Representations of algebraic groups \& their Lie algebras, XI.

1) Cheralley restriction theorem.
2) Proof of HC isomorphism.
3) Complements.
4) In the last lecture we have stated the Harish-Chandra isomorphism theorem for the center $Z=U(g)^{G}$ of $U(g)\left(G=S S_{n}\right)$, to be recalled below.

The first step is to prove an analog of $H C$ isomorphism in an easier setting. Consider the symmetric algebra $S(g) ; G$ acts by automorphisms \leadsto subalgebre $S(g)^{G}$ of invariants. Weill establish an isomorphism $S(g)^{G} \rightarrow S(\zeta)$, where $W\left(\simeq S_{n}\right)$ is the Weal group. This is known as the Chevalley restriction theorem.

We start with an exercise (compare to the case of $\mathfrak{N K}$ in Sec 1.3 of Lee 10). Consider the adjoint action of G on $g: g \cdot x=g \times g^{-1}$.
Exercise: Show that $(x, y):=\operatorname{tr}(x y)$ defines a C-invariant non-degenerate symmetric bilinear form.

This gives rise to a G-equivariant isomorphism $g \rightarrow g^{*}, x \mapsto \operatorname{tr}(x \cdot)$, hence an algebra isomorphism $S(g)^{G} \xrightarrow{\longrightarrow} S\left(g^{*}\right)^{G}=\mathbb{F}[g]^{G}$, where, explicitly

$$
\mathbb{F}[g]^{a}=\left\{F \in \mathbb{F}[g] \mid F(x)=F\left(g \times g^{-1}\right), \forall x \in g, g \in G\right\}
$$

We have the restriction homomorphism res: $\mathbb{F}[g] \rightarrow \mathbb{F}[\xi],\left.F \mapsto F\right|_{\xi}$.
Example: Pick $k>1$. Set $F_{k}(x)=\operatorname{tr}\left(x^{k}\right) \in \mathbb{F}[g]$. Then $\operatorname{ves}(f)=p_{k}, k-t h$ power symmetric polynomial, $p_{k}\left(\operatorname{diag}\left(x_{1}, \ldots x_{n}\right)\right)=\sum_{i=1}^{n} x_{i}{ }^{k}$.

The action of $S_{n}=W$ on b, its reflection representation, gives rise to $W \cap \mathbb{F}[\xi]$ by algebra automorphisms. The algebra of invariants, $\mathbb{F}[\xi]$, is $\mathbb{F}\left[\rho_{2}, \ldots, p_{n}\right]$, compare to Sec 1.4 of Lee 14.

Thy (SK-special case of the Chevalley restriction $t h_{m}$) res: $\mathbb{F}[g] \rightarrow \mathbb{F}[\xi]$ restricts to $\mathbb{F}[g]^{G} \xrightarrow{\sim} \mathbb{F}[\xi]^{w}$.
Proof: We need to show:
(a) $\operatorname{res}\left(\mathbb{F}[g]^{a}\right) \subset \mathbb{F}[\xi]^{w}$
(b) $\mathbb{F}[5]^{W} \subset \operatorname{res}\left(\mathbb{F}[g]^{c}\right)$.
(c) $\left.\operatorname{res}\right|_{\mathbb{F}[g]^{c}}$ is infective.
(a): Exercise: Pick $w \in W$ and a "monomial matrix" $M_{w} \in S L_{n}(\mathbb{F})$, $M_{w}=\left(m_{i j}\right)$ w. $m_{i j} \neq 0$ only if $i=w(j)$. Then

$$
M_{w} \operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) M_{w}^{-1}=\operatorname{diag}\left(x_{w(r)}, \ldots x_{w(n)}\right) .
$$

Now take $F \in \mathbb{F}[g]^{G}$. Of course, $F\left(\operatorname{diag}\left(x_{1}, \ldots x_{n}\right)\right)=F\left(M_{w} \operatorname{diag}\left(x_{1}, \ldots x_{n}\right) M_{w}^{-1}\right)=$

$$
=F\left(\operatorname{diag}\left(x_{w(1)}, \ldots, x_{w(n)}\right)\right) \Rightarrow \operatorname{res}(F) \in \mathbb{F}[j]^{w} .
$$

(b): $\mathbb{F}[\zeta]^{W}$ is generated by $p_{2} \cdots p_{n}$. By the example above, $p_{i}=$ res $\left(F_{i}\right) w$. $F_{i}=\operatorname{tr}\left(x^{i}\right) \in \mathbb{F}[g]^{G}$ (6) follows.
(c): Let $F \in \operatorname{ker}(\mathrm{res}) \cap \mathbb{F}[g]$? It vanishes on every diagonal -and b / c of C invariance, on every diagonalizable matrix. Those form a Zariski dense subset in g. So $F=0$.

Rem: We can identify $\zeta w 5^{*}$ using the trace form as well. So we get the map res: $S(g) \xrightarrow{\rightarrow} S\left(g^{*}\right) \xrightarrow{\text { res }} S\left(\zeta^{*}\right) \xrightarrow{\sim} S(\xi)$, an algebra homomorphism extended from $g \xrightarrow{\sim} g^{*} \xrightarrow{\text { res }} 5^{*} \xrightarrow{\hookrightarrow} 5^{\prime}: x \in g \mapsto \operatorname{res}(x)$ w. $\operatorname{tr}(x y)=\operatorname{tr}(\operatorname{res}(x) y)$ $\forall y \in \xi$. It follows that on the basis $e_{\alpha}, f_{\alpha}, h_{i}$, we have $\operatorname{res}\left(h_{i}\right)=h_{i}$ \& $\operatorname{res}\left(e_{\alpha}\right)=\operatorname{res}\left(f_{\alpha}\right)=0 \quad($ egg. $\operatorname{tr}(\alpha, y)=0 \forall y \in \zeta)$.
2) Proof of $H C$ isomorphism.

Weill deduce the Hansh-Chandre isomorphism from the Chevalley tho.
2.1) sym: $S(g) \xrightarrow{\sim} U(g)$

We want to compare $Z=U(g)^{G}$ to $S(g)^{G}$. Weill do so by constructing a C-linear vector space 1 isomorphism $S(g) \xrightarrow{\leftrightarrows} U(g)$.

Consider a map $g^{k} \rightarrow \mathbb{U}(g),\left(\xi_{1}, \ldots \xi_{k}\right) \mapsto \frac{1}{k!} \sum_{\sigma \in S_{k}} \xi_{\sigma(\sigma)} \xi_{\sigma(k)}$. This map is multilinear and symmetric (the image stays the same if we permute the arguments) so gives a unique linear map sym: $S^{k}(g) \rightarrow U(g)$,

Lemme: The map sym has the following properties:

1) $\operatorname{sym}\left(\xi_{1}, \cdots \xi_{k}\right)=\xi_{1} \cdots \xi_{k}+$ lower degree terms
2) sym is a vector space isomorphism
3) sym is G-equivaniant.

Proof: exercise (for 2) use 1) \& the PBW theorem).

Corollary: sym: $S(g)^{G} \xrightarrow{\sim} U(g)$, , vector space isomorphism.

And now we can explain how Casimir $C \in U((S \xi)$ arises land also why it's G-invariant for char $\mathbb{F} \neq 2$)

Exeruse: Show that under $F[\lg]^{C} \rightarrow S(g)^{c}, F(x)=\operatorname{tr}\left(x^{2}\right)$ goes to $\frac{1}{2} h^{2}+2 f e$, which under sym: $\left.S(g)^{G} \rightarrow U(g)\right)^{a}$ goes to $\frac{1}{2} h^{2}+h+2 f e=C$.
2.2) Completion of proof ${ }_{N}$

The monomials $\prod_{j=1}^{N} f_{\beta_{j}}^{k_{j}} \prod_{i=1}^{n-1} h_{i}^{l_{i}} \prod_{j=1}^{N} e_{\beta_{j}}^{m_{j}}$ form bases in both $U(g), S(g)$. For $F \in S(g)\left(\right.$ resp. $\left.F^{\prime} \in U(g)\right)$ write $\operatorname{res}(F) \in S(\xi)\left(\right.$ resp. $\left.\operatorname{res}\left(F^{\prime}\right) \in U(\xi)\right)$ for the sum of all monomials in $F\left(r e s p . F^{\prime}\right)$ that only contain h 's. Let $c: S(g) \rightarrow U(g)$ be the isomorphism that is the id w.r.t. the bases (unlike sym, is not C-equivariant). Under the nat l ident'n $U(5) \stackrel{\sim}{\sim} S(5)$,

$$
\begin{equation*}
\operatorname{res}(F)=\operatorname{res}(c(F)) \tag{1}
\end{equation*}
$$

In $\operatorname{Sec} 1.2$ of Lect 14 we 're introduced a shifted W-action on $5^{*}: w \cdot \lambda=w(\lambda+\rho)-\rho$ and the shift map $\tau: \zeta^{*} \rightarrow \zeta^{*}, \lambda \mapsto \lambda+\rho$, which gives $\tau: \mathbb{F}\left[\zeta^{*}\right]^{(\omega, \cdot)} \sim \mathbb{F}\left[\zeta^{*}\right]^{\omega},[\tau F](\lambda):=F(\lambda+\rho)$.

We've seen, $\operatorname{Sec} 1.2$ of Lee 14, that res: $U(g) \rightarrow U(5)$ restricts to an algebra homomorphism $H C: U(g)^{h}=Z \longrightarrow \mathbb{F}\left[5^{*}\right]^{(\omega \cdot)}$. We need to show that $z \mapsto H C_{z}$ is an isomorphism proving The in Sec 1.2 of Lect 1 .

Proof: We have sym: $S(g)^{G} \xrightarrow{\sim} U(g)^{G} \& \tau: \mathbb{F}\left[\zeta^{*}\right]^{(\omega \cdot)} \xrightarrow{\sim} \mathbb{F}\left[5^{*}\right]^{w}$ It's enough to show that
(*) $F \mapsto \tau \cdot r \operatorname{ces} \cdot \operatorname{sym}(F): S(g)^{G} \xrightarrow{\sim} S(\xi)^{W}$ (of vector spaces) Weill prove (*) by comparing this map to res, which is an isomorphism. Note that G preserves $S^{\alpha}(g) \forall \alpha \Rightarrow S(g)^{G}=\oplus S^{\alpha}(g)^{G}$ By $\operatorname{Sec} 1$,
 So (*) will follow from
(**) $\forall d, F \in S^{d}(g)^{G} \Rightarrow \operatorname{deg}(\tau 0 \operatorname{resosym}(F)-\operatorname{res}(F))<d$.
By (1) in Lemma in $\operatorname{Sec} 2.1, \operatorname{sym}(F)=c(F)+$ l. ..t. (terms of degree $\langle\alpha) \Rightarrow$ $\operatorname{resosym}(F)=\operatorname{res} \circ L(F)+$ l.d.t. $=[(1)]=\operatorname{res}(F)+$ l.d.t. And τ preserves top deg. term. $(* *)$ follows.
3) Characters.

Notation: consider the group ring $\mathbb{Z}[\Lambda]$ of the weight lattice 1. We write e^{λ} for the element of $\mathbb{Z}[\Lambda]$ corresponding to $\lambda \in \Lambda$. The Weyl group $W=S_{n}$ acts on ζ^{*} preserving $\Lambda\left(=\left\{\sum \lambda_{i} \xi_{i} \mid \lambda_{i} \in \mathbb{Z}\right\}\right)$ and hence on $\mathbb{Z}[\Lambda]: w e^{\lambda}=e^{w(\lambda)}$

We also consider the completed version $\mathbb{Z}[[\Lambda]]$ consisting of all infinite linear combinations of $e^{\lambda}, \lambda \in \Lambda$.

Definition: Let M be a representation of of w. $M=\bigoplus_{\lambda \in \Lambda} M_{\lambda} w \cdot d_{m} M_{\lambda}<\infty$. Below we will call such a representation a weight module. The (formal) character of $M, \operatorname{ch} M:=\sum_{\lambda \in \lambda}\left(d / m M_{\lambda}\right) e^{\lambda} \in \mathbb{Z}[[\Lambda]]$.

Example: The Verna module $\Delta(\lambda)$ has weight basis $\prod_{j=1}^{N} f_{\beta_{j}}^{k_{j}} v_{\lambda} w$.weights $\lambda-\sum_{j=1}^{N} k_{j} \beta_{j}$. So
$\operatorname{ch} \Delta(\lambda)=\sum_{k_{1}, \ldots \kappa_{N} \geqslant 0} e^{\lambda-\Sigma k_{j} \beta_{j}}=e^{\lambda} \prod_{j=1}^{N}\left(1+e^{-\beta_{j}}+e^{-\tau \beta_{j}} \ldots\right)=e^{\lambda} \prod_{j=1}^{N}\left(1-e^{\left.-\beta_{j}\right)^{-1}}\right.$
Our goal is to compute ch $L(\lambda)$ for $\lambda \in \Lambda^{+}$. This will conclude air study of finite dimensional irreducible representations of ΣK_{n}. Recall, Sec. 1.2. of Lec 14, $\rho=\frac{1}{2} \sum$ positive roots $\Rightarrow\left\langle\rho, h_{i}\right\rangle=1, \forall i$, so $p \in \Lambda$.

Thy (Weyl character formula): Let $\lambda \in \Lambda^{+}$. Then

$$
c h \angle(\lambda)=\frac{\sum_{w \in w} \operatorname{sgn}(w) e^{w(\lambda+\rho)}}{\sum_{w \in W} \operatorname{sgn}(w) e^{w \rho}}
$$

Examples: 1) $L(0)$ is the trivial representation, and we recover ch trio $=e^{0}(=1)$.
2) Let $n=2$. Then $L(n)=M(n) \&$ ch $M(n)=L \operatorname{dim} M(n)_{i}=1$ for $i=n, n-2, \ldots,-n$ and $0, e l s e]=e^{n}+e^{n-2}+\ldots+e^{-n}=\frac{e^{n+1}-e^{-(n+1)}}{e-e^{-1}}$. Since ρ is identified with $\langle p, h\rangle=1$, this agrees with the theorem.

Exercise: For og-representations M, M^{\prime} as in the definition above, and a finite dimensional g-representation V, we have

$$
\operatorname{ch}\left(M \oplus M^{\prime}\right)=\operatorname{ch}(M)+\operatorname{ch}\left(M^{\prime}\right), \operatorname{ch}(V \otimes M)=\operatorname{ch}(V) \operatorname{ch}(M) .
$$

3) Complements.
3.1) Connection to characters for group representations.

Let V be a rational representation of $C=S L_{n}(\mathbb{F})$. We can consider its usual chavacter $X_{v}(g)=\operatorname{tr}_{v}(g)$. Then $X_{v} \in \mathbb{F}[G]^{G}$. We explain how to recover X_{V} from $c h(V)$-note that V is also g-repr'n.

First of all, let $T \subset G$ be the subgroup of diagonal matrices. From $\lambda \in \Lambda$ we can produce an algebraic group homomorphism e^{λ} $T \rightarrow \mathbb{F}^{x}$: for $\lambda=\lambda, \xi+\ldots+\lambda_{n} \varepsilon_{n} w . \lambda_{i} \in \mathbb{Z}$ and $t=\operatorname{diag}\left(t_{1}, t_{n}\right)$ we set $e^{\lambda}(t)=t_{1}^{\lambda_{1}} t_{n}^{\lambda_{n}}$ (this is well-defined: the λ_{i} 's ave defined up to a common summand, and $t_{1} t_{2} \ldots t_{n}=1$). Then $c h(v)=\left.X_{V}\right|_{T}$ (exerase).

Now take $g \in C$. We can uniquely write it as $g=g_{5} g_{4}$, where g_{5} is a diagonalizable element, and g_{4} is unipotent -all eigenvalues are equal to 1. One can show that, $\forall F \in \mathbb{F}[G]^{G}$, we have $F(g)=F(g s)$. And every g_{5} is conjugate to an element in T. So, we can recover X_{V} from $X_{V} T_{T}$.
3.2) Schur polynomial.

In fact, ch $L(\lambda)$ (w. $\lambda \in \Lambda^{+}$) is essentially the Schur polynomial S_{λ}, see, e.g. Section 6.1 in [RT1], for definition. The meanings of λ in $S_{\lambda} \& c h L(\lambda)$ are somewhat different though, so we will tweak $\operatorname{ch} L(\lambda)$ a bit.

Namely, we can $f_{1} x \lambda_{1}, \ldots \lambda_{n}$ and extend the action of $\Sigma_{n} K_{n}$ to ot h by making $1 \in g_{h}$ acting by $\lambda_{1}+\ldots+\lambda_{n}$. Then we can view ch $L(\lambda)$ as an clement of the group algebra of \mathbb{Z}," which is the ring of Laurent polynomials $\mathbb{Z}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm 1}\right]$. For $\mu \in \mathbb{Z}^{n}$ lets write x^{M} for the 7
corresponding monomial $x_{1}^{\mu_{1}} \chi_{n}^{\mu_{n}}$. Then we can write

$$
\operatorname{ch} L(\lambda)=\frac{\sum_{\omega \in \omega} \operatorname{sgn}(\omega) x^{\omega(\lambda+\rho)}}{\sum_{\omega \in W} \operatorname{sgn}(\omega) x^{\omega \rho}},
$$

where now we take $\rho=(n-1, n-3, \ldots, 1,0)$. In the denominator we have the Vandermonde determinant $\operatorname{det}\left(x_{i}^{j-1}\right)_{i, j=1, \ldots, n}$. And in the numerator we have $\operatorname{det}\left(x_{i}^{\lambda_{i}+j-1}\right)_{i, j=1 . n n}$. So if λ is a partition we recover the determinantal definition of the Schur polynomial.

Exercise: By looking at $c h \Lambda^{k} \mathbb{F}^{n}, c^{k}\left(\mathbb{F}^{n}\right)$ recover the following equalities:
$S_{\left(r^{k}\right)}=e_{k}$, the eth symmetric polynomial
$S_{(k)}=m_{k}$, the complete symmetric polynomial.

