Hecke algebra/category, Part VIII

- 1) Soergel (bi)modules.
- 2) Complements.

1.0) Kecap: We consider the category O^{X} for $X=W\cdot \lambda$ w. $\lambda\in \Lambda_{+}$, free orbit. Inside, we consider the category O-proj of projective objects. Every object uniquely decomposes as Θ of indecomposable projectives $P(w \cdot \lambda)$, $w \in W$. For example, $P(\lambda) = \Delta(\lambda)$, $P(w, \lambda) = \mathcal{T}_{-\rho \to \lambda} \Delta(-\rho) = (L(\lambda + \rho) \otimes \Delta(-\rho))^{\lambda}$ Sec 1.1 of Lec 24.

For i=1,...,n-1, we have endofunctor $\Theta_i: O^{\lambda}$ -proj $\rightarrow O^{\lambda}$ -proj. For $w=(s_i,...,s_{ie})$, a reduced expression of $w \in W$, set $\Theta_{\underline{w}} = \Theta_{\underline{i}_{\underline{e}}} \dots \Theta_{\underline{i}_{\underline{e}}}$. Then (Sec 1.3 of Lec 24) We have $\bigoplus_{\underline{w}} \Delta(\lambda) = P(w \cdot \lambda) \oplus \bigoplus_{u < w} P(u \cdot \lambda)^{\oplus ?}$

In Section 2 of Lec 24 we introduced the algebra $C[f^*]^{\omega W} = C[f^*]/C[f^*] m$, $m_{i} = \{ f \in C[f^*]^W | f(o) = 0 \}$. We have then considered the Soergel Lunctor V:

 $V = Hom_{OX} (T_{-p \to \lambda} \Delta(-p), \cdot) : O^{X} \longrightarrow C[f^{*}]^{co} \longrightarrow Mod$ We've stated that IV is fully faithful on O'-proj and our task is to describe the image of V. This is how the Sourgel (6i) modules have first appeared. Since then they became a crucial tool in the geometric/categorical representation theory - and also useful for knot theory.

Exercise 1: Use the full faithfulness of V to show that PEO-proj is indecomposable $\iff \mathbb{V}(P) \in \mathbb{C}[Y^*]^{CoW}$ -mod is (hint: being indecomposable is

 $V(P(-2)) = regular C[x]/(x^2) - module$

 $V(P(0)) = Hom_{O^0}(P(-1), \Delta(0)) = [vector space of dim = mult. of L(-1) = \Delta(-1) in \Delta(0)]$ = C, that has the unique C[x]((x²)-module structure.

Exercise 2: Check V is fully faithful on O-proj (hint: Sec 1.5 in Lec 23).

1.1) In V. Every indecomposable projective in \mathcal{O}^X occurs as a direct summand in $\mathcal{O}_{\underline{w}} \Delta(\lambda)$. So, then to exercise 1, we need to compute $V(\mathcal{O}_{\underline{w}} \Delta(\lambda))$ and then decompose it into indecomposables.

We start by computing $V(\Delta(\lambda))$. Note $C[f^*]^{cow}$ is a local algebra, so it has the unique 1-dimensional module, to be denoted by C.

Proposition: We have V(a(1)) = C.

Proof: We claim that the functors $\mathcal{I}_{\lambda_1 \to \lambda_2}$, $\mathcal{I}_{\lambda_2 \to \lambda_1}$ (Sec 1.2 of Lec 23) are biadjoint. Indeed, let \mathcal{M} be the unique dominant weight in $W(\lambda_2 - \lambda_1)$ so that $\mathcal{I}_{\lambda_1 \to \lambda_2} = (L(\mu) \otimes \bullet)^{X_2}$ Notice that $-\mathcal{M}$ is the lowest weight of $L(\mu)^*$ - passing to the duel multiplies weights by -1. So the invep in the definition of $\mathcal{I}_{\lambda_2 \to \lambda_1}$ is $L(\mu)^*$ and so $\mathcal{I}_{\lambda_2 \to \lambda_1} = (L(\mu)^* \otimes \bullet)^{X_1}$ By Prop'n in Sec 1.1 of Lec 25, $\mathcal{I}_{\lambda_1 \to \lambda_2}$ and $\mathcal{I}_{\lambda_2 \to \lambda_1}$ are biadjoint.

Now $V(\Delta(\lambda)) = Hom_{OX}(\mathcal{T}_{-\rho \to \lambda} \Delta(-\rho), \Delta(\lambda)) = Hom_{O-\rho}(\Delta(-\rho), \mathcal{T}_{\lambda \to -\rho} \Delta(\lambda))$ = [a] of Prop 1.2 in Sec 1.2 of Lec 25] = $Hom_{O-\rho}(\Delta(-\rho), \Delta(-\rho)) = C$

Now we need to understand the interaction between \mathbb{N} and \mathbb{G}_i .

Note that a $\mathbb{C}[S^*]^{coN}$ -module is the same thing as a $\mathbb{C}[S^*]$ module, where M_o acts by 0. For i=1,... N-1, we write $\mathbb{C}[S^*]^{S_i}$ for the subalgebra of S_i -invariant elements. In particular, $M_o \subset \mathbb{C}[S^*]^{S_i}$

Exercise: Let MEC[5*]-mod. If MoM= {03, then mo(C[5*] & c[5*] s; M)=0.

So $C[5^*] \otimes_{C[5^*]^{S_i}}$: can be viewed as an endo-functor of $C[5^*]^{coW}$ mod. And here's the third theorem of Soergel.

Theorem: We have a functor isomorphism Vali ~ C[5*] & C[5*] . V.

Remark: For i=1,...,n-1, define the elementary Bott-Samelson $C[5^*]$ bimodule BS_i as $C[5^*] \otimes_{C[5^*]^{S_i}} C[5^*]$. So $C[5^*] \otimes_{C[5^*]^{S_i}} M = BS_i \otimes_{C[5^*]} M$.

12) Graded (bi) modules.

Let R be a commutative C-algebra equipped with a \mathcal{H}_{20} -algebra grading: $R = \bigoplus_{i \neq 0} R_i$. A basic example, $L = C[L^*]$, where $R_i = 0$ for odd i and for even i, R_i is the space of homogeneous polynomials of deg i/2. By a graded R-module we mean an R-module M together w.

Vector space decomposition $M = \bigoplus_{j \in \mathcal{I}} M_j$. s.t. $R_i M_j \subset M_{i+j} + i,j$. A $j \in \mathcal{I}$

homomorphism of graded R-modules M, N is an R-linear map $\varphi: M \to N$ w. $\varphi(M_i) \subset N_i \ \forall i$. Similarly we can talk about graded K-bimodules and their homomorphisms.

Example: BS; is a graded bimodule for R=C[5*] w. deg a @ 6 = i+j-1 for $a \in R_i$, $b \in R_j$ (the shift is a convenient convention).

Constructions: • If B, B, are graded (bi) modules, then B, BB, has a natural grading.

· Tensor product of two graded bimodules, BORB, is a graded bimodule w. b, (x@y)bz: = b, x@ybz & deg 6@b' = deg b+deg b'. Similarly, for a graded R-module M, BORM is graded R-module: 6(xom)=6xom. E.g. for R=C[5*]. we have the graded module \underline{B} : = B/BJ (= $B\otimes_R \overline{C}$). $f \in R$ acts via $f \mapsto f(0)$.

· Grading shift. For a graded R-(bi)module M and je 1/2 we can défine the graded (6i) module M<j7 with same R-(6i) module structure but shifted grading: M<j) = Mi+j. For example, BS = Rops, R<1>. w. its default grading.

Let R-gr(bi) mod denote the category of finitely generated graded R-(bi)modules

Exercise: (i) Show that for BER-groimod, we have dim Bi< on Hi. (ii) Hom's in R-gr(6i) mod are finite dimensional (over C). (iii) Deduce that every object in R-gr(bi) mod decomposes into the direct sum of indecomposables and any two decompositions have the same summands (up to isomorphism) - compare to Proposition from Sec 1.1 of Lecture 24.

(iv) If for $B \in R$ -gr(bi)mod we have $B \cong B(j)$, then j=0.

1.3) Soergel (bi) modules: definition.

Set R:= C[1*]. By a Soergel bimodule we mean a graded R-bimodule obtained from the BSi's (i=1,..., n-1) by using the following operations:

- · taking D
- · taking Op
- · applying grading shifts (j? (j∈ Z)
- · taxing direct summands in the category of graded R-bimodules,

Note that any Soergel bimodule is \oplus of indecomposable Soergel bimodules in a unique way, see the previous exercise.

The category of Soergel bimodules is denoted by SBim.

By a Soergel module we mean a direct summand in B(=B/Bb) for B∈ SBim. Their category is denoted by SMod.

Remarks 1) In fact, one doesn't need to include direct summands in the definition of SMod: $B \in SB$ in is indecomposable $\iff B \in SM$ od is. \Leftarrow is very basic (exercise), \Rightarrow is a result of Soergel. Moreover, $\underline{B}_i \cong \underline{B}_i$ \Rightarrow $B_r \cong B_r$. We'll discuss these in the complement section.

- 2) For a word w=(si,..., six) -not necessarily reduced define the Bott-Samelson bimodule $BS_{\underline{w}} := BS_{i_{\underline{k}}} \otimes_{\underline{R}} BS_{i} \otimes_{\underline{R}} BS_{i_{\underline{k}}}$. Then every $B \in SB_{i_{\underline{k}}}$ is Θ of indecomposable direct summands of $BS_{\underline{w}}$ w grading shifts.
- 3) Let $B \in SBim$. We claim that $\forall f \in R^W$, the left action of f on B coincides with its right action. By 2) one needs to check this on BSw. There one reduces to the individual BSi's, where it holds 6/c f ∈ R CR. In R-bimodule is the same thing as an K⊗R-module and the ROR-action on B factors through $R\otimes R/(f\otimes 1 - 1\otimes f|f\in R^W) = R\otimes_{R^W} R.$

Exercise: Observe that ROpw R is a finitely generated right K-module and deduce that every BESBim is a finitely generated right R-module, and so every ME SMod is finite dimensional.

1.4) Connection to O-proj.

The following claim is fairly basic and will be checked in the complement section.

Fact: Let M be a finite dimensional graded R-module. If it's indecomposable as a graded module, then it's indecomposable as an ordinary module (the opposite implication is manifest).

Let SModung denote the category, where the objects are Soevgel modules and morphisms are all R-linear homomorphisms (not necessarily

graded). Soergel's theorems mean that V: O-proj -> SModungr

Kemark: One can formally recover Homes in SModunger from those in SMod and the grading shift functor as follows. Let M, NEK-grmod Then the vector space Home (M,N) is graded (as a vector space): $Hom_{\mathcal{E}}(M,N)_{j} = \{ \varphi \in Hom_{\mathcal{E}}(M,N) | \varphi(M_{i}) \subset N_{i+j} \} = Hom_{\mathcal{E}-grmod}(M,N\langle j \rangle).$ So Home (M,N) = D Home-growd (M, N<j7).

The category SBim also has a representation theoretic interpretation (where we need to use certain "Harish Chandra bimodules" instead of objects in OX). This may be explained in a bonus lecture. What is important for us is that SBim is the "Hecke category" - it "categorifies" the Hecke algebra $H_v(S_n)$. This (as well as examples of indecomposables in SBim) will be explained in the next lecture

2) Complements 2.1) Proof of $P(w_0: \lambda) \cong \mathcal{T}_{-p \to \lambda} \Delta(-p)$. We use Fact 3 mentioned in Sec 1.4 of Lec 23: $J_{A \to -p}(L(w.\lambda)) = L(-p)$ if $W=W_0$ and zero else. So $Hom_{OS}(\mathcal{I}_{-\rho \to \lambda} \Delta(-\rho), \mathcal{L}(w \cdot \lambda)) = [adjunction] = Hom_{O-\rho}(\Delta(-\rho), \mathcal{I}_{\lambda \to -\rho} \mathcal{L}(w \cdot \lambda))$ $= [every object in O^{-\rho} is \Delta(-\rho)^{\otimes ?}, Prob 1 in HW3] = \mathbb{C}^{\otimes S_{W,WO}} An isom'm$ P(w. 2) ~ 5-p-, D(-p) follows.

2.2) Indecomposability for graded and ordinary modules.

Let M be a finite dimensional graded R-module. Assume it is indecomposable as a graded module. We claim it is indecomposable as an ordinary R-module.

Note that Endp (M) is a graded C-algebra w. grading introduced in Sec 1.4. We claim that rad Ende (M) is a homogeneous ideal. For this we use the following classical construction: to give a grading on a finite dimensional C-vector space, V, is the same thing as to equip V with a rational C-action (on the graded component Vi the group C'acts by t +>t'). To give an algebra grading on a finite dimensional algebra (such as Endp(M)) is to give a vational representation of C by algebra automorphisms (exercise). And, by its definition, the vadical is stable under any automorphism. In particular, it's C'-stable, hence graded

Picking a direct summand in M amounts to picking an idempotent in Endp (M)/rad Endp (M) (that can be then lifted to Endr (M). Picking a graded direct summand requires a degree O idempotent. So our claim becomes the following:

(*) Suppose that a semisimple C-algebra A has an algebra grading s.t. A = C1. Then A = C.

Here's the most elementary proof of (*): recall that the trace pairing $(x,y) \rightarrow t^{\gamma}(xy)$ is non-degenerate. Under this pairing, A_i and A_{-i} are dual to each other. Let $a \in A_i$, $b \in A_{-i}$ be s.t. tr(ab) +0. Since A = C1, we must have that ab is a nonzero multiple of 1. But any element of A; i +0, is nilpotent

(b/c A is finite dimensional). So the only possibility is $A_i = 0$ for $i \neq 0$, and hence $A = A_0 = \mathbb{C}1$.

2.3) Indecomposables in SBim vs indecomposables in SMod.

Theorem 1 (Soevgel): B→B defines a bijection between indecomposable Soevgel bimodules (up to iso) and indecomposable Soevgel modules.

To prove this theorem we need a lemma and another theorem.

Lemma: Any $B \in SBim$ is a free right R-module.

Proof: Observe R is a free rx 2 R^s -module for any s=s; It follows that BS_w is a free $rx 2^k$ right R-module (where x is the length of w). Any indecomposable object in SBim is a direct summand in some BS_w so is a graded projective (hence free) R-module.

Theorem 2: For B_1 , B_2 , the R-module $Hom_{R-bimod}$ (B_1 , B_2) (from the right R-action on B_2) is free and $Hom_{R-bimod}(B_1, B_2) \otimes_R \mathbb{C} \xrightarrow{\sim} Hom_{R-mod}(B_1, B_2).$

Sketch of proof of Thm 1 mod Thm 2:

The to Endp-bimod (B) $\otimes_R C \cong End_{R-mod}(\underline{B})$ we can lift a homogeneous idempotent in End_{R-mod}(B) to a homogeneous 9

idempotent in EndR-61mod (B). So if B is indecomposable, then
so is B.
A proof of $B_1 \simeq B_2 \Rightarrow B_1 \simeq B_2$ is similar: we can lift a
homogeneous isomorphism in Home-mod (B, B,) to a homogeneous
isomorphism in Hom _{R-61mod} (B ₁ , B ₂).
K-6)MOd 9) 2
We don't prove Theorem 2. One proof requires deformations of
V and O' It's explained in my hand-written note for the O-semi-
nar (see ref. for Lec 24), Oct 24 meeting. A closely related
result is Soergel's Hom formula, see [EMTW], Section 5.5.