Hecke algebra / category. Part VI 1) Projective objects, contrd.

1.0) Recep/goal: Last time we have introduced category $\mathcal{O} = \bigoplus \mathcal{O}^X$. The irreducible objects in $\mathcal{O}(\text{resp. }\mathcal{O}^X)$ are precisely the $L(\lambda)$'s w. $\lambda \in \Lambda$ (resp. $\lambda \in X$). In particular, if X is free (the most interesting case), it contains a unique dominant weight (exercise), say λ . Then $W \xrightarrow{\longrightarrow} Irr(O^X)$ via $W \mapsto L(W \cdot \lambda)$. See Sec 1.3 of Lec 12 for proofs. We have stated the following theorem in Sec 2 of Lec 22. Theorem: Let X be free (for simplicitly). Then OX hes enough projectives: every (irreducible) object is a quotient of a projective. We have seen that $\Delta(\lambda)$ is projective, Prop in in Sec 2 of Lec 12. Goal: · for i=1,...,n-1, define a reflection functor D: OX > O.* For W= Si, Sie (l= l(w)) show that $\Theta_{i_e} = \Theta_{i_1} \Delta(\lambda)$ is projective w. epimorphism onto s(w. 2), hence L(w. 2).

Accomplishing this will prove the theorem.

1.1) Biadjoint functors and projectives. Pick $X_1, X_2 \in \Lambda/W$. For additive functors $F: \mathcal{O}^{X_1} \rightarrow \mathcal{O}^{X_2} \subseteq \mathcal{O}^{X_2} \rightarrow \mathcal{O}^{X_1}$.

we say that F&G are biadjoint if we have natural (functorial in M, M2) isomorphisms of abelian groups. Homox, (M,GM) ~ Homox (FM, M), Homox (M, FM) ~ Homox, (GM, M) The reason why we care is as follows, Prob 2 in HWG in 380, F21. Fact: biadjoint F&G are exact and send projectives to projectives. Here is our main example. Proposition: Let V be a finite dimensional of-rep. Then $\mathcal{F} := (\mathcal{V} \otimes \cdot)^{\mathcal{X}_2} : \mathcal{O}^{\mathcal{X}_1} \longrightarrow \mathcal{O}^{\mathcal{X}_2} : \mathcal{G} := (\mathcal{V}^* \otimes \cdot)^{\mathcal{X}_1} : \mathcal{O}^{\mathcal{X}_2} \longrightarrow \mathcal{O}^{\mathcal{X}_1}$ are biadjoint. taking generalized eigenspace for Z-action Proof: Let $M_i \in O^{\lambda_i}$ Then $Hom_{OS_2}((V \otimes M_1)^{S_2}, M_2) \xrightarrow{\sim} [Prop. in Sec 1.2 of Lec 22],$ $Hom_{O}(V \otimes M_{1}M_{2}) \xrightarrow{\sim} [Prob 2.2 \text{ in } HW3]$ $Hom_{\mathcal{O}}\left(M, V^{*} \otimes M_{2}\right) \xrightarrow{\sim} Hom_{\mathcal{O}_{X}}\left(M, (V^{*} \otimes M_{2})^{\lambda_{1}}\right)$ The other adjunction is proved in the same way. Π 1.2) Translation functors.

These are an important special case of functors in the proposition. Pick $X_i \in \Lambda/W$ (i=1,2). $\exists ! \ \lambda_i \in X_i$ s.t. $\lambda_i + \rho \in \Lambda_+$. Further, let μ denote 2

the unique dominant element in $W(\lambda_2 - \lambda_1)$. Definition: $T_{\lambda_1 \to \lambda_2} = (L(\mu) \otimes \cdot)^{\chi_2} \otimes (\mathcal{O}^{\chi_1} \to \mathcal{O}^{\chi_2})$ is translation functor A justification for this choice of M: in many cases we can control what the functor does to Verma modules. We need two special cases. Proposition: Suppose X, is free. Then $(\alpha) \quad \mathcal{T}_{\lambda_1 \to \lambda_2} \left(\Delta(w \cdot \lambda_1) \right) = \Delta(w \cdot \lambda_2) , \forall w \in W.$ (b) $\mathcal{J}_{\lambda, \rightarrow \lambda_1}(\Delta(w, \lambda_2))$ has a filtration by $\Delta(wu, \lambda_1)$ where u runs over Stab_{W.} $(\lambda_1) = \{ u \in W \mid u \cdot \lambda_2 = \lambda_2 \};$ each $\Delta(wu \cdot \lambda_1)$ for such u occurs once.

Example (of 6)): i) $\lambda_1 = 0$, $\lambda_2 = -p$: this is Prob. 4.1 in HW3.

Proof of Proposition: We'll prove (6) - (a) is similar but easier, we leave it as an exercise. By Prob 2 in HW3, $\mathcal{J}_{\lambda,\to\lambda} \Delta(w,\lambda_2) = (L(\mu) \otimes \Delta(w,\lambda_2))^{\lambda_1}$ has a filtration by Vermas as follows: we take all weights My,..., My of L(M) (with multiplicities) s.t. $W \cdot \lambda_2 + \mu_i \in W \cdot \lambda_1$ & $M_i > M_i \implies i < j$ and then get a filtration $[0] = M_0 \subset M_1 \subset \subseteq M_k = (L(\mu) \otimes \Delta(w, \lambda_2))^{\chi_1} \quad w \quad M_i / M_{i-1} \simeq \Delta(w, \lambda_2 + \mu_i)$ To show that only $\Delta(wu:\lambda_1)$ appear we need to check that: $\underline{\mathcal{M}}_{i} = \mathcal{V}(\lambda_{i}+p) - w(\lambda_{2}+p) \text{ for some } \mathcal{V} \in \mathcal{H} \iff \mathcal{M}_{i} = wu(\lambda_{i}-\lambda_{2}) \text{ w. } u \in Stab_{W_{i}}(\lambda_{1}).$

Each $\Delta(wu:\lambda,)$ must then appear once 6/c dim $L(\mu)_{x\mu}=1$ $\forall x \in W$ To prove " \Leftrightarrow " we identify f" w. { $\sum x_i \in [\sum x_i = 0]$ and consider the bilinear form $(x,y) = \sum_{i=1}^{n} x_i y_i$ on $\int_{-\infty}^{*} It's$ W-invariant. Set $|x|^2 = (x,x)$. It's enough to check $|\mu_i|^2 \leq |\mu|^2$, we equality $\iff \mu_i \in W_{\mu_i}$. (1) $|\mathcal{O}(\lambda, +p) - w(\lambda_{2}+p)|^{2} = |\mu|^{2}, w. equality \iff \mathcal{O} \cdot \lambda_{2} = w \cdot \lambda_{2}.$ (2) Proof of (1): can assume M; is dominant by replacing it w. a W-conjugate. Since $M_i \leq M \Rightarrow (M_i, M-\mu_i) \geq 0 \Rightarrow |M|^2 \geq |M_i|^2 + |M_i-\mu|^2$. This shows (1) Proof of (2): This reduces to showing (1,+p, 2+p-w(1,+p)) >0 w. equality iff the 2nd argument is O. Note that 2+pz w(2+p) so $\lambda_{2} + \rho - w(\lambda_{2} + \rho) = \sum_{j=1}^{n} m_{j} z_{j} \quad w, \quad m_{j} \ge 0$ On the other hand the entries of 2,+p are strictly decreasing => (2,+p, d;) 70 # j=1,...n-1. This proves (2) Remarks 1) The proof shows $(L(\mu') \otimes \Delta(w \lambda_z))^{4} \neq 0 \Rightarrow |\mu'|^{2} |\mu|^{2}$. This is another justification for our choice of M 2) Consider special case: Stab_{W,} $(\lambda_z) = \{1, 5; \}$, i.e., $(\lambda + p)_j \ge (\lambda + p)_{j+1}$ w. equality iff i=j. (b) tells us we have a SES $\mathcal{Q} \to \Delta(w', \lambda_{1}) \longrightarrow \mathcal{T}_{\lambda, \to \lambda_{1}} \Delta(w, \lambda_{2}) \longrightarrow \Delta(w'', \lambda_{1}) \longrightarrow \mathcal{Q},$ where {w, w"} = {w, ws; }. By the properties of the filtration of $L(\mu) \otimes \Delta(w, \lambda_1)$ recalled in the proof, we have $w'' \cdot \lambda_1 < w' \cdot \lambda_2$. Since

 $w''=w's; we have w''. \lambda_{i}=w'.\lambda_{i}-((\lambda_{i}+\rho)_{i}-(\lambda_{j}+\rho)_{i+i})(\varepsilon_{w'(i)}-\varepsilon_{w'(i+i)}).$ So $W^{\prime\prime}\lambda, \leq W^{\prime\prime}\lambda, \iff W^{\prime}(i) < W^{\prime}(i+1) \iff \ell(w^{\prime}) < \ell(w^{\prime\prime}).$

1.3) Reflection functors Pick $\lambda \in \Lambda_{+} \Rightarrow Stab_{W}$. $(\lambda) = \{1, 3\}$. Further for i=1, ..., n-1, pick $\lambda_{i} \in \Lambda \mid \lambda_{i} + p \in \Lambda_{+}$ w. $Stab_{W, \circ}(\lambda_{i}) = \{1, s_{i}^{\circ}\}$. Define the reflection (a.K.a. wall-crossing) functor $\bigoplus_{i} := J_{\lambda_{i} \to \lambda} \circ J_{\lambda \to \lambda_{i}} : \mathcal{O}^{X} \to \mathcal{O}^{X} (X = W \cdot \lambda)$. The following proposition accomplishes the goal in Section 1.0 and so completes the proof of the theorem.

Proposition: Let $w = S_{i_1} \dots S_{i_d} w$. l = l(w). Then $\Theta_{i_d} \dots \Theta_{i_l} \Delta(\lambda)$ is a projective object that surjects onto $\Delta(w \cdot \lambda)$.

Proof: Induction on l. The base, l=0, follows $b/c \ S(\lambda)$ is projective. For the induction step, we observe that each $J_{?, \cdot, ?}$ admits a biadjoint by Proposition in Sec 1.1, hence sends projectives to projectives by Fact there. The claim that $\Theta_{i_{\ell}}$ sends projectives to projectives follows. Also, $\Theta_{i_{\ell}}$ is exact, as a composition of exact functors. Apply $\Theta_{i_{\ell}}$ to $\Theta_{i_{\ell-1}} \cdots \Theta_{i_{\ell}} \ S(\lambda) \longrightarrow S(ws_{i_{\ell}} \cdot \lambda)$ getting $\Theta_{i_{\ell}} \cdots \Theta_{i_{\ell}} \ S(\lambda) \longrightarrow \Theta_{i_{\ell}} \ S(ws_{i_{\ell}} \cdot \lambda)$

By a) of Proposition in Sec 1.2, have $J_{\lambda \to \lambda} \Delta(ws_i, \lambda) = \Delta(w, \lambda_i)$. So $(\mathcal{D}_{i_{e}} \Delta(WS_{i_{e}})) = \mathcal{J}_{\lambda_{i_{e}} \rightarrow \lambda} \Delta(W \cdot \lambda_{i_{e}})$. By Remark 2 in Sec 1.2, have SES $0 \to \Delta(ws_{i_{\ell}} \cdot \lambda) \to (\overline{\Theta}_{i_{\ell}} \Delta(ws_{i_{\ell}} \cdot \lambda)) \to \Delta(w \cdot \lambda) \to 0$ $\frac{So \Theta_{i_1}}{\sigma_{i_1}} = \Theta_{i_1} \Delta(\lambda) \longrightarrow \Delta(w \cdot \lambda) \text{ and we are done}$ П

Example: $\sigma = \mathscr{S}_{2}^{\prime}$: $\lambda_{1} = -1$. Take $\lambda = 0$. Then $\Theta_{1} \Delta(\lambda) = \mathbb{C}^{\prime} \otimes \Delta(-1)$, compare to Problem 4 in HW3.

1.4) Comments
1) To prove the theorem, an easier argument will do, see [H3], Sec. 3.8.
However the endofunctors D; are very important and will be used later as well.

2) Here's another application of translation functors: if $X_{i}, X_{i} \in \Lambda/W$ s.t. the unique elements $\lambda_i \in X_i$ w. $\lambda_i + p \in \Lambda_+$ satisfy Staby. $(\lambda_i) =$ = Stab_W, (λ_1), then $\mathcal{T}_{\lambda_1 \to \lambda_2} : \mathcal{O}^{X_1} \hookrightarrow \mathcal{O}^{X_2} : \mathcal{T}_{\lambda_2 \leftarrow \lambda_1}$ are mutually quasi inverse category equivalences, [H3], Sec 7.8. We care mostly about the case where the orbit is trivial. The equivalence above allows us to restrict to the case when 2=0 (principal block).

3) Let W.), be free. Then one can show ([H3], Secs 7.9) that $J_{\lambda_1 \to \lambda_1}(L(w,\lambda_1)) = L(w,\lambda_2) \text{ if } l(wu) \times l(w) + u \in Stab_{W_1}(\lambda_1) \text{ and } 0$ else. This allows to reduce the computation of multiplicities of irreps in Vermas to the case of principal block O."

1.5) Endomorphisms of a projective generator. Let SE N/W be free. By a projective generator in O^X we mean a projective object P s.t Hom $(P,L) \neq 0 \forall L \in Irr(O^{x})$. Since $Irr(O^{x})$ is finite, Theorem in Sec 1.0 shows that a projective generator exists.

Set $A: = End_{OX} (P)^{opp}$. This is a finite dimensional algebra: recall that all objects in O^X have finite length (Sec 1.1 of Lec 22) so dim $Hom_{OX}(M,N) < \infty \neq M, N \in O_X$ (exercise).

Here's one reason to care about A. Notice that $\forall M \in O_{s}^{x}$ the vector space $Hom_{OX}(P,M)$ carries a natural A-module structure -by composition - and so $Hom_{OX}(P, \cdot)$ can be viewed as a functor $O^{x} \rightarrow A$ -mod, the category of finite dimensional A-modules.

Proposition: The functor Homox (P,·): O' - A-mod is a category equivalence (w. quasi-inverse P&..)

The proof is based on three facts: the O^{X} has finitely many irreducibles, P is a projective generator, and all objects in O^{X} have finite length, see [E], Section 6.3.

Example: 01=82, 1=0. Then, by Example in Sec 1.3, we can take $P = \Delta(o) \oplus \mathbb{C}^2 \otimes \Delta(-i)$. We have SES $o \to \Delta(o) \to P \to \Delta(-z) \to o$. Note that $Hom_{OO}(\Delta(0), \Delta(-2)) = 0$, while $Hom_{OO}(\Delta(-2), \Delta(0)) \simeq \mathbb{C}$, a Nonzero element is an inclusion $\Delta(-z) \hookrightarrow \Delta(0)$. Let E, E, denote the identity elements in End (Slo)), End (C²&S(-1)) viewed as elements of End (P), they are idempotents. Also consider the elements $d: \Delta(0) \hookrightarrow \mathbb{C}^2 \otimes \Delta(-1)$ and $\beta: \mathbb{C}^2 \otimes \Delta(-1) \longrightarrow \Delta(-2) \hookrightarrow \Delta(0)$, again viewed as elements of End(P). Note that $Y = AB \neq 0$. 7

Exercise: The elements $\mathcal{E}_{o}, \mathcal{E}_{-z}, d, \beta, \delta$ form a basis in End(P) and the product is recovered from $\mathcal{E}_{z} + \mathcal{E}_{z} = 1, \quad \mathcal{E}_{z} d = \mathcal{A} \mathcal{E}_{z} = \beta \mathcal{E}_{z} = \mathcal{E}_{z} \beta = \beta \mathcal{A} = 0 \quad (\Rightarrow \mathcal{A}^{2}_{z} \beta^{2} = 0, \quad \mathcal{A} \mathcal{E}_{z} = \mathcal{A}, \quad \mathcal{E} \mathcal{E}_{z}.).$