Representation theory of algebraic groups \& Lie algebras, II.
a) Motivation.

1) Tangent spaces in Algebraic geometry.
2) Bracket on the tangent space at 1 of an algebraic group.
3) Algebraic (or Lie) groups ave non-linear objects (defined by non-linear equations). A basic paradigm to study such objects is linearization. In the context of Lie groups, this was applied already by Sophus lie, leading to the notion of lie algebras. If the base field has characteristic 0 , the study of structure and representaton theory of Lie or algebraic groups reduces to those for the Lie algebras. In characteristic p, the two ave still related but the relation is more subtle.
1.1) Definitions

Let $\sqrt[F]{ }$ be an algebraically closed field and X be an affine algebraic variety. We write $\mathbb{F}[X]$ for the algebra of polynomial functions on X. Pick $\alpha \in X$.
Definition: An α-derivation of $\mathbb{F}[x]$ is an \mathbb{F}-linear map $\delta:[F[x] \rightarrow \sqrt{-}$ satisfying the following version of Leibniz identity:

$$
\delta(f g)=f(\alpha) \delta(g)+g(\alpha) \delta(f)
$$

Note that the α-derivations form a vector subspace in the space $\mathbb{F}[x]^{*}$ of linear functions $\mathbb{F}[x] \rightarrow \mathbb{F}$. The space of α-derivations is denoted by $T_{\alpha} X$ and is called the tangent space of X at α.

Here is an explicit characterization of $T_{\alpha} X$. Suppose $\mathbb{F}[x]=$ $\mathbb{F}\left[x_{1}, \ldots x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$, in particular $X \hookrightarrow \mathbb{F}^{n}$. Then the pullback to $\mathbb{F}\left[x_{1}, \ldots x_{n}\right]$ identifies $T_{\alpha} X w .\left\{\delta \in T_{\alpha} \mathbb{F}^{n} \mid \delta\left(f_{j}\right)=0, j=1, \ldots m\right\}$, exercise.

Since $\delta\left(f_{j}\right)=\sum_{i=1}^{n}\left(\partial_{i} f_{j}\right)(\alpha) \cdot \delta\left(x_{i}\right)$, the map $\delta \mapsto\left(\delta(x),, \ldots \delta\left(x_{n}\right)\right)$ gives an $i 50 m^{\prime} m\left\{\delta \in T_{2} \mathbb{F}^{n} \mid \delta\left(f_{j}\right)=0\right\} \stackrel{\sim}{\leftrightarrows}\left\{v \in \mathbb{F}^{n} \mid \sum_{i=1}^{n} v_{i}\left[\partial_{i} f_{j}\right](\alpha)=0, j=1, \ldots m\right\}$.

Now let Y be another affine variety, $\Phi: X \rightarrow Y$ be a morphism \& $\beta=P(\alpha)$. Consider the pullback homomorphism $D^{*}: \mathbb{F}[y] \rightarrow \mathbb{F}[x]$

Exercise: If δ is an α-derivation, then $\delta_{0} \phi^{*}$ is a β-derivation. The map $\delta \rightarrow \delta \circ \varphi^{*}$ is a linear map $T_{\alpha} x \rightarrow T_{\beta} y$. Definition: This map is called the tangent map of φ at α an α is denoted $T_{\alpha} \varphi$.
1.2) Examples:

We want to compute the spaces T, G for the classical groups, Examples 0-3 in Sec 11 of Lea 5, where we write 1 for the identity matrix. Here's an easy case.

Example D: If $U=X_{f} w \cdot f \in \mathbb{F}[x]$, then $T_{\alpha} U \leadsto T_{\alpha} X, \forall \alpha \in U$, For $G_{n}(\mathbb{F})=\operatorname{Mat}_{n}(\mathbb{F})_{\text {et }}$ get $T_{1} G L_{n}(\mathbb{F}) \leadsto T_{1} \operatorname{Mat}_{n}(\mathbb{F})=\operatorname{Mat}_{n}(\mathbb{F})$. One commonby uses the notation $g_{n}^{\prime \prime}(\mathbb{F})$ for $M_{n}(\mathbb{F})$ in this context.

To handle $G=S L_{n}, Q_{n}, S_{p_{n}}$ we use two observations. First, if 2
X is an affine variety, and $Y \subset X$ is a Zeniski closed subvariety, then, for the inclusion $i: Y \hookrightarrow X$ we have $T_{\alpha} i: T_{\alpha} Y \hookrightarrow T_{\alpha} X$ This is because $i^{*}: \mathbb{F}[x] \rightarrow \mathbb{F}[y]$ and so $\delta \leftrightarrow \delta 0^{*}$: $T_{\alpha} y \rightarrow T_{\alpha} x$ is injective. So $T_{1} S L_{n}, T_{1} O_{n}, T_{1} S_{p_{n}} \hookrightarrow \sigma \xi_{h}(\mathbb{F})$.

Second, we will need the following version of the regular value theorem (who proof, see Sec 5.5 in [H2] for a related statement).

Fact: Let U be an affine variety that is open in some \mathbb{F}^{m} $\& \Phi: U \rightarrow \mathbb{F}^{k}$ be a morphism. Let $\alpha \in U$ be such that $T_{\alpha} \varphi: T_{\alpha} U \rightarrow T_{\varphi(\alpha)} \mathbb{F}^{k}$ is surjective. Then

$$
T_{\alpha}^{\varphi}\left[\varphi^{-1}(\varphi(\alpha))\right]=\operatorname{ker} T_{\alpha} \varphi .
$$

We will apply this to $U=G L_{n}(F)$. In all cases we cave about $G=\Phi^{-1}(\beta)$ for $\beta \in \mathbb{F}^{k}$ for suitable k.

Example 1: Let $\Phi: U \rightarrow \mathbb{F}$ be given by $g \mapsto \operatorname{det}(g)$. For $\xi \in T_{1} U=$ $\operatorname{gi}(\mathbb{F})$, have $\left[T_{1}(\operatorname{det})\right](\xi)=\left.\frac{d}{d s} \operatorname{det}(1+\xi s)\right|_{s=0}=\operatorname{tr}(\xi)$. So $T_{1}(\operatorname{det})=\operatorname{tr}$. The map $\mathcal{j} \mapsto \operatorname{tr}(\mathcal{\xi}): g_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ is surjective. We conclude that $T_{1}\left(S L_{n}(\mathbb{F})\right)=T_{1}\left[P^{-1}(1)\right]$ is $\left\{5 \in \sigma_{n} K_{n}(\mathbb{F}) \mid \operatorname{tr}(\xi)=0\right\}=: \operatorname{Sin}_{n}(\mathbb{F})$.

Example 2: Assume char $\mathbb{F} \neq 2$ and let $y:=\{$ symmetric matrices $\} \subset \sigma_{h}^{\prime}(\mathbb{F})$. Take $\Phi: U \rightarrow y, g \mapsto g^{\top} g$. Then $[T, \phi](\xi)=\xi^{\top}+\xi$, similarly to Example 1. This map is surjective. Since $\theta_{n}(\mathbb{F})=\Phi^{-1}(1)$, we get 31
$T_{1} O_{n}(\mathbb{F})=\operatorname{ker} T_{1} \Phi=\left\{\xi \in \operatorname{gof}_{n}(\mathbb{F}) \mid \xi^{\top}=-\xi\right\}=: \mathfrak{S O}_{n}(\mathbb{F})$
We also could (and should) view this basis-free: $O(V, B)$ instead of $O_{n}(F)$. We get $T_{1} O(v, B)=\{\xi \in \operatorname{og} K(V) \mid B(\xi u, v)+$ $+B(u, \xi v)=0 \quad \forall u, v \in V\}=: S O(V, B)$ - the space of operators skew-symmetric w.r.t. B.

Exerase: $T_{1} S p(V, \omega)=\{\xi \in g K(V) \mid \omega(\xi u, v)+\omega(u, \xi v)=0 \quad \forall u, v \in V\}$ $=\therefore s p(V, \omega)$.
2) Bracket on the tangent space at 1 of an algebraic group. For $\xi, \eta \in \sigma_{n}(\mathbb{F})$ we write $[\xi, \eta]:=\xi \eta-\eta \xi$. For an algebraic group $G \subset G L_{n}(\mathbb{F})$ we write of for $T_{1} G$, as mentioned in Sec 1.2, this is a subspace in of $f_{n}(\mathbb{F})$.

The: 1) g is closed under $[\because]$.
2) Moreover, if H is another algebraic group, $\Phi: C \rightarrow H$ is an alg. group homomorphism, and $\zeta:=T, H, \varphi:=T, \varphi$, then $\varphi([\xi, \eta])=[\varphi(\xi), \varphi(\eta)] \forall \xi, \eta \in \sigma$.

Exeruse: Check 1) explicitly for $g=S L_{n}(\mathbb{F}), S O(V, B), S p(V, \omega)$.
Proof: Step 1: We produce a bilinear map $[\because]^{\prime}: g \times o g \rightarrow \mathbb{F}[G]^{*}$. Recall that $\xi_{1}, \xi_{2} \in g$ can be viewed as linear functions on $\mathbb{F}[G]$. So $s_{1} \otimes \xi_{2}$ is a linear function $\mathbb{F}[G] \otimes \mathbb{F}[G] \rightarrow \mathbb{F}$.

Recall that $\mathbb{F}[G] \otimes \mathbb{F}[G] \sim \mathbb{F}[G \times G]$. Consider the map $C\left(=C_{G}\right): C_{1} \times G \rightarrow G_{1} C\left(g_{1}, g_{2}\right)=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$. Since the multiplication and inversion maps are given by polynomial functions, the same is true for C, ie. C is a morphism. So we have the pullback homomorphism $C^{*}: \mathbb{F}[G] \rightarrow \mathbb{F}[G \times G]$. Set

$$
\left[\xi_{1,}, \xi_{2}\right]^{\prime}:=[\xi \otimes \eta] \cdot C^{*}: \mathbb{F}[G] \rightarrow \mathbb{F} \text {. It's indeed bilinear. }
$$

Step 2: We compute $\left[\mathcal{F}_{1}, \xi_{2}\right]^{\prime}$ for $G_{1}=C_{n}(\mathbb{F})$. We have $\left[\xi_{1}, \xi_{2}\right]^{\prime}(f)=\xi_{1} \otimes \xi_{2} \cdot f\left(g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}\right)=\left[\xi_{i}\right.$ differentiates w.v.t $\left.g_{i}\right]$

$$
=\partial_{s_{1}} \partial_{S_{2}} f(\underbrace{\left.\left(1+s_{1} \xi_{1}\right)\left(1+s_{2} \xi_{2}\right)\left(1+s_{1} \xi_{1}\right)^{-1}\left(1+s_{2} \xi_{2}\right)^{-1}\right)\left.\right|_{s_{1}=s_{2}=0}=}_{11}
$$

L

$$
1+s_{1} s_{2}\left(\left[\xi_{1}, \xi_{2}\right]+O\left(s_{1}, s_{2}\right)\right)
$$

$\left.=\left.\partial_{S_{1}} \partial_{S_{2}} f\left(1+S_{1} S_{2}\left[\xi_{1}, \xi_{2}\right]\right)\right|_{S_{1}=S_{2}=0}=T_{1} f\left(\xi_{S_{1}} \xi_{2}\right]\right)$, where we view $T_{1} f$ as an element in $\operatorname{Mat}_{n}(\mathbb{F}) *$ But then $T_{1} f\left(\left[\xi_{1}, \xi_{2}\right]\right)=\left[\xi_{1}, \xi_{2}\right] . f$ for $\left[\xi_{11} \xi_{2}\right]$ viewed as an element of $T_{1} G$.

Step 3: In the notation of 2), we claim that the following diagram is commutative:

Indeed, recall that P_{P} is a group homomomorphism, so

$$
\varphi_{0} C_{G}=C_{H} \circ(\varphi \times \phi) \Leftrightarrow(\varphi \otimes \phi)^{*} C_{H}^{*}=C_{G}^{*} \circ \varphi^{*}
$$

Then $\left.\left[\varphi\left(\xi_{1}\right), \varphi\left(\xi_{2}\right)\right]^{\prime}=\left(\varphi\left(\xi_{1}\right) \otimes \varphi\left(\xi_{2}\right)\right) \circ C_{H}^{*}=\left(\xi, \otimes \xi_{2}\right) \circ\left(\varphi \rho_{x}\right)\right)^{*} C_{H}^{*}$ $=\left(\xi, \otimes \xi_{2}\right) \cdot C_{G}^{*} \cdot \phi^{*}=\left[\xi_{1}, \xi_{2}\right]^{\prime} \circ \phi^{*}$. So $(*)$ is commutative.

Step 4: Apply (*) to $H=C L_{n} \& \varphi:=$ the inclusion $i: C \hookrightarrow H$. Then $\mathbb{F}[H] \rightarrow \mathbb{F}[G] \Rightarrow \mathbb{F}[G]^{*} \subset \mathbb{F}[H]^{*}$ For $\delta \in \mathbb{F}[G]^{*}$, the Leionn identity $\delta\left(f_{g}\right)=f(1) \delta(g)+g(1) \delta(f)$ is independent of whether we view δ es an element of $\mathbb{F}[H]^{*}$ or an clement of $\mathbb{F}[G]^{*}$. So $o g=5 \cap \mathbb{F}[G]^{*}$. The commutativity of $(*)$ implies $\left[\xi_{1,}, \xi_{2}\right]^{\prime} \in \sigma$, and, th x to Step 2 , $\left[\tilde{\xi}_{1}, \xi_{2}\right]^{\prime}=\left[\xi_{1}, \xi_{2}\right]$. This implies Claim 1 of the theorem.

Step 5: Claim 2 follows from (*) and the observation of Step 4 that in $[\because]^{\prime} \subset T_{1}$ for any algebraic group.

Bonus remark: there are other equivalent definitions of the bracket on g that we are going to sketch now.

1) For an affine variety X we can talk about vector fields on X. By definition, these are derivations $\mathbb{F}[x] \rightarrow \mathbb{F}[x]$, ie \mathbb{F}-linear maps ξ satisfying the Leibniz identity: $\xi(f g)=f \xi(g)+g \xi(f), \notin$ $f g \in \sqrt[F]{F}[x]$. Denote the space of derivations by $\operatorname{Vect}(x)$. It comes with a bracket: for $\xi, \eta \in \operatorname{Vect}(X)$, the map $\frac{\xi}{6} \tilde{\eta}-\eta \circ \xi: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ is a derivation.

Now let $X=G$ be an algebraic group. The group G acts on Vect (G) (say, vie the action $G \curvearrowright G$ on the right) and the action respects the bracket. So the subspace $\operatorname{Vect}(G)^{G}$ of invariant vector fields is stable under the bracket. Similarly to the C^{∞}-case restricting a vector field to $1 \in G$ gives an isomorphism intertwining the brackets. The functoriality - part 2 of the theorem is then harder to establish, see [H], Sec 9.2.
2) One can adapt an approach from [OV], Sec 1.1, to the algeb. raic setting as follows. For $k>0$, consider the algebra $\mathbb{F}[\varepsilon] /\left(\varepsilon^{k}\right)$ of "truncated polynomials". For an algebraic group S, we consider its "group of $\mathbb{F}[\varepsilon] /\left(\varepsilon^{k}\right)$-points". A naive definition is as follows: C is detimed inside $C_{n}(\mathbb{F})$ by some polynomial equations. Consider the subset of $C_{n}\left(\mathbb{F}[\varepsilon] /\left(\varepsilon^{*}\right)\right)$, the group of invertible matrices w. entries in $\mathbb{F}[\varepsilon] /\left(\varepsilon^{*}\right)$, given by the same polynomial equations. It's a subgroup. A more conceptual way is to view this group as the group of scheme morphisms Spec $\left(\mathbb{F}[\varepsilon] /\left(\varepsilon^{t}\right)\right) \longrightarrow G$ (that should be viewed as "curves up to order k in $C^{\prime \prime}$). Denote the resulting group by C_{k}. Note that for $k<l$ we have a homomorphism of (abstract) groups $G_{l} \rightarrow G_{k}$. An exercise is to check that the kernels of $G_{3} \rightarrow G_{2}$ and $G_{2} \rightarrow C_{1}=G$ are identified with g (w. its additive group structure).

Now a group hamomapphism $\Phi: G \rightarrow H$ gives rise to a group homomorphism $G_{k} \rightarrow H_{k}$ for all k (given by the same polynomials),
this is especially easy to see if we identify $G_{k}\left(\right.$ resp. $\left.H_{k}\right) w$. the group of morphisms from $\operatorname{Spec}\left(\mathbb{C}[\varepsilon] /\left(\varepsilon^{k}\right)\right)$ to G (resp. H), then we just post compose. For each $k<l$, the diagram

is commutative. The induced homomorphisms

$$
\begin{aligned}
& g=\operatorname{ker}\left[G_{2} \rightarrow G_{1}\right] \rightarrow \operatorname{ker}\left[H_{2} \rightarrow H_{1}\right]=5 \\
& g=\operatorname{ker}\left[G_{3} \rightarrow G_{2}\right] \rightarrow \operatorname{ker}\left[H_{3} \rightarrow H_{2}\right]=\xi
\end{aligned}
$$

coincide w. $T_{1} \Phi$. Note that the kernels above ave abelian. So the commutator map for $\operatorname{ker}\left[G_{3} \rightarrow G_{1}\right]$ descends to a map $\operatorname{ker}\left[G_{2} \rightarrow G_{1}\right] \times \operatorname{ker}\left[G_{2} \rightarrow G_{1}\right] \longrightarrow \operatorname{ker}\left[G_{3} \rightarrow G_{2}\right]$. Under the identification of these kernels $w . g$, we recover the bracket $[\because \cdot]$ on of. And from $(*)$ we deduce that $T_{1} \phi$ intertwines the brackets.

