ALGEBRAIC GROUPS, LIE ALGEBRAS, AND THEIR
REPRESENTATIONS

1. ALGEBRAIC GROUPS
1.1. Recap of bits of Algebraic geometry. Let I be an algebraically closed field.

Definition 1.1. (1) By an embedded affine variety, we mean a subset X C A" for some
n, defined by polynomial equations.

(2) Let X € A™ and Y C A" be embedded affine varieties. A map ¢ : X — Y is called
polynomial (a.k.a. a morphism) if it is a restriction of a map A™ — A" given by
polynomials.

(3) The algebra of polynomial functions, F|X]|, by definition, consists of all polynomial
maps X — A! with the usual addition and multiplication of functions.

Now we list a few standard facts.

(i) Let A be a commutative F-algebra, and let I C A be an ideal. Recall that the
radical of I, denoted by v/I, by definition, consists of all a € A such that a” € I for
some n. This is also an ideal. We say that I is radical if I = v/I. For every subset
X C A", the subset Ix := {f € Flzy,...,2,] | f(z) =0 for all z € X} is a radical
ideal in F[xy, ..., z,]. Hilbert’s Nullstellensatz implies that the assignment X +— Ix
gives a bijection between the embedded affine varieties in A™ and the radical ideals of
Flxq,...,z,]. Moreover, F[X] = Flxy,...,x,]/Ix. It is a finitely generated F-algebra
with a distinguished collection of generators z; € F[X] for ¢ = 1,...,n. Since Ix is
radical, the algebra F[X] contains no nonzero nilpotent elements.

(ii) Let ¢ : X — Y be a morphism and let f € F[Y]. Define a function ¢*(f) =
fop: X — F. This function is polynomial, hence an element of F[X]. We get
a homomorphism ¢* : F[Y] — F[X]. The assignment ¢ — ¢* defines a bijection
between morphisms X — Y and algebra homomorphisms F[Y] — F[X]. Moreover,
this assignment is functorial: if ¢ : X — Y and ¢ : Y — Z are morphisms, then
(Yop) =g oy

(iii) (ii) allows us to talk about abstract affine varieties X. They correspond to finitely
generated F-algebras with no nilpotent elements. The choice of generators corre-
sponds to an embedding of X into some A", but we view X irrespective of an em-
bedding. The notion of a morphism still makes sense in this setting.

Here are two useful constructions:

(a) Let X be an affine variety. If f € F[X], then X; = {z € X | f(x) # 0} is an affine
variety with F[X | = F[X][f ).

(b) Let X,Y be affine varieties. Then X X Y is also an affine variety with F[X x Y] =
F[X] ®@p F[Y]. Namely, if f: X — A' and g : Y — A! are polynomial maps, then
f®g: X xY — Al defined by (f ® g)(z,y) = f(x)g(y) is also a polynomial map.

Remark 1.2. Subsets in an affine variety X defined by polynomial equations are called
Zariski closed; they are indeed closed subsets in a topology called the Zariski topology. A

subset in X is called Zariski open if its complement is Zariski closed. Note that a Zariski
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closed subset, say Y, of X is again an affine variety (this may fail for open subvarieties). For
a closed subvariety Y C X, the homomorphism F[X] — F[Y'] corresponding to the inclusion
Y C X is surjective.

1.2. Definition and examples of algebraic groups. Consider the group GL,(F) of all
non-degenerate n x n matrices with coefficients in F. Relatedly, if V' is an n-dimensional
vector space over F, then we can talk about the group GL(V) of all invertible linear operators
V' — V. Choosing a basis in V identifies GL(V') with GL,(IF). Note that GL,(F) = {A €
Mat,, . (F) | det(A) # 0} is an affine variety with F[GL,(F)] = Fla;;, det(z;;) '], where z;;
for i, = 1,...,n are the matrix coefficients.

Definition 1.3. By an algebraic group, we mean a subgroup G C GL,(F) that is Zariski
closed (see Remark 1.2), i.e., given by polynomial equations.

Example 1.4. (1) SL,(F) = {A € GL,(F) | det(A) = 1} is the special linear group.

(2) Assume char(F) # 2. Set O,(F) = {A € GL,(F) | ATA = I}, here the superscript
“T” stands for the matrix transpose and [ is the identity matrix. More conceptually,
let B be a non-degenerate symmetric form on a vector space V' of dimension n (all
such forms have an orthonormal basis, so there is no real difference between them).
Then we can consider

O(V,B) = {g € GL(V) | B(gu, gv) = B(u,v),Yu,v € V}.

A choice of an orthonormal basis for B identifies O(V, B) with O, (F). The group
O, (F) is called the orthogonal group. Note that SO, (F) = {A € O,(F) | det(A) = 1}
is also an algebraic group, the special orthogonal group.

(3) Similarly, for a non-degenerate skew-symmetric form w on a finite-dimensional vector
space V', where automatically dim(V') is even, we can consider the symplectic group

Sp(V,w) = {g € GL(V) | w(gu, gv) = w(u,v)Vu,v € V'}.

One can find a basis vq,...,vq, of V such that w(e;,e;) = &;2,—j+1. Let J be the
matrix of w in this basis. Then Sp(V,w) gets identified with {A € G Lo, (F) | ATJA =
J}.

(4) The subgroups of upper triangular, upper uni-triangular (with 1’s on the diagonal),
and diagonal matrices in GL,(IF) are algebraic.

(5) The multiplicative group G,, = GL1(F) and the additive group G, = (F,+) are
algebraic. Note that the former can be thought of as GL;(F), while the latter is
identified with the subgroup of upper uni-triangular matrices in GLy(IF).

The groups in Examples (1)-(3) are called the classical groups. They are extremely im-
portant.

Exercise 1.5. If G; and G, are algebraic groups, then so is their product. Hint: GL,(F) x
GL,,(F) embeds into GL,,1.,(F) as the subgroup of block diagonal matrices).

Note that every algebraic group G is Zariski closed in an affine variety GL, (FF), hence is
an affine variety itself. Moreover, the multiplication map GL,(F) x GL,(F) — GL,(F) and
the inversion map GL,(F) — GL,(F) are given by polynomials in the matrix coefficients
and det™" (the latter is only needed for the inversion). Hence they are morphisms. So, we
can give a more conceptual definition of an algebraic group.
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Definition 1.6. By an (affine) algebraic group we mean a group G equipped with an affine
variety structure such that the multiplication map G x G — G and the inversion map G — G
are morphisms.

In fact, this definition is equivalent to Definition 1.3, see [OV, §3.1.6, Theorem 8§].

Remark 1.7. Definition 1.6 is parallel to the definition of a Lie group: we replace C'*°-
manifolds there with affine algebraic varieties. In fact, every algebraic group over C is a
complex analytic Lie group, see Remark 2.11.

Note also that we can drop the condition of being affine from the definition of an algebraic
group getting a broader class of groups (including, for example, abelian varieties). However,
from the group and representation theory perspective affine algebraic groups are still the
most interesting. In fact, the Chevalley structure theorem states that every algebraic group
in the general sense contains a unique maximal normal affine algebraic subgroup and the
quotient is an abelian variety, [BSU, Theorem 1.1.1]. In particular, the derived subgroup of
any algebraic group is affine.

1.3. Homomorphisms and Representations.

Definition 1.8. Let G and H be algebraic groups. By an (algebraic group) homomorphism
G — H, we mean a group homomorphism that is also a morphism of varieties.

Let V' be a finite-dimensional vector space. By a rational representation of G in V' we
mean an algebraic group homomorphism G — GL(V). We will elaborate on why the term
“rational” is used later. In other words, a rational representation of GG is one whose matrix
coefficients in F[G].

Example 1.9. (i) The groups GL,(F), SL,(F), O,(F), and Sp,,,(F) (for even n in the
last case) are embedded into GL, (F'), hence come with a rational representation in
V =", called the tautological representation.
(ii) If V is a rational representation of G, then so are its subrepresentations and quotient
representations. (This is left as an exercise; look at the matrix coefficients.)
(iii) If V and W are rational representations of G, then so are V& W,V @ W and
Hom(V, W) (exercise).

Example 1.10. Suppose char(FF) = p > 0. In this case, the map x — z? is an automorphism
of F (recall that we assume F to be algebraically closed) called the Frobenius automorphism.
The map Fr : GL,(F) — GL,(F), defined by applying x — 2P to the entries of a matrix,
is therefore an algebraic group homomorphism. It’s an automorphism of an abstract group
but not of an algebraic group, as « — z'/? is not a polynomial.

Now let G C GL,(F) be defined by polynomials with coefficients in F, and not just in F.
For example, this is the case for the groups in (1)-(4) of Example 1.4. Then Fr restricts to
G, giving us the Frobenius homomorphism Fr : G — G. Again, this is an abstract group
automorphism, but not an algebraic group automorphism.

Remark 1.11. For the group GL,(F), a representation being rational means its matrix
coefficients are polynomials in the matrix entries z;; and det™, a special class of rational
functions on G, hence the name. One also considers polynomial representations, where the
matrix coefficients are polynomials just in the z;;’s. For example, the tautological represen-
tation, its tensor powers, etc., are polynomial, while its dual is not polynomial.
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1.4. Big picture and connections. As part of the general ideology, we care about the
structure and representation theory of simple algebraic groups and their relatives (semisim-
ple and reductive groups). The reason is two-fold: these theories are extremely rich and
interesting, and appear in numerous areas of Mathematics, from Differential geometry to
Combinatorics to Number theory. Here’s the definition of a simple group in the algebraic
context.

Definition 1.12. An algebraic group G is simple if the following conditions hold:

e (5 is connected in the Zariski topology,
e all normal algebraic subgroups of G are finite,
e and G is not commutative.

Example 1.13. The groups SL,(F) for n > 2, SO,,(F) for n > 3, and Sp,, (F) for n > 1 are
simple. In a way, there are just five more examples, the exceptional groups Gs, Fy, Fg, Ex,
and Fg. We'll discuss more on this later.

Simple algebraic groups give the most important kind of symmetry in Mathematics. They
are also the most central object in representation theory. Most things considered in Repre-
sentation theory are related to simple algebraic groups in one way or another. For example,
S, appears in at least three ways when we study SL,(K) (for a suitable field K) and its
representations.

One manifestation of this central role is a connection to finite simple groups. Let G be a
simple algebraic group over F :=F,. As in Example 1.4, G embeds into some GL,(F) as a
subgroup defined by polynomial equations with coefficients in F,. So by Example 1.10, we
get the Frobenius endomorphism Fr : G — G. Pick k > 1 and set ® = Fr*. Let G(F )
be the fixed point group. Note that GL,(F)®* = GL,(F,x) because ® acts entry-wise. In
particular, G(F,+) is a finite group (e.g., for G = SL,(FF), we get G* = SL,(F,)).

The groups G® are “almost simple”: we can produce finite simple groups out of them.
This construction can be generalized; one can replace Fr* with its twisted versions. In fact,
most finite simple groups are produced this way.

2. LIE ALGEBRAS OF ALGEBRAIC GROUPS

Algebraic (or Lie) groups are defined by nonlinear equations, so are nonlinear objects. A
basic paradigm to study such objects is to linearize them. In the context of Lie groups,
this was applied already by Sophus Lie leading to the notion of Lie algebras. If the base
field has characteristic 0, the study of the structure and representation theory of algebraic
groups reduces (to a large extent) to these for the Lie algebras. In characteristic p, the
representations of algebraic groups and of their Lie algebras are still related, but the relation
is more subtle.

2.1. Tangent spaces. Let I be an algebraically closed field and X be an affine algebraic
variety. Recall that we write F[X] for the algebra of polynomial functions on X. Pick o € X.

Definition 2.1. An a-derivation of F[X] is an F-linear map ¢ : F[X] — T satisfying the
following version of Leibniz identity:

0(fg9) = f(a)d(g) + g(@)o(f)-
Note that the a-derivations form a vector subspace in the space F[X]* of all linear functions

F[X] — F. The space of a-derivations is denoted by T, X and is called the tangent space of
X at a.
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Exercise 2.2. Let o € X, and m, C F[X] denote the maximal ideal of a. Show that every
a-derivation vanishes on 1 and on m? defining a linear map 7,X — (m,/m?2)*. Further,
show that this map is an isomorphism.

Now let Y be another affine variety and ¢ : X — Y be a morphism giving the pullback
algebra homomorphism ¢* : F[Y] — F[X].

Exercise 2.3. If § is an a-derivation for a € X, then do¢* : F[Y] — F is a ¢(«a)-derivation.
The map ¢ > d o p* is a linear map T, X — Ty )Y .

Definition 2.4. The map § — d o * is called the tangent map of ¢ at o and is denoted by
Top.

Example 2.5. Suppose first X = A" so that F[X] = F[xy,...,2,]. Then an a-derivation 0
is uniquely determined by its values on z1, ..., z, yielding an isomorphism T, X = F",§
(0(x1),...,0(xy)).

More generally, take an arbitrary affine variety X and embed X into some A", let + denote
the embedding. Let fi,..., f,, denote generators of the ideal ker.(*, they give equations
defining X inside A". Since ¢* : F[zy,...,z,] — F[X] is surjective, T,¢ is injective for all
a € X and identifies T, X with

. N @1 .
{6 e T,A"o(f:))=0,Vi=1,...,m} ={(as,...,a,) €F |Zanai: =0,Vi=1,...,m}.

Exercise 2.6. Let X,Y be affine varieties, and o € X,8 € Y. Let 7%, 7Y denote the
projections from X xY to X and Y, respectively. Show that (d,m*, ds7") is an isomorphism
Ta,p) (X xY) =T, X ®TzY (hint: use the identification F[X x Y] = F[X] @ F[Y]).

Exercise 2.7. Let ¢ be a closed embedding Y < X of affine varieties. Then d,¢ : T,)Y —
T, X is injective.

Now we discuss smooth points of varieties. Let X be an affine variety and o € X. Let m,,
denote the maximal ideal of a in F[X]. Note that the multiplication on F[X] gives rise to a
linear map

(1) SF(my/m2) — mk /mkt

The following definition follows [D, §1.7.4]. It has an advantage of being self-contained
and not referring to the dimensions (it is equivalent to the usual definition, see [D, §2.4.7]).

Definition 2.8. We say that « is a smooth point of X if (1) is an isomorphism for each k.
We will need the following result from [D, §2.4.7].

Theorem 2.9. Let X be an affine algebraic variety. The locus of smooth points in X is
open and dense with respect to the Zariski topology.

Exercise 2.10. Every algebraic group is smooth as a variety meaning that every point is
smooth (hints: every variety has a smooth point and the action of G on itself is by variety
automorphisms).

Remark 2.11. It follows that every algebraic group over C is also a complex analytic Lie
group.
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2.2. Examples for algebraic groups. We want to compute the spaces TG for the classical
groups G, i.e., G = GL,(F),SL,(F), O,(F), Sp,,(F) (in the latter case n is even). Here and
below we write 1 for the unit element in G.

Example 2.12. Let G = GL,(F). We claim that 71G is identified with Mat, (FF). First,
suppose X is a general affine variety, f € F[X], and o € X;. We observe that T,(X/)
is identified with 7, X via the T,¢, where ¢ : X; — X is the inclusion. Apply this to
X = Mat,(F) and f = det to get T} GL,(F) — T; Mat,(F). The latter is identified with
Mat,,(IF). One commonly uses the notation gl,,(F) for 77 GL, (F).

To handle the other three classical groups, G = SL,(FF), O,(F), Sp,,(IF), we first observe
that all of them are Zariski closed in GL,(F). As in Example 2.5, this allows to identify 771G
with a subspace in gl (IF). To describe these subspaces, we will need the following version
of the regular value theorem.

Fact 2.13. Let U be an affine variety that is open in some F™, and ¢ : U — F* be a
morphism. Let a € U be such that Top : T,U — Tyo)F* is surjective. Then Top (o)) =
ker T, ®.

We do not provide a proof, see [H2, Sec. 5.5] for a related statement.
We will apply this to U = GL,(F). In all cases we care about, G = ¢~ !(3) for suitable
p:U —F* B ecF*

Example 2.14. Let ¢ : GL,(F) — G,, be given by g + det(g). For £ € T} GL,(F) = gl,,(F),
we have Tip(€) = tr(€) (we just formally differentiate det(1 + s£) at s = 0). The map
tr : gl,(F) — F is surjective. From Fact 2.13 we conclude T1G = kertr, the subspace of
matrices with trace 0 usually denoted by s[, (F).

Example 2.15. Assume charF # 2. Set G := O,(F). Let Y C Mat, (F) be the subspace
of all symmetric matrices. Consider the morphism ¢ : GL,(F) — Y, g — gg’, so that G =
o 1(1). We have Typ(€) = £+&7 this is a surjective map gl,,(F) — Y. So, T1G = ker Ty ().
This is the space of skew-symmetric matrices, commonly denoted by so,,(F).

We also could (and should) view this subspace basis-free, in the notation of Example 1.4,
dealing with O(V, B) instead of O, (F). We get

T,0(V. B) = (€ € gl(V)|B(éu,v) + Blu, £0) = 0.¥u,v € V).
This subspace is denoted by so(V, B) (or just so(V') when B is understood).

Exercise 2.16. T} Sp(V, ) = {¢ € gl(V)|w(éu,v) + w(u, Ev) = 0, Vu,v € V'}. This subspace
is usually denoted by sp(V,w) (or just sp(V)).

2.3. Bracket on the Tangent Space at 1 of an Algebraic Group. One can ask how
the group structure on an algebraic group G reflects upon the tangent spaces T,G. A natural
candidate to carry an additional structure is 771G, where we write 1 for the identity element of
G. At the first glance, the group structure does not equip 711G with any additional structure,
as evidenced by the following exercise.

Exercise 2.17. Let m : G x G — G denote the multiplication map, and ¢ : G — G be the
inversion map. Show that

(1) Under the identification of T(1,1)(G x G) with T1G @ T1G, see Exercise 2.6, we have

dim(&1,62) = &1 + &
(2) We have dyi(§) = —¢.
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Hint: handle the case G = GL,(F) first; in the general case, embed G into some GL,,(F).

Nevertheless, T1G does come with a well-defined additional bilinear operation, usually
denoted by [,:]. For {,n € gl,,(F), let [£,n] denote the matrix commutator £&n — ng. As
mentioned in Section 2.2, T1G is a subspace of gl (F). In what follows we will write g for
T\G.

Theorem 2.18. (1) g is closed under the bracket operation.
(2) Suppose H is another algebraic group, and ® : G — H is an algebraic group homo-
morphism. Set b := Th'H,o := T1'® : g — b. Then ¢([&,n]) = [0(£), o(n)] for all

§,1€ 9.
Exercise 2.19. Check (1) explicitly for g = sl,,, s0,,, or sp,, C gl,,(IF).

Proof. Step 1: Here we produce a bilinear map [-,-] : g x g — F[G]*. Recall that &,&; € g
can be viewed as linear functions F[G] — F. So & ®¢&; is a linear function on F[G]®F[G] — F.

Recall, (b) in Section 1.1, that F|G] ® F[G] is identified with F|G x G]. Consider the
multiplicative commutator map C' : G x G — G given by (g1, 92) + 919297 ‘g5 . Since
multiplication and inversion maps are morphisms, the same is true for C'. So we have the
pullback homomorphism C* : F[G] — F|G x G]. Set

[€1,6] = (L ®&) o C™.

The map [, -] is indeed bilinear.
Step 2: We compute |-, -|' for G = GL,(F). For f € F[G], we have

[51, fz]l(f) (& ® &) o C*(f)
aszf((l + 5131)(1 + 5232)(1 + gls)_l(l + 528)_1)|81182:O

Note that the expression inside of f expanded as a power series in sy, sy equals 14s7159([£1, &o]+
h.o.t., where “h.o.t.” stands for higher order — at least cubic — terms in s;,ss. Hence its
derivative with respect to s; and sy equals [€1,&)(f). We conclude that [£;, &) = [&1, &)
(the left hand side is an element in F[G]*, while the right hand side is an element of g that
is a subspace in F[G]*).

Step 3: In the notation of part 2) of the theorem, we claim that the following diagram is
commutative:

gxg—=F ~h x b

2) F[G] ———*——TF[H]"

Indeed, recall that ® is a group homomorphism, so

PoCa=Cho(Px®) = Chod* = (P D) oCy,
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where Cg, C'y denote the commutator maps for G, H, respectively. Then

[p(&1), p(&)] = (p(&) @ (&) 0 Crr = (&1 ® &) 0 (P D) 0 O =
(& ® &) o CFo®" = [£,8&] o D"

So (2) is indeed commutative.

Step 4: Here we establish 1) of Proposition. Consider commutative diagram (2) for the
inclusion ¢ : G — H := GL,(F). Then ®* : F[H] — F[G] is a surjection, hence F[G]* —
F[H]*. Also h C F[H]*. We claim that g = h N F[G]|*. Indeed, g consists of all elements
d € F[G]* that satisfy the Leibniz identity: d(fg) = f(1)d(g) + g(1)d(f) for all functions
f,g € F[G], or equivalently, all functions f,g € F[H|. Note that h as a subspace of F[H|*
admits a similar description. These descriptions imply g = h N F[G]*. Recall that [¢1, &) =
[£1,&] € b for all &,& € b, thanks to Step 2. From here and Step 2 we conclude that g is
stable with respect to [-,-].

Step 5: Now we establish 2) of Proposition. By Step 4, im[-, " C T1G for any G. The
claim of 2) now follows from the commutativity of (2). O

Remark 2.20. Here is a slightly alternative way to construct [-,-]" : g x g — F[G]* that will
be useful in what follows: we set [{1,&)] = (§1 @& — & ®E&) om™, where m : G X G — G is
the product map. To show that this is equivalent to the construction in Step 1 of the proof
of Theorem 2.18 is left as an exercise.

2.4. Bonus: Equivalent definitions of the bracket. There are other equivalent defini-
tions of the bracket on g that we are going to sketch now.

For an affine variety X, we can talk about wvector fields on X. By definition, these are
derivations F[X| — F[X], i.e., F-linear maps satisfying Leibniz identity:

o(fg) = folg) +go(f)-
Denote the space of derivations by Der(X). It comes with a bracket: for d;,d, € Der(X),
the map F[X] — F[X] defined by

[01,62](f) := 61(02(f)) — 62(61())
for f € F[X] is a derivation.

Now let X = G be an algebraic group. The group G acts on Der(G), say via the action
of G on itself on the right, and the action respects the bracket. So, the subspace Der(G)“
of invariant vector fields is stable under the bracket. Similarly to the case of Lie groups,
restricting a vector field to the identity element 1 € G gives an isomorphism Der(G)¢ =
g intertwining the brackets. The functoriality (part 2 of the theorem) is then harder to
establish; see [H2, Sec. 9.2].

One can also adapt an approach from [OV, Sec. 1.2] to the algebraic setting as follows.
For this, we assume that the reader is familiar with the language of schemes.

For k € Z-, consider the algebra Fle]/(¢"™) of truncated polynomials. For an algebraic
group G, we consider its group of Fle]/(e*™!)-points. A naive definition is as follows. The
group G is defined inside GL,(F) by some polynomial equations. Consider the subset of
GL,(Fle]/(¢"1)), the group of invertible matrices with entries in F[e]/(e**!), given by the
same polynomial equations. It’s a subgroup. A more conceptual way is to view this group
as the group of scheme morphisms Spec(F[e]/(e**1)) — G, that should be viewed as curves
up to order k in G. Denote the resulting group by Gy. Note that for £ < ¢, we have a
homomorphism of abstract groups G, — G;. An exercise is to check that the kernel of
Gri1 — Gy is identified with g, with its additive group structure, for all k.
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Now, an algebraic group homomorphism ¢ : G — H gives rise to a group homomorphism
v © G — Hj for all k, given by the same polynomials. This is especially easy to see if
we identify G}, and Hj, with the groups of morphisms from Spec(Fle]/(¢"1)) to G and H,
respectively; to get ¢, we post-compose with ¢. For each k, the diagram

(3) Gy —"~ H,

L,

G —— H,
is commutative. The induced homomorphism
g = ker(Gyi1) = Gy) — ker(Hyyy — Hy) =
coincides with T ® for any k. Since the kernels in question are abelian, the commutator map
for the group ker(G3 — G1) descends to a map
ker(Gy — G4) x ker(Gy — G1) — ker(Gs — G3).

Under the identification of these kernels with g, we recover the bracket on g, the reader
interested in proving this case can try to reduce it to the case of G = GL,(F). From here
and commutative diagram (3) we deduce that T1® intertwines the brackets.

2.5. Definition and basic examples of Lie algebras. Let F be a field.
Definition 2.21. A Lie algebra over F is an F-vector space g equipped with a bilinear map
[-,:] - gxg — g (called the Lie bracket or commutator) satisfying the following two properties:
(SS) Skew-symmetry: For all z € g,
[z,x] = 0.
(JI) Jacobi identity: For all x,y, z € g,
[z, [y, 21] + [y, [z, 2] + [z, [, y]] = 0.

Note that (SS) implies [z,y] = —[y, ] for all z,y € g and, assuming char[F # 2, is
equivalent to that condition (while for charF = 2, (SS) is stronger than [z,y] = —[y, x]).
Modulo (SS), (JI) is equivalent to:

[z, [y, 2]] = [[z, 9], 2] + [y, [, 2],

Definition 2.22. Let g, h be Lie algebras. An F-linear map ¢ : g — b is called a Lie algebra
homomorphism if:

o[z, y]) = [p(x),p(y)] forallz,y € g.

Definition 2.23. Let b be a Lie algebra. A subspace g C b is called a Lie subalgebra if it
is closed under [-,:]. Then the restriction of [-,-] to g is also a Lie bracket, and the inclusion
map g < b is a Lie algebra homomorphism.

Now we give some basic examples of Lie algebras.

Example 2.24 (Abelian Lie algebra). An abelian Lie algebra g is one in which [z,y] = 0
for all x,y € g.

Example 2.25. Let A be an associative algebra. Then, for a,b € A, define [a, b] := ab — ba.
This operation satisfies (SS) and (JI), hence is a Lie bracket. An important special case is
A = Mat,(F) or End(V) for an F-vector space V. The resulting Lie algebra is denoted by
gl (F) or gl(V). Note that it is the tangent space T3 GL(V'), see Example 2.12.
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Example 2.26. Let F be algebraically closed, and G be an algebraic group. Then, as we
have seen in (1) of Theorem 2.18, g := TG is a Lie subalgebra in gl (F). Moreover, according
to (2) of Theorem 2.18, for an algebraic group homomorphism ¢ : G — H, its tangent map
@ :=T1P:g— bis a Lie algebra homomorphism.

2.6. Representations of Lie algebras. In Example 2.25 we have assigned the general
linear Lie algebra gl(V') to an F-vector space V. As usual, this allows us to talk about
representations of Lie algebras: by definition, a representation of a Lie algebra g in a vector
space V' is a Lie algebra homomorphism g — gl(V'). One source of these representations is
the rational representations of algebraic groups: if V is a finite dimensional vector space,
and ® : G — GL(V) is a rational representation of G, then ¢ := T7® : g — gl(V) is a
representation of g.
Now we give some examples and constructions of representations.

Example 2.27. For x € g, let ad, : g — g denote the operator given by ad,(y) = [z, y] for
all y € g. The map = — ad, : g — gl(g) is a representation called the adjoint representation.

Suppose now G is an algebraic group and g is its Lie algebra. Then there is a rational
representation of G in g, also called the adjoint representation and denoted by Ad : G —
GL(g). It is constructed as follows. Consider the conjugation action of G on itself: a,(¢') :=
gg'g~*. Note that 1 € G is invariant under this action. For Ad, we take the linear map
Tia, € End(T1G).

Lemma 2.28. The map g — Ad, : G — End(T\G) is a rational representation of G.
Moreover, we have Ty Ad = ad.

Proof. First, we observe that Ad is an abstract group representation. Indeed, the functori-
ality of 77 (also known as the chain rule) shows Adg,,, = Adg, 0 Ad,,. Since Ad; = id, we
see that Ad is indeed a group representation.

Now we show that Ad is a rational representation. Embed G into GL,,(F) for some n. Then
a, is the matrix conjugation, hence for £ € g(C gl,,(F)) and g € G, we have Ad,(§) = g€g~".
This manifestly defines a rational representation of GG in g.

The formula Ad,(¢) = g&g~ "' also implies that T3 Ad(n)(§) = n& — &n = [, €] for all
1,& € g. Hence T7 Ad = ad. O

Example 2.29. Let V and W be representations of a Lie algebra g. Then V ® W has a
unique structure of a representation of g, defined by

E(vew)=(v)uw+uv® ((w),VEegveV,we W.

gi192

Exercise 2.30. 1) Check that this is indeed a representation.

2) Let G be an algebraic group with Lie algebra g and let V, W be rational representations
of G and hence representations of g. Then the representation of g in V ® W arises from the
representation of G in V@ W.

Example 2.31. If V is a representation of g, then so is V*, the dual space of V. The
structure of a g-representation on V* is given by

(C.a)(v) =—a(lv),VEegac Vi veV.
This is the dual representation. The motivation is similar to 2) of Exercise 2.30.

Example 2.32. The trivial representation of g in [F is the representation where all £ € g
act by the zero.
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2.7. Correspondence between Algebraic Groups and Lie Algebras. Recall that over
the real or complex numbers there is an equivalence between:

e The category of finite dimensional Lie algebras (with Lie algebra homomorphisms),
e and the category of simply connected Lie groups (with Lie group homomorphisms),

see, e.g., [OV, §1.2.6, 1.2.8, 6.2]. For algebraic groups, even over the complex numbers, this
correspondence is more subtle. This is what we are going to briefly discuss in this section.

First, recall that every algebraic group G is smooth as a variety, see Exercise 2.10. Note
that for a smooth variety being irreducible is equivalent to being connected in the Zariski
topology. Now suppose the base field F is the complex numbers. We can consider any
algebraic variety as a complex analytic space. If the resulting manifold is connected in the
usual topology, then the initial variety is connected in the Zariski topology. The converse
is also true, but is harder. For algebraic groups, the converse is relatively easy though, see
OV, §3.3.1].

Example 2.33. The groups GL,(F), SL,(F), SO, (F), and Sp,,(IF) are connected (in the
Zariski topology). To see this, one can argue similarly to [OV, §1.3.1]. On the other hand,
O, (FF) is not connected.

In characteristic 0, one has the following uniqueness results.

Theorem 2.34. Suppose G is connected and char(F) = 0. Let ®,¥ : G — H be algebraic
group homomorphisms and @, : g — b the corresponding Lie algebra homomorphisms. If
=1, then & = V.

Theorem 2.35. Let V' and W be rational representations of G. If a linear map n:V — W
is G-linear, then n is g-linear. If G is connected and char(F) = 0, then the converse is true
as well.

Over F = C, both theorems can be proved by using the exponential map exp : g — G, cf.
OV, §1.2.7]. Namely, embed G into GL,(C) for some n. The image of g under the usual
matrix exponential map gl (C) — GL,(C) is contained in G, the resulting map exp : g — G
does not depend on the choice of the embedding. Both theorems can be deduced from this
independence, this is left as an exercise. One can emulate these constructions over general
algebraically closed characteristic 0 fields using formal groups.

For other results relating algebraic groups and their Lie algebras over characteristic 0 fields
we refer the reader to [OV, Sec. 3.3].

Remark 2.36. Both theorems are false when char(F) = p # 0. For Theorem 2.34, consider
groups G = H = G,,,, (g) = 1,¥(g) = ¢?, so that both ¢ and v are zero maps. This also
serves as a counterexample to Theorem 2.35.

3. UNIVERSAL ENVELOPING ALGEBRAS

3.1. Definition. The universal enveloping algebras play the same role for Lie algebras as
the group algebras do for (finite) groups.

Definition 3.1. Let F be a field, and g be a Lie algebra over F. Define the universal
enveloping algebra U(g) as
Ulg) =T(9)/(z @y —y®x — [z,9]|lz,y € 9)

where T'(g) is the tensor algebra of g. Here we mod out the two-sided ideal generated by the
elements in the brackets.
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The composition map ¢ : g — T'(g) — U(g) is a Lie algebra homomorphism. It is universal
in the following sense.

Lemma 3.2. Let A be an associative algebra (hence a Lie algebra). Let ¢ : g — A be
a Lie algebra homomorphism. Then, there is a unique associative algebra homomorphism
@ :U(g) = A such that ¢ = po .

The proof is left as an exercise.

Example 3.3. If g is an abelian Lie algebra, then U(g) = S(g), the symmetric algebra on
g. Indeed, these two algebras are just given by the same generators and relations.

3.2. Poincare-Birkhoff-Witt (PBW) Theorem. Let g be a Lie algebra. Our goal is to

present a basis in U(g). Assume for simplicity that g is finite-dimensional. Let zy,...,z,
be a basis of g. We view can view zy,...,x, as elements of U(g) via the homomorphism
t:g— Ulg).
Theorem 3.4. The ordered monomials z% - - x% with dy,... ,d, € Zso form a basis in
U(g)-

An easy part is that these elements span U(g). A stronger claim is true: for d > 0, let
U(g)<a denote the span of all monomials in xy,...,z, of degree < d.

Lemma 3.5. The ordered monomials 5" - - -z with dy + ... + d, < d span U(g)<q.

n

Proof. We apply induction on d, using the observation that for ¢ < j, we have z;z; =
x;x; — [x;,x;]. Note that the second summand is a linear combination of zy,...,z,. The
finish the proof is left as an exercise. 0J

The linear independence is more subtle (see [Bo, Ch. I, Sec. 2] or [H1, Sec. 17.8]). The
idea is to construct a representation of g with basis x?l .l for dy, ..., d, € Zsy and the
action given by left multiplication. One needs to write the product :vgx‘lil ... 2% as the linear
combination of ordered monomials, using the identity [z;, z;] = x;z; — z;x;. The existence
of such a representation is automatic once we know the theorem (this is just U(g)), but the
point is that the existence can be verified independently, although the check is unpleasant.
We will prove the theorem in Section 4.3 for Lie algebras of algebraic groups in the case when
charF = 0. The two ingredients in the proof are filtrations and gradings (to be covered in

Section 3.3) and Hopf algebra structures to be covered in Section 4.

3.3. Filtered and graded algebras. The goal of this section is to observe an additional
structure — an ascending algebra filtration — on U(g) and interpret Theorem 3.4 as a state-
ment about the associated graded algebra (a construction we are also going to define).

Definition 3.6. Let V' be a vector space over F. By a vector space grading on V we mean
a vector space decomposition V' = €,., V;. An element of V; will be called homogeneous of
degree i. We refer to the subspaces V; as the graded components of V.

Let U = @,U;,V = @, V; be two graded vector space. We say that a linear map
¢ : U — Vis graded if p(U;) C V.

Example 3.7. Let U,V be vector spaces with gradings U = @@, U; and V = @ V,. Then
their tensor product U ® V' is graded with (U ®@ V), = @, U; ® Vi, for all k € Z.

We now proceed to graded algebras.
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Definition 3.8. Let A be an F-algebra (not necessarily associative or unital). By an algebra
grading on A (by Z) we mean a vector space grading A = @,., A; such that A;A; C A;y;
for all 7, j € Z, equivalently, the product map A ® A — A is a graded linear map.

We note that if A is associative and unital, then necessarily 1 € Ay (because the projection
of 1 to Ay is the unit).

Example 3.9. Let V' be a vector space. Then the tensor, symmetric, and exterior algebras
A=T(V),S(V),A(V) admit unique gradings with A; = V.

Now we proceed to filtrations.

Definition 3.10. Let V' be a vector space. By an ascending vector space filtration (or, more
precisely, Z-filtration) on V' we mean a collection of subspaces V; C A such that V; C V44
for all 7 € Z. We say that the filtration is ezhaustive it V = UjeZ Vg; and separated if
; V; = {0}. We refer to the subspaces Vg; as the filtered pieces of V.

We can talk about filtered linear maps, similarly to graded ones: a filtered linear map
¢ : U — V is one satisfying ¢(Ug;) C Vg; for all j. One subtlety is the notion of an
isomorphism: if ¢ : U — V is a filtered linear map that is bijective, then ¢! may fail to be
filtered if U and V are infinite dimensional. Below, when we talk about filtered isomorphisms
¢ we always assume that p(Ug;) = Vg; for all j, then ¢! is a filtered linear map.

Similarly to graded vector spaces, the tensor product of two filtered spaces U and V' carries
a natural filtration with

UeV)a=>» U®Viy,Vk €L

Definition 3.11. Let A be an associative unital F-algebra equipped with a vector space
filtration with pieces Vg;:

(a) AgiAj - Ai+j for all Z,] S Z,

(b) 1 € Ag.
Note that (a) is equivalent to the condition that the product map A ® A — A is filtered.

Now we give constructions of exhaustive ascending algebra filtrations.

Example 3.12. Let A = ,_, A; be a graded algebra. Set Ag; := @igj A;. This defines
an exhaustive ascending algebra filtration.

Example 3.13. Let A be an associative unital algebra with generators x;, where ¢ runs over
some indexing set I. Let Ag; denote the span of monomials x;, ...z;, with i1,...,4; € I.
Then the subspaces A¢; define an exhaustive ascending algebra filtration on A. Note that
this algebra is filtered by Z-( meaning that A<; = {0} for j < 0.

Example 3.14. Let A, B be two filtered associative unital algebras with filtered pieces
Aci, B;. Then A ® B with the tensor product filtration as above is a filtered algebra.

We can apply Example 3.13 to A = U(g) and {z;} being the set of all elements of g (or
just the elements of a chosen basis). The jth filtered piece is the subspace U(g)<; from
Section 3.2. This is the so called PBW filtration.

Now we proceed to the associated graded space of a filtered vector space.

Definition 3.15. Let V' be a filtered vector with filtered pieces V;. Form the space grV' :=
P,cs V<i/V<i—1. This space is called the associated graded space of V', it is graded with ith
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graded component Vg;/Vg; 1. Note that if A is a filtered algebra, then gr A has a unique
associative product satisfying (a + A<;—1)(b+ A<j_1) = ab+ Ay j_q for all i, j,a € Ag;,b €
A¢; turning gr A into a graded algebra.

Here is a basic tool to get some understanding of associated graded algebras. Let A be
an algebra equipped with an ascending filtration /ngj. Let I C A be a two-sided ideal.
Then A := A/I inherits an ascending filtration from A: if 7 : A — A/I is the quotient
epimorphism, then for the filtered pieces we take 7r(/~1<j). Now suppose that A is graded
and the filtration arises as in Example 3.12. For a nonzero element a € A with a = >
for a; € A; we write top(a) for the nonzero a; with maximal possible i. For a = 0, we set
top(a) = 0. Note that top(I) := Spang{top(a)|a € I} is an ideal, and it is graded meaning
that top(/) = @, (top(I) N A;). The algebra A/ top(I) inherits a grading from A.

Exercise 3.16. Construct a graded algebra epimorphism A — gr A and show that its kernel
is top([/).

We apply this construction to A = T (g) and the two-sided ideal I generated by the
elements z ® y —y @ x — [z,y|. The quotient A = A/I is the universal enveloping algebra
U(g). Consider the two-sided ideal Iy C T'(g) generated by the elements z ® y — y ® x with
x,y € g. The quotient T'(g)/Iy is nothing else but the symmetric algebra S(g). Note that
Iy C top(I). This yields the epimorphism S(g) — grU(g). The PBW theorem (Theorem
3.4) is equivalent to the claim that this epimorphism is an isomorphism.

Next exercise studies the compatibility of taking the associated graded algebra with tensor
products.

Exercise 3.17. Let U,V be as in Example 3.14, so that U ® V carries a natural filtration.
Construct a natural homomorphism (gr U) ® (gr V') — gr(U @ V'), where the right hand side
is equipped with a grading as in Example 3.7. Show that it is an isomorphism. Moreover, if
U,V are filtered algebras then the isomorphism above is that of graded algebras.

We finish this section with a remark.

Remark 3.18. Sometimes it is convenient to talk about descending vector space (and alge-
bra) filtrations. These are obtained from ascending ones by reversing the index: V5, := V_;.
Here is an important example of a descending filtration: let A be an associative unital algebra
and I C A be a two-sided ideal. Then for i > 0 we can set As; := I".

4. HOPF ALGEBRAS

4.1. Introduction. Questions about affine varieties (or schemes) usually get translated to
the language of algebras of functions. So we can ask how an algebraic group structure on GG
is reflected on its algebra of functions.

To have an algebraic group structure means to have

e the product morphism m : G x G — G,
e the unit element that can be viewed as a morphism 1 : pt — G,
e and the inversion morphism 7 : G — G.

The axioms m, 1, and ¢ should satisfy are exactly those of a group, i.e.:
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e m is associative, equivalently, we have the following commutative diagram:

GxGxG—" _ax@

x| |

GxG = G

e The unit axiom, which is the following commutative diagram (and its analog, where
we swap pt and G, and 1 and id):

1xid

pt x G . G x G

|-

G

e The inverse axiom, which is the following commutative diagram:

G (dd) . Gx@G

\

pt m

o \
1
GxG n

Now consider the pullback homomorphisms m* : F|G] — F[G] ® F|G], 1* : F[G] — F, and

i* : F[G] — F[G]. The diagrams above translate to the corresponding diagrams for m*, 1*,
and ¢* when we replace the varieties with their algebras of functions and reverse all arrows.

G

4.2. Definition: Hopf Algebra. Let [ be a field and A be an associative unital F-algebra.
We write p1: A ® A — A for the multiplication map, p(a ® b) = ab, and 1 : F — A for the
unit map 7(1) = 14.

Definition 4.1. By a Hopf algebra structure on A, we mean a triple of algebra homomor-
phisms:

e The coproduct A : A - A® A.
e The counite: A —F.
e The antipode S : A — A°PP (the algebra with opposite product).

satisfying the following axioms:

e The coproduct is co-associative, i.e., the following diagram is commutative:

A A A® A

N e

AA—92 A9 A A
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e ¢ satisfies the counit axiom, i.e., the following diagram is commutative (and its analog,
where € ® id is replaced with id ®e is commutative):

A— 2 A0 A
a l e®id
A

e S satisfies the antipode axiom, meaning that the following diagram is commutative:

A A rA® A

RN

A

F po (S ®id)

n

AR A —#odeS) » »

Remark 4.2. A vector space C' equipped with linear maps A : C' — C' ® C satisfying the
coassociativity axiom and € : C' — F satisfying the counit axiom, is called, not surprisingly,
a coassociative counital coalgebra. So a Hopf algebra is an associative unital algebra and a
coassociative counital coalgebra such that A, e are algebra homomorphisms (such a structure
is called a bialgebra) and an antipode exists (if so, it is recovered uniquely from the other
structures, see, e.g., [EGNO, Proposition 5.3.5]).

Example 4.3. Let G be an algebraic group. Then F[G] is a Hopf algebra with A = m*, e =
1%, S =i*, cf. the end of Section 4.1.

Example 4.4. Let G be a group. Then the group algebra FG is a Hopf algebra with unique
coproduct, counit and antipode maps satisfying

Alg)=g®yg, €e(g)=1, S(9) =g ' VgeGCFG.
To check the axioms is an exercise.

Example 4.5. Let g be a Lie algebra. Then the universal enveloping algebra U(g) has the
unique Hopf algebra structure such that

Alz) =2 1+1®@x,e(x) =0,5() = —z,Vo € g C U(g).

In particular, the symmetric algebra S(V') of a vector space V' (viewed as an abelian Lie
algebra) is a Hopf algebra.

Example 4.6. Here is a construction with Hopf algebras. Let A be a Hopf algebra, and [
an ideal satisfying the following conditions:

e A)CI®RA+ARI,

e S(I)CI,

e ¢(])=0.
In this case we say I is a Hopf ideal. Note that the quotient A/I acquires a natural Hopf
structure uniquely characterized by the condition that the projection A — A/I is a Hopf
algebra homomorphism.
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There are further examples: the cohomology algebra of a Lie group that was studied by
Hopf, or the distribution algebra of an algebraic group, and perhaps the most interesting
class, the quantum groups (g-deformed versions of universal enveloping algebras).

Remark 4.7. The definition of a Hopf algebra is “self-dual”. More precisely, let A be a
finite-dimensional Hopf algebra with operations u,n, A ¢, S. One can check that A* (the
dual vector space) is also a Hopf algebra with operations A*, e*, u*, n*S*. For example, for
a finite group G and A = FG, we have that A* = F[G] (the algebra of functions on G). To
check that F[G] is dual to FG is also an exercise.

Remark 4.8. Let A be a Hopf algebra over a field F, and U,V be A-modules with cor-
responding homomorphisms py : A — End(U),py : A — End(V). This gives an algebra
homomorphism

A® A - End(U) @ End(V) — End(U @ V)

making U®V an A® A-module. Thanks to the homomorphism A : A — A® A, we can view
U®YV as an A-module. In other words, the tensor product of two A-modules is naturally an
A-module. Similarly, F becomes an A-module via € (the trivial module), while U* (which is
naturally a right A-module) becomes a (left) A-module via S. For A = FG (resp., A = U(g))
this recovers tensor product, trivial and dual group (resp., Lie algebra) representations.

4.3. Graded and filtered Hopf algebras. In this section we investigate analogs of con-
structions from Section 3.3 for Hopf algebras and prove a special case of Theorem 3.4.

Definition 4.9. Let A be a Hopf algebra equipped with an associative unital algebra filtra-
tion with filtered pieces A¢;. Then A ® A is filtered as well, see Example 3.14. We say that
the filtration on A is a Hopf algebra filtration if the coproduct, the counit and the antipode
are filtered algebra homomorphisms. Similarly, we can talk about graded Hopf algebras.

Example 4.10. Let V' be a vector space, so that the symmetric algebra S(V') has a natural
Hopf algebra structure, see Example 4.5. The natural grading on S(V) makes it into a
graded Hopf algebra.

Example 4.11. Let g be a Lie algebra, and A := U(g). Then U(g) is a filtered Hopf algebra
with respect to the PBW filtration.

Exercise 4.12. Let A = F[G] and let m; is the maximal ideal of 1 in F[G]. It gives rise to
the descending filtration on F[G] as in Remark 3.18. Show that it is a Hopf algebra filtration.
Hint: observe that F|G] ® m; + my ® F[G] is the maximal ideal of (1,1) € G x G. Deduce
from here that, for the product map m : G' x G — G, we have m*(m¥) ¢ 28 mi @ mh~.
Suppose now that A is a filtered Hopf algebra. In this case gr A acquires the structure of
a graded Hopf algebra by taking the top degree terms of A, S, ¢, cf. Definition 3.15.
With this preparation we are ready to establish a special case of Theorem 3.4.

Proposition 4.13. Suppose that F is an algebraically closed field with char(F) = 0. Let
G be an algebraic group. Then the epimorphism S(g) — grU(g) from Section 3.3 is an
1somorphism.

Proof. The proof is in several steps.
Step 1. Let I denote the kernel of the epimorphism S(g) — gr U(g). Note that I is graded,
meaning that [ = @2, I;, where I; = I N.57(g). Also note that S(g) — grU(g) is a Hopf
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algebra homomorphism (left as an exercise). It follows that I is a Hopf ideal in the sense of
Example 4.6.

Step 2. We claim that the only Hopf ideal in A := S(g) with Iy = I; = {0} is the zero
ideal. Assume the contrary. Let m be the minimal number with I,, # {0}. Choose a
nonzero element f € I, and consider A(f). This is a homogeneous element of degree m
in A® A, so A(f) € D"y Ai ® Amy C A® A. On the other hand, I is a Hopf ideal, so
A(f) e I® A+ A® 1. Since m is the minimal possible degree of a homogeneous element in
I, we have A(f) € 1®1,,® [, ® 1. Now we claim that the component of A(f) in A1 ® A1
is nonzero leading to a contradiction hence proving the claim in the beginning of the step.
Choose a basis x1,...,x, in g. We leave it as an exercise to show that the component of
A(f)in A; @A, 118> 4 ® g—i. Since char F = 0, the latter element cannot be zero for
f#0.

Step 3. It remains to show that for the ideal I in Step 1, we have Iy = I; = {0}. This is
equivalent to the condition that the elements 1,x,...,z, € U(g) are linearly independent.
Thanks to the universal property of U(g), Lemma 3.2, it suffices to find a representation p
of g in a vector space V' such that idy, p(x1),. .., p(x,) are linearly independent elements of
End(V). Recall that G embeds into GL,(F) for some n as a closed subgroup, let ® denote
the embedding. By Exercise 2.7, d;® is injective. For p we take the direct sum of d;® and
the one-dimensional trivial representation. To check that idy, p(x1),. .., p(x,) are linearly
independent is an exercise. 0

We note that if charF = p > 0, then the claim of Step 2 is false: for any f € S(g), the
ideal (fP) is a Hopf ideal. However, we have the following important exercise that will be
used in a subsequent chapter.

Exercise 4.14. Let F be an algebraically closed field of characteristic p, and let G be an

algebraic group over F. Let zq,...,x, be a basis of g. Then the elements m‘lil ...zl with

>, di < p are linearly independent in U(g). Moreover, if an element z € U(g)<,—1 satisfies
Alz) =20 1+1® z, then z € g.
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