Hecke algebra/category. Part VI

1) Projective objects, cont'd.
1.0) Recap/goal:

Last time we have introduced category $\theta=\bigoplus_{x \in \Lambda / W} \theta^{x}$ The irreducible objects in θ (resp. θ^{X}) are precisely the $L(\lambda \in 1)$'s $w . \lambda \in \Lambda($ resp. $\lambda \in X)$. In particular, if X is free (the most interesting case), it contains a unique dominant weight (exercise), say λ. Then $W \xrightarrow{\sim} \operatorname{Irr}\left(0^{x}\right)$ via $w \rightarrow L(w \cdot \lambda)$. See Sec 1.3 of Lee 12 for proofs.

We have stated the following theorem in $\operatorname{Sec} 2$ of Lee 22.
Theorem: Let X be free (for simplicity). Then O^{x} hes enough projectves: every (irreducible) object is a quotient of a projective.

We have seen that $\Delta(\lambda)$ is projective, Prop'n in $\operatorname{Sec} 2$ of Rec 22.
Goal: - for $i=1, \ldots, n-1$, define a reflection functor $\Theta_{i}: \theta^{x} \rightarrow \theta_{1}^{x}$ For $w=s_{i_{1}} \ldots s_{i e}(l=l(w))$ show that $\Theta_{i e} \ldots \Theta_{i,} \Delta(\lambda)$ is projective w. epimorphism onto $\Delta(w \cdot \lambda)$, hence $L(w \cdot \lambda)$.

Accomplishing this will prove the theorem.
1.1) Biadjoint functors and projectives.

Pick $x_{1}, x_{2} \in 1 / W$. For additive functors $\mathcal{F}: \theta^{x_{1}} \rightarrow \theta^{x_{2}} G: \theta^{x_{2}} \rightarrow \theta^{x_{1}}$, 11
we say that $\mathcal{F} \& G$ ave biadjoint if we have natural (functorial in M_{1}, M_{2}) isomorphisms of abelian groups.

$$
\operatorname{Hom}_{Q x_{1}}\left(M_{1}, G M_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{Q x_{2}}\left(\mathcal{F} M_{1}, M_{2}\right), \operatorname{Hom}_{Q x_{2}}\left(M_{2}, \mathcal{F} M_{1}\right) \xrightarrow{\sim} \operatorname{Hom}_{Q x_{1}}\left(G M_{2}, M_{1}\right)
$$

The reason why we care is as follows, Prob 2 in HW6 in 380, F21.
Fact: biadjoint $\mathcal{F} \& G$ are exact and send projective to projectives.
Here is our main example.

Proposition: Let V be a finite dimensional g-rep. Then

$$
\mathcal{F}:=(V \otimes \cdot)^{x_{2}}: \theta^{x_{1}} \rightarrow \theta^{x_{2}}, G_{1}:=\left(V^{*} \otimes_{0}\right)_{\Gamma}^{x_{1}}: \theta^{x_{2}} \rightarrow \theta^{x_{1}}
$$

are biadjoint.
taking generalized eigenspace for Z-action
Proof: Let $M_{i} \in O^{X_{i}}$. Then

$$
\begin{aligned}
& \operatorname{Hom}_{\sigma x_{2}}\left(\left(V \otimes M_{1}\right)^{x_{2}}, M_{2}\right) \xrightarrow{\sim} \text { [Prop in Sec 1.2 of Lee 22] } \\
& \operatorname{Hom}_{\theta}\left(V \otimes M_{11} M_{2}\right) \xrightarrow{\longrightarrow}[\operatorname{Prob} 2.2 \text { in HW3] } \\
& \operatorname{Hom}_{\theta}\left(M_{1}, V^{*} \otimes M_{2}\right) \xrightarrow{\sim} \operatorname{Hom}_{\theta x}\left(M_{11}\left(V^{*} \otimes M_{2}\right)^{x_{1}}\right) .
\end{aligned}
$$

The other adjunction is proved in the same way.
1.2) Translation functors.

These are an important special case of functors in the proposition. Pick $X_{i} \in \Lambda / W(i=1,2) . \exists!\lambda_{i} \in X_{i}$ s.t. $\lambda_{i}+\rho \in \Lambda_{\text {. }}$. Further, let μ denote 21
the unique dominant element in $W\left(\lambda_{2}-\lambda_{1}\right)$.
Definition: $\mathcal{J}_{\lambda_{1} \rightarrow \lambda_{2}}:=(L(\mu) \otimes \cdot)^{x_{2}}: \theta^{x_{1}} \rightarrow \theta^{x_{2}}$ is translation functor
A justification for this choice of μ : in many cases we can control what the functor does to Verma modules. We need two special cases.

Proposition: Suppose x_{1} is free. Then
(a) $\mathcal{J}_{\lambda_{1} \rightarrow \lambda_{2}}\left(\Delta\left(w \cdot \lambda_{1}\right)\right)=\Delta\left(w \cdot \lambda_{2}\right), \forall w \in W$.
(b) $\mathcal{J}_{\lambda_{2} \rightarrow \lambda_{1}}\left(\Delta\left(w \cdot \lambda_{2}\right)\right)$ has a filtration by $\Delta\left(w u \cdot \lambda_{1}\right)$ where a runs over $\operatorname{Stab}_{w_{1} \cdot}\left(\lambda_{2}\right)=\left\{u \in W \mid u \cdot \lambda_{2}=\lambda_{2}\right\}$; each $\Delta\left(w u \cdot \lambda_{1}\right)$ for such a occurs once.

Example (of 6)): i) $\lambda_{1}=0, \lambda_{2}=-\rho$: this is Prob. 4.1 in $H W 3$.
Proof of Proposition: Well l prove (b) - (a) is similar but easier, we leave it as an exerase. By Prob 2 in $H W 3, \mathcal{J}_{\lambda_{2} \rightarrow \lambda_{1}} \Delta\left(w \cdot \lambda_{2}\right)=\left(L(\mu) \otimes \Delta\left(w \cdot \lambda_{2}\right)\right)^{x_{1}}$ has a filtration by Vermas as follows: we take all weights μ_{1}, \ldots, μ_{k} of $L(\mu)$ (with multiplicities) s.t.

$$
w \cdot \lambda_{2}+\mu_{i} \in W \cdot \lambda_{1}
$$

\& $\mu_{i}>\mu_{j} \Rightarrow i<j$ and then get a filtration

$$
\{0\}=M_{0} \subset M_{1} \subset \ldots \subset M_{k}=\left(L(\mu) \otimes \Delta\left(w \cdot \lambda_{2}\right)\right)^{X_{1}} \quad w_{i} \quad M_{i}\left(M_{i-1} \simeq \Delta\left(w \cdot \lambda_{2}+M_{i}\right)\right.
$$

To show that only $\Delta\left(w u \cdot \lambda_{1}\right)$ appear we need to check that:

$$
\frac{\mu_{i}}{3 \mid}=v\left(\lambda_{1}+p\right)-w\left(\lambda_{2}+p\right) \text { for some } v \in W \Leftrightarrow \mu_{i}=w u\left(\lambda_{1}-\lambda_{2}\right) w . u \in \operatorname{Stab}_{w_{1}} \cdot\left(\lambda_{2}\right) \text {. }
$$

Each $\Delta\left(w u \cdot \lambda_{1}\right)$ must then appear once $b / c \operatorname{dim} L(\mu)_{x \mu}=1 \forall x \in W$. To prove " \leftrightarrow " we identify $5^{*} w .\left\{\sum_{i=1}^{n} x_{i} \varepsilon_{i} \mid \sum_{i=1}^{n} x_{i}=0\right\}$ and consider the bilinear form $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$ on ξ^{*}. It's W-invariant. Set $|x|^{2}=(x, x)$. It's enough to check

$$
\begin{align*}
& \left|\mu_{i}\right|^{2} \leqslant|\mu|^{2}, w \cdot \text { equality } \Leftrightarrow \mu_{i} \in W_{\mu} . \tag{1}\\
& \left|v\left(\lambda_{1}+p\right)-w\left(\lambda_{2}+p\right)\right|^{2} \geqslant|\mu|^{2} \text {, w. equality } \Leftrightarrow v \cdot \lambda_{2}=w \cdot \lambda_{2} . \tag{2}
\end{align*}
$$

Proof of (1): can assume μ_{i} is dominant by replacing it w. a W-conjugate.
Since $\mu_{i} \leq \mu \Rightarrow\left(\mu_{i}, \mu_{-}-\mu_{i}\right) \geqslant 0 \Rightarrow|\mu|^{2} \geqslant\left|\mu_{i}\right|^{2}+\left|\mu_{i}-\mu\right|^{2}$. This shows (1).
Proof of (2): This reduces to showing $\left(\lambda_{1}+p, \lambda_{2}+p-w\left(\lambda_{2}+p\right)\right) \geqslant 0$ w. equality if the Ind argument 150 . Note that $\lambda_{2}+\rho \geqslant w\left(\lambda_{2}+\rho\right)$ so

$$
\lambda_{2}+\rho-w\left(\lambda_{2}+\rho\right)=\sum_{j=1}^{n-1} m_{j} \alpha_{j} w, m_{j} \geqslant 0
$$

On the other hand the entries of $\lambda_{1}+\rho$ are strictly decreasing \Rightarrow $\left(\lambda_{1}+p, \alpha_{j}\right)>0 \quad \forall j=1, \ldots n-1$. This proves (2)

Remarks: 1) The proof shows $\left(L\left(\mu^{\prime}\right) \otimes \Delta\left(w \cdot \lambda_{2}\right)\right)^{x_{1}} \neq 0 \Rightarrow\left|\mu^{\prime}\right|^{2} \geqslant|\mu|^{2}$. This is another justification for our choice of μ.
2) Consider special case: Stab $_{w_{1},}\left(\lambda_{2}\right)=\left\{1, S_{i}\right\}$, i.e., $(\lambda+\rho)_{j} \geqslant(\lambda+\rho)_{j+1}$ w. equality iff $i=j$. (6) tells as we have a SES

$$
0 \rightarrow \Delta\left(w^{\prime} \cdot \lambda_{1}\right) \longrightarrow J_{\lambda_{2} \rightarrow \lambda_{1}} \Delta\left(w \cdot \lambda_{2}\right) \longrightarrow \Delta\left(w^{\prime \prime} \cdot \lambda_{1}\right) \rightarrow 0,
$$

where $\left\{w_{1}^{\prime}, w^{\prime \prime}\right\}=\left\{w, w s_{i}\right\}$. By the properties of the filtration of $4(\mu) \otimes \Delta\left(w \cdot \lambda_{2}\right)$ recalled in the proof, we have $w^{\prime \prime} \cdot \lambda_{1}<w^{\prime} \cdot \lambda_{1}$. Since
$w^{\prime \prime}=w^{\prime} ;$; we have $w^{\prime \prime} \cdot \lambda_{1}=w^{\prime} \cdot \lambda_{1}-\left(\left(\lambda_{1}+\rho\right)_{i}-\left(\lambda_{1}+\rho\right)_{i+1}\right)\left(\varepsilon_{w^{\prime}(i)}-\varepsilon_{w^{\prime}(i+1)}\right)$. So $w^{\prime \prime} \lambda_{1}<w^{\prime} \cdot \lambda_{1} \Leftrightarrow w^{\prime}(i)<w^{\prime}(i+1) \Leftrightarrow \ell\left(w^{\prime}\right)<l\left(w^{\prime \prime}\right)$.
1.3) Reflection functors

Pick $\lambda \in \Lambda_{+} \Rightarrow \operatorname{Stab}_{\omega,}(\lambda)=\{1\}$. Further for $i=1, \ldots, n-1, p i c k \quad \lambda_{i} \in \Lambda \mid \lambda_{i}+\rho \in \Lambda_{+}$ w. Stab $w_{w} .\left(\lambda_{i}\right)=\left\{1, s_{i}\right\}$. Define the reflection (a.k.a. wall-crossing) functor $\Theta_{i}:=\mathcal{J}_{\lambda_{i} \rightarrow \lambda} \circ \mathcal{J}_{\lambda \rightarrow \lambda_{i}}: \theta^{x} \rightarrow \theta^{x}(X=W \cdot \lambda)$.
The following proposition accomplishes the goal in Section 1.0 and so completes the proof of the theorem.

Proposition: Let $w=s_{i}, \ldots s_{i e} w . l=l(w)$. Then $\Theta_{i} \ldots \Theta_{i}, \Delta(\lambda)$ is a projective object that surjects onto $\Delta(w \cdot l)$.

Proof: Induction on l. The base, $l=0$, follows $b / c \Delta(l)$ is projective. For the induction step, we observe that each $\mathcal{T}_{? \rightarrow ?}$ admits a biadjoint by Proposition in Sec 11, hence sends projectives to projectives by Fact there. The claim that $\Theta_{i e}$ sends projectives to projectives fallows. Also, $\Theta_{i_{e}}$ is exact, as a composition of exact functors. Apply $\Theta_{i_{e}}$ to $\Theta_{i(-1} \Theta_{i,} \Delta(\lambda) \rightarrow \Delta\left(w s_{i_{e}} \lambda\right)$ getting $\Theta_{S_{i, \cdots}, \ldots s_{i-1}} \Theta_{i,} \Delta(\lambda) \rightarrow \Theta_{i_{e}} \Delta\left(w s_{i \cdot} \lambda\right)$
By a) of Proposition in $\operatorname{Sec} 1.2$, have $\mathcal{J}_{\lambda \rightarrow \lambda_{i}} \Delta\left(w s_{i_{e}} \cdot \lambda\right)=\Delta\left(w \cdot \lambda_{i_{e}}\right)$. So $\Theta_{i_{i}} \Delta\left(w S_{i_{i}} \cdot \lambda\right)=\mathcal{J}_{\lambda_{i_{e}} \rightarrow \lambda} \Delta\left(w \cdot \lambda_{i_{e}}\right)$. By Remark 2 in $\operatorname{Sec} 1.2$, have SES $0 \rightarrow \Delta\left(w s_{i e}-\lambda\right) \rightarrow \Theta_{i e} \Delta\left(w s_{i e} \cdot \lambda\right) \rightarrow \Delta(w \cdot \lambda) \rightarrow 0$
So $\Theta_{i,} \Theta_{i}, \Delta(\lambda) \rightarrow \Delta(w-\lambda)$ and we are done

Example: $g=\Omega \hbar: \lambda_{1}=-1$. Take $\lambda=0$. Then $\Theta_{1} \Delta(\lambda)=\mathbb{C}^{2} \otimes \Delta(-1)$, compare to Problem 4 in HW3.
1.4) Comments

1) To prove the theorem, an easier argument will do, see $[\mathrm{H} 3]$, Sec. 3.8 . However the endofunctors Θ_{i} ave very important and will be used later as well.
2) Here's another application of translation functors: if $X_{1,1} X_{2} \in 1 / \mathrm{W}$ s.t. the unique elements $\lambda_{i} \in X_{i} w . \lambda_{i}+\rho \in \Lambda_{+}$satisfy $S_{\text {Sab }},\left(\lambda_{1}\right)=$ $=$ Stab $_{W_{1}}\left(\lambda_{2}\right)$, then $\mathcal{J}_{\lambda_{1} \rightarrow \lambda_{2}}: \theta^{x_{1}} \leftrightarrows \theta^{x_{2}}: \mathcal{T}_{\lambda_{2} \leftarrow \lambda_{1}}$ are mutually quasiinverse category equivalences, [H3], Sec 7.8. We cave mostly about the case where the orbit is trivial. The equivalence above allows us to restrict to the case when $\lambda=0$ (principal block).
3) Let $W \cdot \lambda_{1}$ be free. Then one can show $([H 3]$, Secs 7.9$)$ that $\mathcal{T}_{\lambda_{1} \rightarrow \lambda_{2}}\left(L\left(w \cdot \lambda_{1}\right)\right)=L\left(w \cdot \lambda_{2}\right)$ if $l(w u) \geqslant l(w) \forall u \in \operatorname{Stab}_{w} .\left(\lambda_{2}\right)$ and 0 else. This allows to reduce the computation of multiplicities of irreps in Vermas to the case of principal block O°.
1.5) Endomorphisms of a projective generator.

Let $X \in \Lambda / W$ be free. By a projective generator in Q^{x} we mean a projective object P s.t $\operatorname{Hom}_{O^{x}}(P, L) \neq 0 \forall L \in \operatorname{Irr}\left(\theta^{x}\right)$. Since $\operatorname{Irr}\left(\theta^{x}\right)$ is finite, Theorem in Sec 1.0 shows that a projective generator exists. 6

Set $A:=E n \alpha_{Q^{x}}(P)^{\text {opp }}$. This is a finite dimensional algebra: recall that all objects in O^{X} have finite length (Sec 12 of Lee 22) so $\operatorname{dim}_{\operatorname{Hom}_{\theta^{x}}}(M, N)<\infty \forall M, N \in \theta_{x}$ (exercise).

Here's one reason to care about A. Notice that $\forall M \in Q$, the vector space Homox (P, M) carries a natural A-module structure - by composition - and so $H_{o m}{ }_{o x}(P, \cdot)$ can be viewed as a functor $0^{x} \rightarrow A$-med, the category of finite dimensional A-modules.

Proposition: The functor $\operatorname{Hom}_{\partial x}(P, \cdot): Q^{x} \rightarrow A-m_{o \alpha}$ is a category equivalence (w. quasi-inverse $P \otimes_{A} \cdot$)

The proof is based on three facts: the Q^{x} has finitely many irredu. cibles, P is a projective generator, and all objects in Q^{x} have finite length, see [E], Section 6.3.

Example: $g=s \xi, \lambda=0$. Then, by Example in Sec 1.3, we can take $P=\Delta(0) \oplus \mathbb{C}^{2} \otimes \Delta(-1)$. We have SES $0 \rightarrow \Delta(0) \rightarrow P \rightarrow \Delta(-2) \rightarrow 0$. Note that $\operatorname{Hom}_{\rho^{\circ}}(\Delta(0), \Delta(-2))=0$, while $\operatorname{Hom}_{0^{\circ}}(\Delta(-2), \Delta(0)) \simeq \mathbb{C}$, a nonzero element is an inclusion $\Delta(-2) \hookrightarrow \Delta(0)$.
Let $\varepsilon_{0}, \varepsilon_{-2}$ denote the identity elements in En $\alpha(\Delta(0)), E n \alpha\left(\mathbb{C}^{2} \otimes \Delta(-1)\right)$ viewed as elements of $E n \alpha(P)$, they are idempotents. Also consider the elements $\alpha: \Delta(0) \hookrightarrow \mathbb{C}^{2} \otimes \Delta(-1)$ and $\beta: \mathbb{C}^{2} \otimes \Delta(-1) \rightarrow \Delta(-2) \hookrightarrow \Delta(0)$, again viewed as elements of $\operatorname{En} \alpha(P)$. Note that $\gamma=\alpha \beta \neq 0$.

Exercise: The elements $\varepsilon_{0}, \varepsilon_{-2}, \alpha, \beta, \gamma$ form a basis in End (p) and the product is recovered from

$$
\varepsilon_{0}+\varepsilon_{-2}=1, \varepsilon_{0} \alpha=\alpha \varepsilon_{-2}=\beta \varepsilon_{0}=\varepsilon_{-2} \beta=\beta \alpha=0\left(\Rightarrow \alpha^{2}=\beta^{2}=0, \alpha \varepsilon_{0}=\alpha, \text { etc. }\right) .
$$

