## Hecke algebra/category, Part X.

- 1) Varieties
- 2) Cohomology vs Soergel modules

## 10) Introduction

In this lecture we'll investigate the geometry behind the Soergel theory. The starting object in this -as well as in most of the geometric developments of Lie representation theory — is the flag variety.

Definition: As a set, the flag variety  $Fl_n(C)$  consists of complete flags of subspaces  $\{0\} = V_0 \neq V_1 \neq \dots \neq V_n = C^n \text{ w. dim } V_i = i. \text{ This is a projective algebraic variety (so a compact topological space).}$ 

Remark: We have already encountered Fln but over  $\mathbb{F}_g$ . This was in Lecture 18, when we've first encounted the Hecke algebra. Namely note that, for any field  $\mathbb{F}$ , the  $G = Gl_n(\mathbb{F})$ -action on  $\mathbb{F}^n$  gives an action on  $Fl_n(\mathbb{F})$ . It's transitive (exercise). For the standard flag  $-V_i = \operatorname{Span}_{\mathbb{F}}(e_n,...,e_i)$  - where  $e_n,...,e_n$  is the tautological basis of  $\mathbb{F}_n$ , the stabilizer of this flag in G is the Borel subgroup B. So, as a set  $Fl_n(\mathbb{F})$  is identified w. G/B. In fact, if  $\mathbb{F}$  is algebraically closed, then G/B has a natural algebraic variety structure and  $G/B \xrightarrow{\sim} Fl_n(\mathbb{F})$  is a variety isomorphism.

## 1.1) Schubert varieties.

The base field is C.

Recall that  $G/B \simeq \coprod_{m \in N} BwB/B$ , where BwB/B is the Schubert cell identified w.  $C^{l(m)}$  (see Sec 3.1 of Lec 18).

Definition: The Schubert variety (associated to w) is  $BwB/B \subseteq G/B$ , where the closure is taxen in Zansxi topology (the closure in the usual topology gives the same).

Since  $G/B = \mathcal{Fl}_n(\mathbb{C})$  is a projective variety, so is BwB/B.

Let's describe BwB/B and BwB/B in linear algebraic terms. Let  $\mathcal{F} = (\{0\} = V_c \subset V_r \subseteq \mathbb{C}^n)$ ,  $\mathcal{F}' = (\{0\} = V_c' \subset V_r' \subseteq \mathbb{C}^n)$  be two flags.

We can read a permutation from them as follows. For  $w \in W(=S_n)$ , we say  $\mathcal{F}, \mathcal{F}'$  are in relative position w if  $dim(V_i \mathcal{N}_j') = \#\{\{1,...,i\} \cap w\{1,...,j\}\}$ ,  $\mathcal{F}'$  i, j.

Exercise: 1) Prove that \( \mathcal{F}, \mathcal{F}'\) such w exists and is unique.
2) Show that TFAE:

- · F, F' are in relative position w.
- · I basis vy... v, of C" s.t Vi= Span (V,..., vi) & Vj= Span (Vw(1),..., Vwij)

Let  $\mathcal{F}^{st}$  denote the standard flag (w.  $V_i^{st}$  Span (e,..., e;)). We have the following vesult

Lemma: 1) BwB/B consists of all flags that in relative position w with F. st

2) BwB/B = II BuB/B = {F=(V;) eFl, | dim(V; st(V;) > #({1,...,i}) \ w{1,...,j})}

Sketch of proof: 1) Note that  $M_wB/B$  is the flag given by  $V_s = Span\left(e_{w(s)},...,e_{w(j)}\right)$ . Set  $Fl(w) := \{F \text{ of relative position } w \text{ w. } F^{st}3\}$ . The locus Fl(w) is B-stable G of G is fixed by G. It follows that this locus contains BwB/B and is a union of some Schubert cells. There are |W| of such loci and |W| Schubert cells. So Fl(w) = BwB.

Example: 1)  $Bw_0B/B$  is open in  $G/B = FL_n$ , irreducible variety.  $S_0 \overline{Bw_0B/B} = G/B$ . 2) Let n=3, S=(1,2), t=(2,3). Then BwB/B consists of all  $F=\{0=V_0=V_1=V_2=V_3=C^3\}$  s.t.

· w=1: V; = V; st for i=1,2. A point.

· W= S: Vz = Vzst, ~ P1

· w=t: V1 = V1 st; ~ P1

· W = St = (3,1,2): V, = V2 , will describe later

· w = ts = (1,3,2): V, st < V2 ; -- -- --

## 1.2) Bott-Samelson varieties

One issue w. Schubert varieties is that they are singular (i.e. not manifolds). The issue first arises when N=4, e.g. BwB/B is singular for  $W=\begin{pmatrix}1&2&3&4\\3&4&1&2\end{pmatrix}$ . For a singular variety X one usually tries to find resolution of singularieties: a smooth variety X w. a morphism  $\mathcal{H}: X \to X$  s.t.

• IT is proper (the preimage of every compact subset is compact)

• IT is birational (it's an isomorphism over a Zariski open dense subset). We will define Bott-Samelson varieties,  $BS_{\underline{w}}$ , where  $\underline{w} = (S_{i_1}, ..., S_{i_k})$  is a word in simple reflections. When  $\underline{w}$  is a reduced expression of w, we'll see that  $BS_{\underline{w}}$  is a resolution of singularities of BwB/B.

Definition: As a set  $BS_w$  consists of (K+1)-tuples  $(\mathcal{F},...,\mathcal{F}^k)$ ,  $\mathcal{F}^i=(o=V^i\subset V^i\subset ...\subset V^i\subset ...\subset V^i=\mathbb{C}^n)$  with the following properties:  $\mathcal{F}^o=\mathcal{F}^{st}$ 

· for each l=1,... k, we have V; = V: for j + ie.

Before we produce examples (for n=3), let's notice that  $BS_{\underline{w}}$  admits two natural forgetful maps:

 $\gamma: \mathcal{BS}_{\underline{w}} \to \mathcal{BS}_{\underline{w}'}$ ,  $\underline{w}' = (s_{i_1, \dots}, s_{i_{k-1}})$ : forget the last flag  $\mathfrak{SS}_{\underline{w}} \to \mathfrak{Fl}_n$ : forget all flags but the last one.

Exercise: p is a "P-bundle" meaning, essentially, that every fiber of p is IP' (hint: to recover the last flag boils down to giving a 1-dimil subspace inside a fixed 2-dimil space).

This bundle is locally trivial in a suitable sense implying that  $BS_{\underline{w}}$  is a projective variety of dimension K. In particular, It is proper.

Example: K=1: BSs = BSB/B ~ IP.

- n=3: w=st: we claim that  $gr:BS_{(t,s)} \xrightarrow{\sim} BtsB/B$ We have  $BS_{(t,s)} = (f^{st})(o = V_1^{st})(o = V_2^{st})(o = V_1^{st})(o = V_1^{st})(o = V_2^{st})(o = V_1^{st})(o = V_1^$
- · Similarly, BS(s,t) ~ BstB/B. So both BtsB/B, BstB/B are smooth.
- · Now consider gr:  $BS_{(t,s,t)} \longrightarrow G/B$ . The variety  $BS_{(t,s,t)}$  consists of triples (omit  $F^{st}$ , also anit 0 and the full space:

( V, st < V2'; V, < V2'; V, < V2)

We send this triple to V, CVz. Let's determine the preimages under 97.

There are 2 cases:

i)  $V_1 \neq V_1^{st}$  Then we uniquely recover  $V_2'$  as  $V_1 \oplus V_2^{st}$  So the preimage is a single point. In fact, or is an isomorphism over this locus in Fln, which is exactly  $Fln \setminus BtB/B$ .

ii) V,=V, st Then there's P'choices from V' so the fiber is P!

Theorem: Let  $\underline{w}=(s_{i_1},...s_{i_\ell})$  be a reduced expression of w. Then the image of  $\Re: BS_{\underline{w}} \longrightarrow \Im(n)$  is  $\underline{BwB/B}$  and over  $\underline{BwB}$ ,  $\pi$  is a bijection (hence an isomorphism).

Sketch of proof: By induction on  $\ell$  we reduce to proving the following: consider the set  $\{\mathcal{F}', \mathcal{F}''\}$  s.t.  $\mathcal{F}'$  &  $\mathcal{F}'$  are in relative position  $S_{i_e}$ . Then  $\mathcal{F}''$  &  $\mathcal{F}''$  are in relative position  $\mathcal{F}''$  &  $\mathcal{F}''$  are in relative position  $\mathcal{F}''$  &  $\mathcal{F}''$  are in relative position  $\mathcal{F}''$  when  $\mathcal{F}''$  we want prove this but we've seen a similar fact before: when in Sec 3.2 of Lec 18 we've proved that  $\mathcal{F}''$   $\mathcal{F}''$   $\mathcal{F}''$  we provided  $\mathcal{F}''$   $\mathcal{F}''$ 

2) Cohomology vs Soergel modules.

2.1) Basics on cohomology

Let X be a topological space. To X one can assign an invariant, a C-algebra  $H^*(X) = \bigoplus H^i(X)$ , the cohomology, which is "graded -commutative" in the following sense:

Definition: Let  $A = \bigoplus_{i \neq 0} A_i$  be a graded associative algebra. We say A is graded-commutative if f and f we have f ab =  $(-1)^{ij}$  ba. In particular, if f and f for f add, then "graded commutative" is the same as commutative.

In fact,  $H^*$  is a contravariant functor from the category of topological spaces (even better, from the homotopy category) to the category of graded-commutative algebras. In particular, if  $f\colon X\to Y$  is a continuous map, then we have a graded algebra homomorphism  $f^*\colon H^*(Y)\longrightarrow H^*(X)$  (that only depends on f up to homotopy).

Example: Let  $X = \mathcal{Fl}_n(\mathbb{C})$ . It's paved by affine spaces (Schubart cells) labelled by the elements of W. A general result implies that  $\dim H^*(X) = |W|$ . A move careful analysis shows that as an algebra  $H^*(X)$  is nothing else but  $\mathbb{C}[Y^*]^{coW}$  w. Y in deg 2 (which is one explanation of why we choose the doubled grading on R in lec 25). The images of the variables  $X_i$  in  $\mathbb{C}[Y^*]^{coW}$  are the 1st Chern classes of tautalogical line bundles on  $\mathbb{Fl}_n(\mathbb{C})$ .

2.2) Cohomology of Bott-Samelson & Schubert varieties.

Let  $\underline{w} = (s_{i_1},...,s_{i_k})$ . Note that  $gr : \mathcal{B}S_{\underline{w}} \longrightarrow \mathcal{Fl}_n(\mathbb{C})$  gives an algebra homomorphism  $\mathcal{P}^* : H^*(\mathcal{Fl}_n(\mathbb{C})) \longrightarrow H^*(\mathcal{B}S_{\underline{w}})$ .

In particular,  $H^*(\mathcal{B}S_{\underline{w}})$  becomes a graded  $H^*(\mathcal{Fl}_n(\mathbb{C}))$ -module.

Fact: As a graded  $H^*(\mathcal{FL}_n(C)) = C[S^*]^{col} \mod n$   $H^*(BS_N) \xrightarrow{\sim} BS_N <-k>$ (note that the shift of grading in the definition of BS, is the "perverse shift"; note also that the isomorphism above is that of algebras).

One could then expect that the indecomposable Soergel module  $B_{w-1}$  is  $H^*(BwB/B) < l > w$ . l = l(w). This is the case when BwB/Bis smooth. Otherwise H\*(BwB/B) is not a convect object.

There is a number of properties that the cohomology of smooth projective varieties satisfy (MATH 618 in S23 will discuss this). The most basic one is the "Poincare duality": if M is a compact n-dimensional real manifold, which is orientable (complex manifolds automatically satisfy this property), then H'(M) ~> H" (M)\* (if you think about the cohomology in terms of differential forms, then multiply the forms & integrate). In particular, the dimensions of the graded pieces are symmetric about 1/2. This doesn't need to be the case for H\*(BmB/B) we have

dim HK (BwB/B) = # { u \ w | u \ w & l(u) = x} b/c BwB/B is paved by affine spaces BuB/B  $\simeq C^{(u)}$  for  $u \preceq w$ , Lemma in Sec 1.1. E.g. for w= (1234) of length 4, there are 4 permutations u of length 3 w. UIW and 3 permutations of length 1, so there's no symmetry.

One replaces H\*(BwB/B) with the "intersection cohomology" IH\* (BwB/B) (studied in the perverse sheef class). It looses some basis properties (homotopy invariance, being an algebra), retains some others—still an H\*(BwB/B)-, hence H\*(Ft,)-module, and acquires additional properties such as Poincare duality.

Thm (Soergel): We have  $IH^*(\widehat{BwB/B}) \simeq \underline{B}_w$ .

Remarks\*: 1) One can incorporate the Soevgel bimodules into this geometric picture: instead of the usual cohomology one considers the T-equiverient cohomology for the maximal torus  $T \subset S_{n}(E)$  & its natural action on the varieties of interest.

- 2) The decomposition  $BS_{\underline{w}} = B_{\underline{w}} \oplus \bigoplus_{u \neq w} B_{\underline{u}} < ? > ^{\bullet}?$  comes from the BBDG decomposition theorem applied to  $BS_{\underline{w}} \longrightarrow Bw^{-1}B/B$ .
- 3) The BBDG theorem is stated for the so called "perverse sheaves" not just their cohomology. A deep result of Soergel is that the hypercohomology functor  $\mathbb{H}^*$  gives rise to an equivalence between:

   The full subcategory  $\mathcal{D}_c^6(\mathcal{F}_n(C))$  whose objects are  $\bigoplus TC(BnB/B)[?]^{\oplus ?}$ 
  - · SMod.