreducible.

Proof: Any quotient, M, of $\Delta(\lambda)$ has the unique irreducible quotient, $L(\lambda)$. So, M is completely reducible (>>> M is irreducible. Applying Theorem, get (1). To prove (2) note that $\Delta(\lambda) \longrightarrow \mathcal{U}(o_j)u$, compare to proof of Proposition in Sec 1.1 of Lec 13. So, $(1) \Rightarrow (2)$. Π

Rem: We don't need the full power of HC isomorphism to prove the complete reducibility - there are more elementary proofs, e.g. Sec 6.9 in [K] or Sec 6.5 in [B]. We will essentially use the theorem when we compute the character of $L(\lambda), \lambda \in \Lambda_+$.

1.4) Algebra F[5*] (W, .) Consider the affine isomorphism $\tau: \mathcal{J}^* \xrightarrow{\sim} \mathcal{J}^*$, $\lambda \mapsto \lambda + \rho$ so that $\tau(w \cdot \lambda) =$ = W T(1). So T gives rise to an isomorphism T: F[5*] (W,) ~ F[5*] W Let's describe the target. Embed 5" > F" as refly. Define prEF[5"]" by $p(x_{n}, x_{n}) = \sum_{i=1}^{n} x_{i}^{k}$ for k > 1 (p = 0).

Lemma: F[5*] " is the algebra of polynomials in pr..., pn. Proof: exercise - note that we are essentially dealing where algebra of

Exercise : Z = U(SL) is generated by C.

2) Proof, started. 2.1) Z vs U(g).4 To establish the HC isomorphism, we'll need an alternative description of Z. Let G be a connected algebraic group w. Lie algebra . of. Recall, Sec 1.2 of Lec 10, that Gasts on Ulog) by algebra automerphisms ~ the subalgebre U(og) & CU(og) of invariants. Lemma: Z=Ulog).

Proof: Z = {a \in Ulog) | ad (x] a = 0 + x \in og }. We write I for the trivial representation of of or of G. Then $Z \ni \varphi(1)$ Hom_{og} (F, U(g))⁹⁹ " -By Thm 2 in Sec 1.3 of Lec 7. Hom_G (F, U(g)) $\mathcal{U}(q)^{\varsigma} \supseteq \varphi(1)$ П

3) Complements. Here are some details for proving Theorem in Sec 1.4. · Decomposition into "infinitesimal blocks": Let V be a of-representation (not necessarily finite dimensional). Let X: Z -> F be an algebre homomorphism. Set 61

VX={veV | + zeZ = m70 s.t (z-X(2)) = 0}

This is a U(og)-submodule in V. If V is finite dimensional, then $V = \bigoplus V^X$ Moreover, z acts by X(z) on every irreducible constituent of X It follows that $X(z) = HC_{2}(\lambda)$ for some $\lambda \in \Lambda^{+}$ whenever V \$ + {03. Moreover, by the observation in the proof of the theorem in Sec 1.4, in this case $L(\lambda)$ is the unique irreducible constituent of VX So assume $V = V^{X} \iff V$ is filtered by $L(\lambda) = HC_{z}(\lambda)$. Then L(L) & V, ~ V, the proof repeats that in Sec 1.3 of Lec 9. Details are left as an exercise.