Hecke algebra/category, part II.

- 1) Generic Hecke algebra
- 2) Generalizations: Kac-Moody algebras.
- 3) Complements.

1.0) Recap: Let's recall some results from Lecture 18.

Let $G = GL_n(F_g)$, $B \subseteq G$ be the subgroup of upper triangular matrices. We are interested in understanding the algebra $End_G(C[G/B])$. It is semisimple ($\simeq \bigoplus$ matrix algebras) b/c C[G/B] is a completely reducible CG-module. In Sec 2 of Lec 18, we have identified $End_G(C[G/B])$ w. the algebra $H(g) := (C[B \setminus G/B], *)$. Using this, in Sec 3, we have produced a vector space basis $T_w \in End_G(C[G/B])$, $w \in W(:=S_n)$, where $T_i = 1$.

We have also described the products of some basis elements. Recall that W is generated by $S_i:=(i,i+i)$, i=1,...,n-i. For $w\in W$ we defined its length $l(w):=\min\{l\mid w=S_i,...S_i\}$, e.g. l(1)=0, $l(w)=1\iff w=S_i$. The following was established in Sec 3 of Lec 18:

Proposition: 1) if
$$l(uw) = l(u) + l(w)$$
, then $T_u T_w = T_{uw}$.
2) For $S = S$; $(i = 1, ..., n - 1)$, we have $T_s^2 = (q - 1)T_s + qT_q$.

1.1) Consequences.

Corollary: 1) The elements T:= Ts; (i=1,..., n-1) generate H(q).

2) We have Ti Ti+, Ti = Ti+, Ti Ti+, & Ti Tj = Tj Ti for li-j/>1

3)
$$T_s T_w = \begin{cases} T_{sw}, & \text{if } l(sw) = l(w) + 1 \\ g T_{sw} + (g-1) T_w, & \text{else} \end{cases}$$

4)
$$T_w T_s = \begin{cases} T_{ws}, & \text{if } \ell(ws) = \ell(w) + 1 \\ q T_{ws} + (q-1) T_w, & \text{else} \end{cases}$$

3): The case l(sw) = l(w) + 1 follows from 1) of Proposition. $l(sw) \leq l(w) + 1$ $\Rightarrow l(w) = l(s^2w) \leq l(sw) + 1$. Since $sgn(w) = (-1)^{l(w)} l(sgn(sw) = -sgn(w))$, we get $l(sw) = l(w) \pm 1$. We only need to consider the case l(w) = l(sw) + 1 $\Rightarrow T_w = T_s T_{sw}$. So $T_s T_w = T_s^2 T_{sw} = [2)$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$ of $l(sw) = [2] = q T_{sw} + (q-1) T_s T_{sw} = [1]$

5): We write u as $s_{i,...}s_{ie}$ w. l=l(u) so that $T_uT_w=[(*)]=T_{i,...}T_{ie}T_w$. We use 3) repeatedly: express $T_{ie}T_w$, then multiply the summands by T_{ie-i} , etc. In each step, the coefficients of $T_{o'}$'s are polynomials in g with integral coefficients.

1.2) The generic Hecke algebra and its specializations.

Definition: The generic Hecke algebra (a.k.a. Iwahori-Hecke algebra) is

the free $\mathbb{Z}[t]$ -module $H^{\mathbb{Z}}(W)$ w. basis T_w , we W, and product $T_u T_w = \sum_{v \in W} m_{uw}^v(t) T_v$.

from S) of Corollary.

Lemma: This is an associative algebra w. unit T.

Proof: Associativity can be checked on basis elements, where it's a collection of quadratic equations on the entries of the multiplication table— $m_{uw}^{v} \in \mathcal{T}[t]$. These equations hold after specializing t to any prime power q, by S) of Corollary. So they hold for the m_{uw}^{v} , hence $\mathcal{H}^{z}(w)$ is associative. The claim that T_{i} is a unit is an exercise.

We write H(W) for $C \otimes_{\mathcal{H}} H^{\mathcal{H}}(W)$. For $R \in C$, we write $H_{k}(W)$ for H(W)/(t-k)H(W). This is a C-algebra w. basis T_{w} , $w \in W$ and product $T_{w}T_{w} = \sum_{v \in W} m_{uw}(k)T_{v}$.

Example: 1) For R=9, a prime power, Hq (W) = H(q), a semisimple algebra.

2) Let R=1. By 3) of Corollary, $T_s T_w = T_{sw} \Rightarrow T_u T_w = T_{uw}$, $\forall u, w \in W$. $\Rightarrow \mathcal{H}_{r}(W) = CW$.

It turns out that 1) & 2) already imply $H_q(W) \simeq H_r(W) = CW$.

Theorem (Tits deformation principle): Let IF be an algebraically closed

field and A be an associative unital F[t]-algebra that is a free finite rank F[t]-module. Let $\alpha, \beta \in F$ be such that A_{α}, A_{β} are semisimple. Then $A_{\alpha} \simeq A_{\beta}$.

Corollary: Hg(W) = CW.

This accomplishes the last goal stated in the previous lecture and finishes our treatment of the representations theory of GL_n (Fg). Many move details are in [C].

Remarks: 1) We'll sketch the proof of the theorem in the complement section. Two key steps: to prove that $F[[t-a]] \otimes A \cong F[[t-a]] \otimes_F A_a$ [F[t] G [F[t] G [F[t] via the expansion in t-a) by "lifting of idempotents" and then use a bit of Algebraic geometry to finish the proof.

- 2) $\mathcal{H}_{R}(W)$ is semisimple \iff R is not a root of unity of order \leqslant N. When R is a pth root of unity $(p \leqslant n \text{ is prime})$ than the representation theory of $\mathcal{H}_{R}(W)$ resembles that of $\overline{F}_{R}W$ (but is much (!) easier).
- 3) One can ask to construct an isomorphism $\mathcal{H}_{e}(W) \xrightarrow{\sim} CW$ explicitly. It's possible to construct an isomorphism with the third algebra, a "cyclotomic KLR (Khovanov-Lauda-Reuquier) algebra" that arises in the study of representations of Lie algebras in categories. See Kleshchev, arXiv: 0.909.4844 for details.

2) Ceneralizations.

We've been looking at the Lie algebra Sl, the algebraic group SL, (or LL,) and the Weyl group W=Sn. But various constructions and results we've seen generalize to semisimple or more general "Kac-Moody". Lie algebras (or groups) and their Weyl groups -or more general Coxeter groups. We will briefly review these objects starting with the Kac-Moody Lie algebras. And our starting point here is the presentation of SL, by generators & relations.

2.1) Sh (C) by generators & relations.

Notation: $\sigma = Sh(C)$. For i=1,...,n-1 set $h_i = E_{ii} - E_{i+1,i+1}$ (form basis in b), $e_i = E_{i,i+1}$ (resp., $f_i = E_{i+1,i}$) that generate the Lie subalgebra of strictly upper (resp., lower) triangular matrices – the last exercise in Sec 1.2 of Lec 13.

Conclusion: e_i , h_i , f_i (i=1,...,n-1) generate $SL_n(F)$. Now we determine the relations.

For $i,j \in \{1,2,...,n-1\}$, set $a_{ij} = \langle d_i,h_j \rangle = \begin{cases} 2, i=j \\ -1, i-j=\pm 1 \end{cases}$ 0, else

Lemme: The following hold: C5

- (i) "weight relations": [h, e,] = a; e, [h, f,] = -a; f, + i,j.
- (ii) "slz-relation": Lei, f;]=hi, +i.
- (iii) e-f-relations: $[e_i, f_j] = 0$, $\forall i \neq j$.
- (iv) e.e & f-f velations: $ad(e_j)^{1-a_{ij}}e_i = ad(f_j)^{1-a_{ij}}f_i = 0$, $i \neq j$.

Proof: exercise - a direct computation. Alternatively:

- (i) from the definition of roots di
- (ii) easy computation
- (iii): [e; f:] has weight di-di & this wt space is zero.
- (iv) Follows from the following 3 observations (for f, e is similar)
- · e,h,f span 84.
- · By (iii), ad(e;) kills f; & the weight of fi is aij.
- · fi lies in a finite dimensional Span (ej, hj, fj)-stable subspace,
 then we can use the classification of finite dimensional st-veps to
 deduce the f-part of (iv)

Set $A:=(a_{ij})$ and let $\sigma(A)$ be the Lie algebra w. generators e_i,h_i,f_i and relations (i)-(iv). We get a Lie algebra epimorphism $\sigma(A) \rightarrow \sigma$.

Theorem: This is an isomorphism.

The proof is morally similar to that of the main theorem in Sec 1.3. of Lec 13, see Sec 4, Ch. 8 in [B]; Sec 3 in Ch. 4 of [OV], Sec 18 in [H1] (all refs are for Part 2). It's omitted.

2.2) Cartan matrices, Kac-Moody algebras & Dynxin diagrams.

Based on the theorem, we have a recipe of producing Lie algebras starting from matrices $A = (a_{ij})_{i,j \in I}$ (I is an index set) w. $a_{ij} \in I$; A should be subject to the following

(I)
$$a_{ii}$$
=2 \forall i (this tells us that e_i , h_i , f_i span $\mathcal{S}l_2$)

(II) $a_{ij} \leq 0$ for $i \neq j$ (otherwise (iv) doesn't really make sense)

(III) $a_{ij} = 0 \iff a_{ji} = 0$ (same reason).

Definition: A square matrix satisfying (I)-(III) is called a (generalized) Cartan matrix.

Given a Cartan matrix A, we can form a Lie algebra $\sigma(A)$ we generators e_i, h_i, f_i ($i \in I$) and relations (i)-(iv) of Sec 1.1. This is the Kac-Moody Lie algebra $\sigma(A)$ associated to A.

There is a way to represent a Cartan matrix as a diagram. The nodes are the elements of I. The nodes i & j are connected by $\max(-a_{ij},-a_{ji})$ edges. If $a_{ji}=-1 \times a_{ij}$, we put sign > in the direction $i \to j$. If $\forall i \neq j$, we have $a_{ij} = a_{ji}$ or $\max(a_{ij}, a_{ji}) = -1$ (the most interesting case), then the diagram, the Dynxin diagram of A, recovers A uniquely, otherwise, there's ambiguity.

$$\begin{pmatrix} 2 & -1 \\ -3 & z \end{pmatrix} \sim \circ \leqslant \circ \begin{pmatrix} G_2 \end{pmatrix} \qquad \begin{pmatrix} 2 & 0 \\ 0 & z \end{pmatrix} \sim \circ \circ (A_1 \times A_1)$$

3) Complement: proof of the Tits deformation principle. We start with "lifting of idempotents."

Proposition 1: Let F be a field, A an F[[t]]-algebra that is a free finite rank F[[t]]-module. Set $A_o = A/tA$. Suppose $e_o \in A_o$ is an idempotent, i.e. $e_o^2 = e_o$. Then $\exists e \in A$ s.t. $e + tA = e_o$ & $e_o^2 = e_o$.

Proof: We lift "order by order": suppose $e_{k-1} \in A/t^kA$ satisfies $e_{k-1}^2 = e_{k-1}$. We claim $\exists e_k \in A/t^{k+1}A$ mapping to e_{k-1} , & $e_k^2 = e_k$. Note that $A \xrightarrow{t^*} t^kA/t^{k+1}A$ by a so free over IF[[t]]. Fix some lift \overline{e}_{k-1} , of e_{k-1} in $A/t^{k+1}A$ so that $\overline{e}_{k-1} - \overline{e}_{k-1}^2 = t^ka$ for $a \in A_0$. We look for e_k in the form $\overline{e}_{k-1} + t^kb$. Then $(\overline{e}_{k-1} + t^kb)^2 = \overline{e}_{k-1}^2 + t^k(e_0b + be_0)$ should be equal to $\overline{e}_{k-1} + t^kb \iff a_0 + e_0b + be_0 = b$. Note that $\overline{e}_{k-1} - \overline{e}_{k-1}^2 = t^ka$ implies $t^ke_0a = t^kae_0 \iff e_0a = ae_0$. We take $b = (1-e_0)a(1-e_0) - e_0ae_0$. It satisfies $a + e_0b + be_0 = b$.

There is a unique element $e \in A$ s.t. $e + t^{k+i}A = e_k$. It satisfies the required conditions.

Proposition 2: Suppose that in the previous proposition, A_o is the direct sum of matrix algebras. Then we have an algebra isomorphism $A \to A_o \otimes F[[t]]$.

Proof: Let $A = \bigoplus_{i=1}^{n} \operatorname{End}_{F}(V^{i})$. Pick a primitive (i.e. $r \times 1$) idempotent $e^{i} \in \operatorname{End}(V^{i})$ and lift it to $e^{i} \in A$. We get A-modules Ae^{i}

and hence an algebra homomomorphism $A \to \widetilde{A} := \bigoplus_{i=1}^n \operatorname{End}_{F[it]}(Ae^i)$ Note that, for a fin. gen'd $\operatorname{E}[it]$ -module being free is equivalent to being torsion-free. Hence $\operatorname{Ae}^i(\subset A)$ is free over $\operatorname{F}[it]$. Moreover, $\operatorname{Ae}^i/t\operatorname{Ae}^i \simeq V^i$ So, it's enough to show that $A \to \widetilde{A}$ is an isomorphism. Modulo t, this homomorphism gives $A_0 \to \bigoplus_{i=1}^n \operatorname{End}_{F}(V^i)$, an isomorphism. In particular, $A \to \widetilde{A}$, by the Naxayama lemma. Next \widetilde{A} is a free $\operatorname{F}[it]$ -module. So, as the epimorphism of $\operatorname{F}[it]$ -modules, $A \to \widetilde{A}$ splits: $A \cong_{\operatorname{F}[it]} \widetilde{A} \oplus K$. Recalling that $\operatorname{A}/tA \cong \widetilde{A}/t\widetilde{A}$, we see that K/tK = 0 thus getting K = 0.

Proof of Theorem in Sec 1.2.

The rest of the proof is some algebro-geometric manipulation. Let V be a finite dimensional vector space over an algebraically closed field F. The set of all associative bilinear products $V \times V \to V$ is a closed subvariety in $Hom_F(V \otimes V, V)$. Denote it by X. The group GL(V) acts on X and the orbits are isomorphism classes of algebras.

We now produce a polynomial map $\mu: F \to X$. Choose a basis in the free F[t]-module A, say $v_1,...$ v_n . The map μ is the multiplication table of A in this basis, i.e. $\mu(\delta)$ is the multiplication table of $A:=A/(t-\delta)A$ for $\delta \in F$.

Let Y' denote the orbit corresponding to the isomorphism class of A. Let Y denote its closure in the Zaviski topology. A basic fact is that Y' is Zaviski open in Y.

We know $\mu(\alpha) \in Y^{\circ}$ and it's enough to show im $\mu \subset Y$. Then $\mu^{-1}(Y^{\circ})$ is Zariski open in \mathbb{F} and we use that \mathbb{F} is an irreducible variety to conclude that $\mu(\alpha)$, $\mu(\beta) \in Y_{\circ} \implies A_{\alpha} \cap A_{\beta}$, an isomorphism of associative algebras.

PICK f E F[Hom (V&V, V)] w. fly = 0. We need to check 14*(f) = 0. For this, we need to show that the image of u*(f) in IF[[t-a]] is zero (6/c F[t]-F[[t-2]]). This image is f evaluated at the multiplication table of IF[[t-2]] A in the basis 100; Since we have an algebra isomorphism F[[t-1]] A ~ F[[t-1] & A, we see that this multiplication table is obtained from that of As by applying an element of GL(F[[t-2]]). In other words, ∃ g(t) ∈ GG, (F[[t-2]]) s.t. the multiplication table of $\mathbb{F}[[t-\lambda]] \otimes_{\mathbb{F}[t]} A$ is $g(t) \mathcal{M}(\lambda)$. Our claim is that $f(g(t) \mathcal{M}(\lambda)) = 0$. Un the other hand we know that f(gg(Q))=0 tg∈CLn(F). We can view $g \mapsto f(g \mu(\alpha))$ as a polynomial in the matrix coefficients of g (and the inverse of the determinant). It vanishes, But f(g(t) M(d)) is the same polynomial (but now in the matrix coefficients & det for g(t). It has to vanish. It follows that $\mu^*(f) = 0$ and completes the proof.

Rem: Here is the intuition behind the proof. We want to show $p(F) \subset Y$.

We view F[[t-2]] as the algebra of polynomial functions on a "tiny neighborhood" of Z in F. The isomorphism $F[[t-2]] \otimes_{F[t]} A \xrightarrow{\sim} F[[t-2]] \otimes_{F[t]} A$ can be interpreted as saying that the image of the

tiny	neighborh	ood unde	ry in	K lies in	y. Th	is implies	that
o M/F	-)		J			is implies	
Jill	, , ,						