
 Hecke algebra categorypart III
7 Kac Moodyalgebras cont'd

2 Weyl Coxetergroups andtheirHeckealgebras
3 Complements

1 In lecture to we have introduced Cartanmatrices A Cai i jet
theirDynkin diagrams andtheKacMoodyLiealgebrag A Sec
2.2 there Ourquestionfor now whichinterestingLiealgebras arise
in this way in Sec2.1 Lee19 we'veseen that In does

Definition Say that A is connected if itsDynkindiagram is
connected the index set I cannotbepartitionedas I HI wago
for ie Ia jeIa

Exercise If A diag A A then g A g A ogAz

So one can restrict to the casewhenA is connectedwhichis
what we assume below We will also needthefollowingclasses

of Cartan matrices

Definition We
say A is symmetrizable if I dieTho ie I

s t for D diaged Ln DA is symmetric

y
Wesay A is offinitetype if DA ispositivedefinite



Wesay A is of affinetype if DA ispositivesemidefinite
dimKer A 1

Example 1 First wegive an example of a nonsymmetric Cartan
matrixoffinitetype ConsidertheEuclidianspace 12 w tautological
orthonormal basis En Set di hi E E for i t n t diEn

hiLen Note that hi Eta Set
A ki billing f

This is theCartanmatrixoftypeBn

For D diag Ea thematrix DA is the Grammatrix Chihillsymmetri

2 Now an affine typeexample Consider the elements dishisE E
as above andset heheEn e so that É die Then A tihill
typeAn is ofaffinetype w KerAs x x

Here'swhyfinite type Cartan matrices are important

Theorem A toolA defines a bijectionbetween

a Cartanmatrices offinitetype
2 Finite dimensional simple Liealgebras ever E

Theproofof this theorem is about 2month ofvariedMath
One gets from 2 to a in the same way as for5h t
simpleLiealgebrag one hasCartansubalgebra5cg bases



Lief simplereefs hjet andsets A dihp

One can combinatorially classify all Cartanmatrices offinite

type or the correspondingDynkindiagrams Here's the result The
subscript is always thenumber of vertices
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these restrictions are
to avoidtherepetitions O e Ga

Thealgebra corresponding toAn is34
Optionalexercise use the complement section ofLecture

42 to verify that thematrices dihpli.gs for 930amspansoon
correspond to theDynkindiagrams BuCnDnabove

ThealgebrasofA for A ofaffinetype are calledaffine Theyappear
in manyparts ofMath see Ka e.g in Numbertheory Math
Physics and in themodularrepresentation theory ofsymmetric
groups as may beexplained in a

bonus lecture A concrete realization

of theLie algebra corresponding to An known as 59 isexplained
in the complement section

I



2 Weyl Coxetergroups andtheirHeckealgebras
2 1 Weylgroups
Let A be a Cartanmatrix Define the Cartanspaceg w basishi.ie I
It maps toogA and infact themap is an embedding

For ie I define the simple reflection sieGLlb by
Sihj hj aijhi

From air 2 we deduce sihishi sit

Definition TheWeylgroupWEWIN is the subgroupof6451
generatedby the simple reflections

Example e For AoftypeAn we recovertheWeylgroupof34 i.eSn

1 Take A oftypeBn sila x kiNhi Then si i d n i acton B Q
bypermuting the coordinates whileSnsends x xn to lx tn i xu It
follows that WBn is the group of signedpermutations KWBn
Snk IT Note that onB D si are theorthogonal reflections
aboutcodim 1 hyperplanes Xi Xi for i n Xie for in

2 Take A oftypeA Notethat S Éhieb is si hence W
invariant ConsiderWalt It preserves theaffinehyperplane 8 t

It alsopreservesbigSpan Chithence SLila 8 1 152Thesymmetric
form on5 definedby hihj aij ispositivesemidefinite w Ker RST



So itdefines a positivedefiniteformbalksandhence on itsdual
8help So Slol becomes a Euclidianaffine space we can talk
about orthogonal reflections aboutaffine hyperplanes CG

Exercise si acts on 8lol as a reflection about hiso c o n I

W is identified w SnkSpan Kai whereSu is

generatedby S sn Kai eft isdefinedby hjtodig this is an
elementof 8help and its action of 8 al isbytranslation

Youmay want to
consider the example of 4 3 wherethe

hyperplanes hise are asfollows

In thegeneral case theangle between hee ahee is if
i jet mod n and I else

22 Coxetergroups
One can ask to finddefining relations between the Si's For

i je I define Maj as follows

tIMA
Exercise Wehave sis miss t ifmy o

5T



Theorem Thegroup WIA is generatedby si w relations sit
sisg
miss1 ifmi to

This is Proposition 3.13 in Ka

Fix a finite set I and Mije72,211 a mymj.li jeI Definethe

group Wwith relations as in Theorem These are so called
Coxetergroups ThefiniteCoxetergroups are exactlythefinitegroups
of isometries ofEuclideanspaces that aregeneratedbyreflections
about codim 1 hyperplanes Theyinclude

thefiniteWeylgroups that are characterizedby theproper
ty that theypreserve an integral lattice

Thedihedralgroups Ilm es se lsi si ssym 1 that are
Weylgroups exactly for M 2,38,6 typesAtA A B G

Two more exceptionalgroups HsHa

For a detailed treatment of CoxetergroupsWeylgroups rootsystems
that belongs to the discretegeometryandis apartof thestructure
theory of semisimple lie algebras see B

23 GenericHeckealgebras
Let Wbe a Coxetergroup and S be the set of simple

reflections fgenerators si For weW it makes sense tospeak

q
about its length ecw



Lemma CSw w IP A se S WEW
Proof Notethat we havethe homomorphismSghW tis w s e i ses

thisrespectstherelationsThenSgn w fnew Then weargueas in the

proofof 3 of Corollary in Sec 1.1 ofLec19 g

Weproceed to defining thegeneric Hecke algebra For se Spick
an indeterminate ts where wedeclare tsts if s as are conjugate

inW For example for types An IWSm andAn the latter for
n713 all simple reflections are conjugate so we have ts t ForBn
WSuk is thereflections so sn are conjugate but notconjugate
toSn So we have two indeterminate t tsi i t n il t tsn

Definition Theorem Set R It Ise s Let 71,1W bethe
free R module w basis TwoW F associativeproducton

HrW sit

TuTw Taw if Claw secultelw
o Ts Its1 Tst tst t se S

The uniquenesspart is easyand is left as an exercise A
proof the existencepart will beexplained in thecomplement

26 Specializations of Heckealgebras
1 Specializing to d for all s we recover TW

A



2 Suppose W is a finiteWeylgroupGWA for a Cartanmatrix
A of finite type andg is a primepowerThenthe specialization
to tog for all se s gives the convolution algebra
TL BG Gq Big for a split finitegroup of Lie type
Gg and its Borelsubgroup Blg Forexample equip Fgm w

orthogonalform xy É Xiyanni take Gq Slant Fg and
let BG be the subgroup of all upper triangularmatrices in
Gg The relevantHeckealgebra is for WBn Snk I13

2 Someunequalparameters Cts'sgo todifferentnumbers
specializations correspond to non split finitegroups of Lie
type Thesimplestexample of such agroup is thefiniteunitary
group Gun g definedasfellows Let denote thenontrivial
Fg linear

automorphism ofAge ithasorder 2 Consider thesesquilinear
Form Cit on Ig xy EyXignan By definition Gleng is the
subgroup of its isometries in GlnAgi The relevantWeylgroup
is of type B

3 Let Wbe of affinetypee.g WWA Thenthe specialization
of Hp W to tsgprimepower arises as the convolution algebrafor
a p adicgroup's eg for WCA thegroups ofinterest are SL Ap
qp or Sh Ight Theremaybe a bonus lecture aboutthis

A



3 1 Complement the affineLiealgebra In
Here I is an algebraically closedfield of characteristic O
Set 51 F SheFIt 30Fc withtheunique f linearbracket
satisfying xoxt yo te xy

At t kSue tragic
xox t c O H xye31 k lek

Exercise Set Is a h i and considerthe elements
eis Ei i 1 i t n l eeEn Et
fi Ein i 1 i t n t fo Enot
hi s Ei i Ein in I I n t he C EntEnn
Prove that theseelementssatisfy therelationsoftheKac

Moodyalgebra g In

It turns out that giantoath is actually an isomorphism
Theproof is similar to that of Thm inSec 1.1 but ismorecomplicatedsee Section F in Ka

There is an issue w thisdefinition Definethe Cartansubalgebra

B g A as SpanCho ha Then thesimple roots Beigenvalues
of thegenerators ei.ie I are easily seen to be linearly dependent
This complicates the structure representation theory Tofixthis one
considers a largeralgebra In IneFL where In isembedded
as a subalgebra dc O CdNot K x et If wedefine
the Cartan subalgebra asD SpanChoi ha d then thesimple
A



roots are linearly independent but still donotspan57
Anadvantage of this ramification is that we now can viewthe

simple roots ti as elementsof5 dihj aijkcai.de Sio

Let's explain which representations of5hfor5h are interesting
There are two conditions one can impose
Define the weight lattice Ac5 as

A TeAl XhisETL t isa h i XL ETC
Then we can talk about weight In modules theseM w decomposition

M Penny where5acts onMy w I anddimMy cot 7
By a highestweightmodule wemean a weightmodule M whose

weights are boundedfromabove F X I s t Mato
Xe j Ii Span do dn.it

There are nofinite dimensional weight5thmodules Insteadone
can consider integrable representations those M s t A me M F
NfNineReefm filmso t l N j o n t An integrableweight
module

may fail to be highest weight an example isprovidedby
theadjointrepresentation But the integrablehighest weightmodules

enjoymany similaritieswiththeirfinite
dimensional counterparts for

34 they are completely reducible the irreducible are classified

by dominant weights Yeh st Xhise74 t ie n t thecharactersare computedby theWeylKac characterformulaDetails

fan
befound in Sections 3 0 42 Ke



32 Complete sketch ofproofof TheoremfromSection2.3
Let M be a free Rmodule w basis bw weW ForseS definethe
operators TL T r on Mby

It sw if l sw ecw t Tspb furs
itecus Elwin

E 1 buttsbsw else Itsbuttsbws else
Themaintechnicalstep is to check that theoperators TsTtETents
H s te S This requires the case by caseargumentbasedon the
relation between Cw eSw wt Elswt which isperformedusingthe

followingclaim

Exchange lemma For weWany two reducedexpressions for w i.e
expressions of theform W Si sie w l ecw are obtainedfromone
anotherby a sequence of braidmoves tsggost.mg e.g forMst 3
weget sts tst

Once TsTtETtRTs is known we construct theproductasfellowsFor
weW w reducedexpression W Sii siedefineTwL M M as

Tsi c Tsie l It's independentofthe choice of a reducedexpression
ofW TsiL Tsiehbu Ija r Ty r bw t reducedexpression 4 Sj Sjk
Wethen define theproduct baby TwGu It's associative tuba Go

TwTurbo TurTwabusbwbubo where Tor is definedsimilarly
to TwL A

Remark Let's showby example why werequire thattheconjugate
A



reflectionsgive thesame indeterminate Consider W S andthe
element TsTsTsTs Wecompute it in two ways
TsTsTsTs TsTsTsTs tsinTsttspTsTs

TsTsTsTs TsTs IsilTatts
The resultingexpressions are equal tsetse


