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1. GENERALITIES ON ASSOCIATIVE ALGEBRAS AND THEIR MODULES

1.1. Basic definitions. In this section we define associative algebras, their left and right
modules and bimodules. All rings are associative and unital. Let k be a commutative ring.
We will mostly be interested in the case when k is an algebraically closed field.

Definition 1.1. By an (associative, unital) k-algebra we mean an (associative, unital) ring
A together with a ring homomorphism ¢ : k — A such that ¢(r)a = ac(r) for all r € k,a € A.

In particular, any ring is a Z-algebra.
Definition 1.2. A homomorphism of k-algebra is a k-linear homomorphism of unital rings.

Definition 1.3. Let A, B be (associative, unital) rings and M be an abelian group.

e By a (left) A-module structure on M we mean a Z-bilinear multiplication map A x
M — M that is associative in the sense that aj(aym) = (ajaz)m for all aj,as €

Ame M.
1



2 IVAN LOSEV

e By a right B-module structure on M we mean a Z-bilinear multiplication map M X
B — M that is associative in the sense that (mb;)by = m(b;bs).

e By an A-B-bimodule structure on M we mean a pair of a left A-module and a right
B-module structures such that a(mb) = (am)b.

Remark 1.4. Let AP denote the ring that is the same as A as an abelian group, but the
multiplication is in the opposite order. Then a right A-module is the same thing as a left
A°PP-module (and vice versa).

Definition 1.5. Let M, N be left A-modules. By an A-module homomorphism (a.k.a. A-
linear map) ¢ : M — N one means an abelian group homomorphism ¢ : M — N such that
w(am) = ap(m) for all a € A,;m € M.

1.2. Basic examples and constructions of modules. In this section k is a commutative
ring and A is an k-algebra.

Example 1.6. A can be viewed as a left A-module, as a right A-module and as an A-A-
bimodule via the multiplication. These (bi)modules are called regular.

Definition 1.7. Let M;, M5 be two left modules. We can define their direct sum M; & M,
in the standard way: it consists of pairs (mj, msy), where m; € M;, with componentwise
operations. More generally, for an index set Z (which may be finite or infinite) and left A-
modules M;, 7 € 7 we define their direct sum @iGI M; as the set consisting of all collections
(m;);ez with only finitely many nonzero entries (with componentwise operations).

Example 1.8. Let Z be an index set. We can form the coordinate A-module A®!.
Now we proceed to submodules and quotient modules.

Definition 1.9. Let M be a (left) A-module. By a submodule of M we mean a nonempty
subset closed under the module operations: addition and the multiplication by elements of
A. One can define submodules in right modules and subbimodules in bimodules in a similar
fashion.

Example 1.10. The submodules of the regular left A-module A are exactly the left ideals of
A. For the regular right A-module (resp., A-bimodule), we arrive at right (resp., two-sided)
ideals.

Let M be a left A-module and M, be its submodule. We can form the quotient abelian
group M /M, and endow it with the unique module structure with the multiplication by
elements of A given by a(m + My) := am + M,. The resulting module is called the quotient
(of M by My). The following lemma states the universal property of a quotient module.
Note that we have a natural surjective map M — M /My, m — m + M,, denote it by .

Lemma 1.11. Let M, N be A-modules and My C M be a submodule. Let ¢ : M — N be
an A-linear map sending My to zero. Then there is a unique A-linear map ¢ : M/My — N
such that ¢ = pom. It is given by o(m + My) := @(m).

As for vector spaces, it makes sense to speak about spanning sets and bases of modules.
Clearly, every module has a spanning set (we can take all elements of the module, for
example). Unlike for vector spaces, not every module has a basis. A module that has a basis
is called free.

Example 1.12. The coordinate module A%®% is free. It has the coordinate basis: e; :=
(0ij)jez, where d;; is the Kroneker delta.
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The following proposition describes free modules and shows that every module is a quotient
of a free module.

Proposition 1.13. Let M be a left A-module, T be an index set, and m; € M,i € T, a
collection of elements. The following claims are true:

(1) There is a unique A-linear map A®T — M such that e; — m;.

(2) This map is surjective if and only if the elements m; span M. In particular, every
M is isomorphic to a quotient of a free module.

(3) This map is an isomorphism if and only if the elements m; form a basis of M. In
particular, every free module is isomorphic to a coordinate module.

We note that this proposition holds for right modules, but needs to modified for bimodules.

Example 1.14. Suppose M is spanned by a single element m. Then M is isomorphic to
A/I, where I is the left ideal {a € Alam = 0}.

1.3. Basic examples and constructions of algebras. We start by giving some examples
of k-algebras, where k is a commutative (as well as associative and unital) ring.

Example 1.15. Let n be a non-negative integer and A be a k-algebra. We can form the
k-algebra Mat,,(A) of n X n-matrices with the usual matrix multiplication.

Example 1.16. Let G be a group. Then we can form its group algebra kG defined as follows.
It is a free module with basis identified with the elements of G (so that every element of kG
is uniquely written as >~ ayg for a, € k). The multiplication of the basis elements is the
same as in the group, it is extended to kG by bilinearity.

The importance of this construction is as follows. For a group G and an (associative and
unital) algebra B consider the set of maps G — B that sends 1 to 1 and respect the multi-
plication. Then this set is in a natural bijection with the set of k-algebra homomorphisms
kG — B. The map from the former to the latter is the extension by linearity and the map
in the opposite direction is the restriction to G.

In particular, let V' be a k-vector space and B := End(U). A map G — End(U) as above is
nothing else as a representation of G in U, while a k-algebra homomorphism kG — End(U)
is a kG-module structure on U. So, a representation of G (over k) is the same thing as a
kG-module.

Example 1.17. Let A be a k-algebra and let I be a two-sided ideal. Then the quotient A/I
has a natural algebra structure. It satisfies a universal property similar to Lemma 1.11 (but
for homomorphisms of algebras).

Example 1.18. Let Ay, A; be two k-algebras. Then their direct sum A; & A, has a natural
algebra structure. The same is true for the direct sum of finitely many k-algebras. However,
the direct sum of infinitely many algebras cannot be unital.

1.4. Module of homomorphisms. Let k be a commutative ring, A be a k-algebra and
M, N be left k-modules. Let Homu4 (M, N) denote the set of A-module homomorphisms
M — N. This set carries a natural k-module structure via:

[p1 + 2] (M) 1= p1(m) + p2(m);

[rcpl](m) = T(Sp(m»? re k7 ¥1, P2 € HOHIA(M, N)>m € M.

Exercise 1.19. Check that Hom (M, N) is indeed a k-module.
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For three left A-modules L, M, N we have the composition map
Hom (M, N) x Homyu (L, M) — Homyu (L, N), (¢, %) +— @ o 1.

It is k-bilinear.

In particular, let Ny be an A-module, N; C Ny be an A-submodule, and N3 := Ny/N; be
the quotient module. Let ¢ : N; — Ny denote the inclusion map, and 7 : Ny — N3 denote
the projection map. This gives rise to the k-linear maps

7 :Homy (M, Ny) — Homa (M, Ny), o1 — Lo ¢y,
7 : Homa (M, Ny) — Homa (M, N3), o2 — o0 .

The following lemma is important in understanding the behavior of the Hom modules.
Lemma 1.20. The map t is injective, while im i = ker 7.

Proof. The claim that 7 is injective is left as an exercise. Note that m o+ = 0, hence
mol(py) =morop; = 0. So ol = 0, equivalently, im i C ker 7. Conversely, take o, € ker 7,
equivalently, such that m o oo = 0. So impy C kerm = N;. Let ¢; denote p, viewed as
an A-linear map M — N;. By the construction, ¢y = ¢t 0 ¢; = (7). We conclude that
ker 7 C im 7. This finishes the proof. O

Now suppose that B is another k-algebra and M be an A-B-bimodule. Then, for any
A-module M, the k-module Hom 4 (M, N) upgrades to a left B-module via:

[bp](m) := p(mb).

Similarly, if C' is a k-algebra and N is an A-C-bimodule, then, for any left A-module M, the
k-module Hom 4 (M, N) upgrades to a right C-module:

[pc)(m) = p(cm).

And if M is an A-B-bimodule, and N is an A-C-bimodule, then Hom4(M, N) is a B-C-
bimodule.

Now let M be an A-module. We write End4(M) for Homa(M, M). The composition
endows End 4 (M) with the structure of an associative k-algebra. The identity map is a unit.
In particular, for M = A®" we have End (M) = Mat,, (A%P).

In the general case, M becomes an A-End4(M)°PP-bimodule. In particular, for two left
A-modules M, N, the k-module Hom 4 (M, N) upgrades to an End 4(N)-End 4(M )-bimodule,
where the actions are by taking compositions.

1.5. Tensor product of modules and algebras. Let k be a commutative ring and A
be a k-algebra. In the previous section from two left A-modules M, N we have produced a
k-module Hom,4 (M, N). Same works when both M and N are right A-modules.

Now let M be a right A-module and N be a left A-module. We will produce an k-module
M ®4 N, the tensor product of M and N.

First, we explain the universal property M ®4 N is supposed to satisfy. For this we need
the notion of a bilinear map in this setting.

Definition 1.21. Let L be a k-module. The map ¢ : M x N — L is called A-bilinear if it
is k-linear in both arguments and

e(ma,n) = p(m,an),Ya € A,m € M,n € N.
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Note that if L’ is another k-module and 1 : L — L’ an k-linear, then ¢pop : M x N — L'
is A-bilinear.
Here is the universal property we want from the k-module M ®4 N:
(*) There is an A-bilinear map M x N — M ®4 N to be denoted by (m,n) — m ®@n
such that for every A-bilinear map ¢ : M x N — L there is a unique k-linear map
v M ®s N — L such that p(m,n) = ¢(m ® n), i.e., the following diagram is
commutative.

MXN (m,n)»—)m@n . M®AN

(4

L
Note that (*) guarantees that M ®4 N is unique (if it exists) in the following sense.

Exercise 1.22. If we have another tensor product M ®’, N with bilinear map (m,n) — m®'n
then there is a unique isomorphism ¢ : M ®4 N = M ®', N satisfying «(m ® n) = m @' n
for allm e M,n € N.

The tensor product M ®4 N also has the following corollary.

Corollary 1.23. Assume the module M ® 4 N and the bilinear map (m,n) — m & n satisfy
(*). Then the elements m @ n for m € M,n € N span the k-module M ®4 N.

Proof. Let (Q denote the k-submodule of M ® 4 N spanned by the elements of the form m®n.
Consider the quotient L := (M ®4 N)/Q with epimorphism @ : M ®4 N — L. Note that
o : MxN — L (m,n) — w(m®mn) is an A-bilinear map. The corresponding k-linear
map M ®4 N — L is w. Note, however, that ¢ = 0. So, by the uniqueness property in
(*), @ = 0. On the other hand, w is surjective. It follows that L = {0}, equivalently, the

elements m ® n span the k-module M ® 4 N. ([l
Theorem 1.24. Tensor product M &4 N exists for all right A-modules M and left A-modules
N.

Proof. Assume, first, that M is a free right A-module with basis e;, where 7 is in an index set
Z. So every element of M is uniquely written as a sum of the form ), ; e;a; with a; € A,
where only finitely many elements a; are nonzero. Define M ®4 N as N¥Z and the map ®
by (3, eia;) ® n = (a;n);ez. It is an exercise to check that this map satisfies (*).

For general M, we can represent M as a quotient of a free module. So suppose M = M /K
and M ® 4 N exists (for example, for M we can take a free module with an epimorphism to
M). Define a k-submodule K’ of M ®4 N as the k-linear span of the elements of the form
k®n for k € K,n € N. We claim that we can take (M@A N)/K' for M ®4 N. First, we
produce an A-bilinear map M x N — (M ®4 N)/K',(m,n) — m®@n. Let 7 : M — M
and 7’ : M@)LN —» (]T/[/ ®4 N)/K' be the projections. For an element m € M choose an

element m € M with () = m. Set m @ n = 7'(m ® n). It is easy to see that this map
is well-defined, i.e., independent of the choice of m, and is A-bilinear. This is left as an
exercise. N

Now we need to show that the module (M ®4 N)/K' and (m,n) — m ® n satisfy the

universal property (*). Let ¢ : M X N — L be an A-bilinear map. Define ¢ : MxN— L
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as (m,n) — @(m(m),n). This is an A-bilinear map. So we have a unique k-linear map
Y M®y N — L satisfying ¢ (m ® n) = $(m,n) = ¢(r(m),n). Note that Y(k ®@n) =
o(m(k),n) = ¢(0,n) = 0. It follows that ¢ vanishes on K’ and hence factors through a

unique map 1 : (M ®4N)/K' — L. By the construction, we have the following commutative
diagram:

7T><idN

M x N

We conclude that the map ¢ in (*) exists. It is unique because it must make the above
diagram commutative and 7’ is surjective. This finishes the proof of the theorem. ([l

Example 1.25. Let M, N be free right and left A-modules with basese;,i € Z, and f;,7 € J,
respectively. Then M ®4 N is a free k-module with basis e; ® f;.

Exercise 1.26. Let M = A/I, where [ is a right ideal in A. Then M ®4 N = N/IN. In
particular, if N = A/J for a left ideal J C A, then M @4 N = A/(I + J).

Now suppose that B is another k-algebra, and M is a B-A-bimodule. We claim that
M ®4 N is a left B-module in a natural way. Namely, fix b € B and define the operator of
multiplication by b on M ® 4 N. For this, note that the map ¢, : M XN — M &4 N, (m,n) —
(bm) ® n is bilinear. So, by (*), there is a unique k-linear map ¢, : M @4 N — M ®4 N
such that ¢(m ®@ n) = (bm) @ n.

Exercise 1.27. Using the uniqueness in (*), show that the assignment bz := ¢y (x) for b € B
defines a left B-module structure on the k-module M ®4 N.

It turns out that the resulting B-module M ®4 N has a universal property similar to (*).

Definition 1.28. Let L be a B-module. The map ¢ : M x N — L is called B-A-bilinear if
it is k-linear in both arguments and

w(ma,n) = p(m,an), p(bm,n) = bp(m,n),Ya € A,b € B,m € M,n € N.

Proposition 1.29. The left B-module M @4 N has the following universal property: let L
be a left B-module, p : M x N — L be a B-A-bilinear map. Then there is a unique B-linear
map ¥ : M @4 N — L such that (m @ n) = p(m,n).

Proof. Every left B-module is also a k-module. By (*), we have a unique k-linear map
¢ M ®4 N — L such that ¢»(m ® n) = ¢(m,n). We just need to check that it is B-linear:
W(bxr) = p(x) for all b € B,x € M ®4 N. Thanks to Corollary 1.23, it is enough to prove
this for x of the form m ® n. We have

¥(b(m @ n)) = ¢((bm) @ n) = p(bm,n) = bp(m,n) = bih(m @ n).

This concludes the proof. O
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We finish this section by recalling the tensor product of algebras. Let A;, A; be two
k-algebras.

Exercise 1.30. There is a unique k-bilinear product on A; ®y A, such that
(a1 ® az)(by ® by) = (a1by) ® (azba).
It is associative, and 1 ® 1 is a unit.
Similarly, if M; is a left A;-module for i = 1,2, then M; ®y M, has a natural structure of

a left A; ®x Ay,-module.
We also note that an A-B-bimodule is nothing else but a left A @ B°?P-module.

1.6. Tensor-Hom adjunction. Let A, B be associative k-algebras, N a B-module, M an
A-module, L an A-B-bimodule. As we have pointed out in the previous two sections, L&®pg N
is an A-module, and Homy (L, M) is a B-module. So it makes sense to consider k-modules

Homa(L ®p N, M),Homg(N, Homa(L, M)).
The following important result is known as the tensor-Hom adjunction.

Theorem 1.31. We have a natural k-linear isomorphism
Hom (L @5 N, M) = Homp(N, Hom4 (L, M)).

Proof. By the universal property of the tensor product of a bimodule and a left module,
Proposition 1.29, we have a natural isomorphism Hom (L ®p N, M) = Biling g(L x N, M),
where the target is the set of A-B-bilinear maps L x N — M with its natural k-module struc-
ture. It remains to establish a natural isomorphism Hompg (N, Homa (L, M)) = Bilina g(L x

N, M). Namely, we send f € Homp (N, Homy(L, M)) to ¢y € Biling (L x N, M) given by
by(l,n) = [f(n)](0).

The inverse map sends ¢ € Biling g(L x N, M) to n +— 1(?,n). These two maps are clearly

inverse to each other. O

We will need some special cases.

Suppose, first, that we have an algebra homomorphism B — A. Then we can view A as
an A-B-bimodule.

Note that Hom4(A, M) is naturally identified with M (as an A-module and hence as a
B-module). So we have a natural isomorphism

(1.1) Hom (A ®p N, M) = Homp(N, M).
Definition 1.32. The A-module A ®g N is said to be induced from N.

Now suppose we have an algebra homomorphism A — B. Then we can view B as an
A-B-bimodule. Take this bimodule for L. Note that B ® 5 N is N viewed as an A-module.
So we have a natural homomorphism

(1.2) Hom4 (N, M) = Hompg(N,Homa(B, M)).

Definition 1.33. The B-module Homy (B, M) is said to be coinduced from M.

Remark 1.34. Theorem 1.31 and isomorphisms (1.1) and (1.2) can be stated using the
language of adjoint functors (hence “adjunction” in the title of the section). Theorem 1.31

implies that the functor L& ge : B-Mod — A-Mod is left adjoint to Hom (L, e) : A-Mod —
B-Mod. For a homomorphism B — A we can talk about the forgetful functor A-Mod —
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B-Mod. The induction functor A ® g @ : B-Mod — A-Mod is left adjoint to the forgetful
functor. Similarly, for a homomorphism A — B, the coinduction functor Homu(B,e) :
A-Mod — B-Mod is right adjoint to the forgetful functor B-Mod — A-Mod.

2. COMPLETELY REDUCIBLE REPRESENTATIONS OF ASSOCIATIVE ALGEBRAS

2.1. Basic definitions, examples and properties. Let F be a field, A be an associative
F-algebra, and U be an A-module.

Definition 2.1. We say that U is irreducible if it has exactly two distinct submodules: {0}
and U.

In particular, {0} is not irreducible.

Definition 2.2. We say that U is completely reducible if for any submodule U’ C U there
exists a submodule U” C U (called complementary to U’) such that U = U" & U".

In particular, every irreducible module is completely reducible (a linguistical paradox!).

Exercise 2.3. Any submodule and any quotient module of a completely reducible module
are completely reducible.

Example 2.4. Let U be a finite dimensional vector space over F. Set A := Endg(U). Recall
that U can be viewed as an A-module. This module is irreducible because for any two
nonzero elements u,v € U there is an linear operator o : U — U with a(u) = v.

We will need two basic properties of irreducible and completely reducible modules.

Proposition 2.5. Let Uy, Uy be two completely reducible A-modules. Then U = Uy & Us is
completely reducible.

Proof. Let U'" C Uy & Uy be a submodule. We can assume that U; N U" = {0}. Indeed,
otherwise we can find a complementary submodule U C U; to Uy N U’. By Exercise 2.3,
U/ is completely reducible. We replace U with U] @& Uy and U’ with U’ N (U} & Us). A
complement to U’ N (U] @ Us) in U] @ U; is also a complement to U’ in U; @ Uy (the proof
of this claim is left as an exercise for the reader). And [U' N (U] & Us)] NU; = {0} by the
construction. So we arrive at the situation when the intersection is zero.

Now we reduce to the case when U, + U’ = U; @ Us: replace U, with its submodule
(U'+U,)/U;. The details are left as an exercise. Then U'@U; = U and U is a complementary
submodule to U’. O

The previous proposition has the following important corollary.

Corollary 2.6. Let U be a finite dimensional A-module. Then the following two conditions
are equivalent:

o U is completely reducible.
o U 1is isomorphic to the direct sum of irreducible modules.

We will also need the following exercise.

Exercise 2.7. Every irreducible A-module is isomorphic to a quotient module of the regular
module A. In particular, every irreducible module over a finite dimensional associative [F-
algebra is finite dimensional.
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2.2. Schur lemma and consequences. The following important result is known as the
Schur lemma.

Theorem 2.8. Let A be an associative F-algebra and let U,V be irreducible A-modules.
Then the following claims are true.
(1) If U,V are non-isomorphic, then Hom4(U, V) = 0.
(2) Enda(U) is a skew-field. In particular, if U is finite dimensional, and F is alge-
braically closed, then End(U) consists of scalar maps, so, dim End4(U) = 1.

Proof. (1): let ¢ : U — V be a homomorphism. Assume it is nonzero. Then keryp C
U,imy C V are submodules. Moreover, ker ¢ # U,im ¢ # {0}. Since U,V are irreducible,
it follows that ker ¢ = {0},im ¢ = V| i.e., ¢ is an isomorphism. We arrive at a contradiction
with the condition that U,V are non-isomorphic, which implies ¢ = 0.

(2): let p € Endus(U). Assume ¢ # 0. Arguing as in the previous part, we see that
kerp = {0},imp = U. So ¢ is an isomorphism. It follows that ¢ is invertible in End(U).

If U is finite dimensional and F is algebraically closed, then ¢ has an eigenvalue, say z € F.
The element ¢ — zidy is not invertible, hence is zero. 0J

Definition 2.9. Let U be an A-module. We say U is endo-trivial if End4(U) consists of
scalar maps.

We note that (2) of Theorem 2.8 can be generalized to infinite dimensional irreducible
representations under some assumptions. For example, we have the following result whose
proof we omit.

Proposition 2.10. Suppose that F is algebraically closed and uncountable (e.g., F = C) and
A has countable dimension over F. Let U be an irreducible A-module. Then U is endo-trivial.

Theorem 2.8 allows to describe the action of the center of A on an irreducible module.
Definition 2.11. By the center of A we mean Z(A) := {z € A|za = az,Va € A}.

This is a commutative algebra. Note that any element of the center acts on any A-module
by an A-module endomorphism.

Exercise 2.12. Let U be an endo-trivial A-module (for example, a finite dimensional irre-
ducible module in the case when F is algebraically closed, see Theorem 2.8). Let z € Z(A).
Then z acts on U by a scalar. The assignment sending z to that scalar is an algebra homo-
morphism Z(A) — F.

This algebra homomorphism is called the central character of U.
2.3. Completely reducible representations. Below we will use the Schur lemma to study
the (finite) direct sums of endo-trivial irreducible modules (for example, completely reducible

finite dimensional modules in the case when the field is algebraically closed). We notice that
such a module can be written as

k
(2.1) Pu e M,

i=1
where Uy, ..., Uy are endo-trivial irreducible modules and My, ..., M, are vector spaces, and

the action of A is given by
(2.2) a(uy @ my, ..., up @my) = (laur] @ my, ..., [aug] @ my).

(2.1) follows from the observation that U® is identified with U; ® F¢.
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Definition 2.13. Below we will call M; the multiplicity space (of U;).

Theorem 2.8 allows to compute the space of homomorphisms between modules of the
form (2.1). Pick multiplicity spaces M{,..., M} M ..., M? and form the direct sums
Ui = @le U; ® M for j =1,2.

Now we produce a linear map
k
@ Homg (M}, M?) — Homu(U', U?).
i=1

Let ¢ := (¢1,. .., ¢x) be a typical element of @le Homg (M, M?). Define a map 1, : U' —
U? by

K k
(2.3) %(Z u; @m}) = Zul ® i(m;), w; € Uj,m; € M.
=1 =1

This is a well-defined linear map. It follows from (2.2) that it is A-linear.

Theorem 2.14. The following claims are true.

(1) The map @ — v, defines a vector space isomorphism
k
@ Homg (M, M?) = Hom (U, U?).
i=1

(2) Every A-module homomorphism U' — U? sends U; @ M} to U; @ M? for all i.

Proof. (1): Note that Y, = 0 implies ¢ = 0. So to prove that the map ¢ — v, is an

isomorphism we need to show that dim Hom,(U",U?) = dim @, Homp(M}', M?). The
latter follows from Theorem 2.8 and is left as an exercise.
(2): To show that every A-linear map U' — U? sends U; ® M} to U; ® M?, notice that

[

the maps of the form ¢, have this property by definition. Since ¢ — v, we are done. [

We note that (2) can also be deduced from the Schur lemma directly, left as an exercise.
The following remark is important for what follows.

Remark 2.15. This remark describes the compatibility of the isomorphism in Theorem
2.14 with taking compositions. Let M}, M? M? with ¢ = 1,...,k, be three collections of

multiplicity spaces. Let U’ := @le U; ® Mf ,j = 1,2,3, be the corresponding A-modules.
So we have the composition map

Hom (U?, U?) x Homu(U', U?) — Homy (U, U?).

Similarly, we have the componentwise composition map

k k k
(@ Homg(M?2, M})) X (@ Homg (M}, Mf)) — € Homg (M}, M)
i=1 i=1 i=1
The maps v, defined by (2.3) intertwine the composition maps meaning that
¢£20£1 - ¢f2 © wfl'
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In particular, consider the situation when M}! = M? = M} for all i. The spaces
@le Homy (M}, M!) and Hom4 (U, U') have natural algebra structures, where the mul-
tiplication is given by composition. The previous paragraph implies that ¢ + 1, is an
algebra isomorphism. N B

Now we record another important corollary of Theorem 2.14. Let U be of the form (2.1).

Corollary 2.16. We have an identification Hom 4 (U;, U) = M;. Moreover, the isomorphism
BF | U; @ Homu(U;, U) = U is given by

k k
(2.4) Z U ® p; Z ©i(u;).
i=1 i=1

Proof. In Theorem 2.14 we take M} = F®u and Mi = M,;. Then we use the natural
identification Homg(IF, M;) = M; to arrive at the identification Hom4(U;, U) = M;. Under
the identifications of the source and the target of (2.4) with @le U; ® M;, that map becomes
the identity. O

Now we proceed to describing submodules of direct sums of irreducible endo-trivial mod-
ules. Let Uy, ..., U be irreducible endo-trivial A-modules and M, ..., M} be finite dimen-
sional vector spaces. Consider the A-module U := @le U; ® M;.

Proposition 2.17. For any A-submodule U' C U, there are uniquely determined subspaces
M! C M; such that U' = @le Ui, ® M as a submodule of U.

Proof. Recall, Section 1.4, that Hom4(U;, U’) < Homa(U;,U). We set M/ := Hom4(U;, U’).
We need to show that U’ coincides with @le U; ® M as a submodule of U.

The A-module U’ is completely reducible, as a submodule of a completely reducible mod-
ule, see Corollary 2.6. Corollary 2.16 yields an A-module isomorphism @le U@ M = U,
denote it by a. What we need to show is that « intertwines the embeddings U’ < U and

k k
(2.5) Pu e M — PU; @ M(=U).
=1 =1

Let ¢ be the embedding U’ < U so that the embedding M < M; is given by
(2.6) ©; > L O ;.
Recall that « is given by (2.4). So ¢ o « is given by

k k
D ui @i Y (top)(u).
=1 =1

Using (2.6) we see that ¢+ o « coincides with the (2.5). O

Here is an interesting corollary of Proposition 2.17. Let Uy,..., U, be pairwise non-
isomorphic endo-trivial finite dimensional irreducible A-modules. The A-module structure
on U; yields an algebra homomorphism 3; : A — Endp(U;). Let g : A — @le Endyr(U;)
denote the direct sum of this homomorphisms, this is an algebra homomorphism.

Theorem 2.18. The homomorphism [ is surjective.
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Proof. Replacing A with A/ker § we can assume that f is injective. The homomorphism /3
equips @le Endp(U;) with an A-bimodule structure so that A is embedded as a subbimod-
ule. We can view @le Endp(U;) as a left and as a right A-module and A is a submodule
for both these structures. We have a natural isomorphism Endr(U;) = U; ® U;. When we
view Endp(U;) as a left A-module, then U; is an irreducible (left) A-module and U} is its
multiplicity space. When we view Endr(U;) as a right A-module, U} is an irreducible (right)
A-module, and Uj; is its multiplicity space. Applying Proposition 2.17 to the left A-module
structure on @, U; @ U7, we see that A = @Y | U; ®V; for a uniquely determined subspace
V; C U;. Similarly, for the right module structure we get A = @le W, @ U} for W; C U;. So
U,V =W,U} as subspaces in U; @ U} for all . This is only possible if V; = U, W; = U;
or V; = {0}, W; = {0}. However the former is impossible because the element 1 € A goes to
(idy,)¥_,. We conclude that Endg(U;) C im 3 for all 4, equivalently, 3 is surjective. 0

Corollary 2.19. Let F be an algebraically closed field and A be a finite dimensional F-
algebra. Then the set of isomorphism classes of irreducible A-modules is finite and nonempty.

Proof. The set is nonempty because A has a nonzero representation, e.g., A itself, that must
have an irreducible subrepresentation. Any irreducible representation is finite dimensional
by Exercise 2.7. It is endo-trivial by (2) of Theorem 2.8. So we can apply Theorem 2.18
to see that for any collection Uy, ..., U of pairwise non-isomorphic irreducible A-modules,
the homomorphism A — @le Endp(U;) is surjective, hence Zle(dim U;)? < dim A. This
implies that the number of isomorphism classes of irreducibles is finite. U

2.4. Simple algebras. In Representation theory, a special role is played by objects that
are simple.

Definition 2.20. An associative algebra A is called simple if the only two-sided ideals in A
are {0} and A, i.e., if it is irreducible as a bimodule over itself.

Theorem 2.21. Let IF be an algebraically closed field and A be a finite dimensional F-algebra.
Then the following two conditions are equivalent:

(1) A is simple,

(2) A= Endp(U) for a finite dimensional vector space U.

Proof. (1)=(2). The algebra A has an irreducible representation, say U. This gives an
algebra homomorphism A — Endg(U). Since A is simple, this homomorphism is injective.
It is surjective by Theorem 2.18. So it is an isomorphism.

(2)=(1). Let I be a two-sided ideal (equivalently, subbimodule) in Endr(U). Arguing as
in the proof of Theorem 2.18, we see that there are subspaces V. C U*, W C U such that
I=WeU*=U®V CcU®U* =End(U). And similarly to that proof, we see that I = {0}
or Endp(U). O

We can completely describe the finite dimensional representations of Endg(U). Note that
U is an irreducible representation of Endg(U). Assume F is a general field.

Theorem 2.22. Every finite dimensional module V' for A := Endg(U) is isomorphic to the
direct sum of several copies of U.

Proof. Recall that every finitely generated A-module is the quotient of A®’ for a suitable
integer ¢ > 0. But as an A-module, we have A = U ® U* with U* being the multiplicity
space. So we have an A-module epimorphism 7 : U ® M — V for a suitable vector space
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M. The representation U is endo-trivial, so we can apply Proposition 2.17 to ker m getting
kerm =U ® My. Then V= (U@ M)/(U ® My) = U ® (M/M,) and we are done. O

2.5. Semisimple algebras.

Definition 2.23. A finite dimensional F-algebra is called semisimple if it is isomorphic to
the direct sum of simple algebras.

So if F is algebraically closed, then the semisimple algebras are the same thing as the
direct sums of matrix algebras.
We will start by describing the representations of direct sums of matrix algebras.

Theorem 2.24. Let Uy, ..., U,be finite dimensional vector spaces over IF. Set

k
A= @ Endgr(U;)
i=1

so that each U; is an irreducible A-module. FEvery irreducible A-module is isomorphic to
exactly one of the U;’s. Ewvery finite dimensional A-module V' is isomorphic to the direct
sum of several copies of Uy, ..., U.

This theorem can be proved in the same way as its special case, Theorem 2.22. Alterna-
tively, one can deduce Theorem 2.24 from Theorem 2.22 and the following lemma. Namely,
let Ay, ..., Ag be associative algebras and set A := @le A;. Let ¢; denote the unit in A; for
1=1,..., k. Note that Zle €; is the unit in A.

Lemma 2.25. Let M be an A-module. Set M; := ¢;M. Then the following claims hold:
(1) We have M = @le M;, the direct sum of vector spaces.
(2) The subspace M; is an A-submodule. Moreover, the action of A on M; factors through

the action of A; under the natural epimorphism A — A;. So, M = @le M; is the
decomposition into the direct sum of A-modules.

Note that this lemma reduces Theorem 2.24 to Theorem 2.22.

Proof. Proof of (1): for m € M, we have

k
(2.7) mzlm:(61+...+ek)m:26im.
i=1

This shows that every element m € M can be decomposed as the sum of elements of M;.
Note that €;e; = d;;¢;. Hence ¢; acts by 1 on M; and by 0 on M;. This observation implies
that if m = ), m,; with m; € M;, then m; = ¢m. (1) follows.

Proof of (2): note that ae; = ¢a. It follows that M; is an A-submodule of M. Also the
projection A — A; can be written as a — ¢a. It follows that the A-action on M, factors
through this projection. This finishes the proof of (2). O

In what follows we will need a corollary of the theorem.

Corollary 2.26. Let F be an algebraically closed field, and A be a semisimple finite dimen-
sional associative algebra over F. Then the following claims hold:

(1) The number of isomorphism classes of irreducible A-modules equals to the dimension
of the center of A.
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(2) Different irreducible modules have different central characters (see the end of Section
2.2 for definition).

Proof. Recall that A = @le Endp(U;). By Theorem 2.24, the irreducibles are precisely
Uy, ..., U, so the number of isomorphism classes equals k. On the other hand, for associative
algebras Aj, ..., Ay, we have Z(@)_, A;)) = @F_, Z(A;). The center of Endg(U;) consists of
scalar endomorphisms and hence is one-dimensional. So dim Z(A) = k, and (1) follows. To
prove (2) we note that Z(A) acts on U; via the projection Z(A) — Z(A;) = F. For different
i’s, these projections are different (for example, because they have different kernels). 0

Now we discuss the equivalent characterizations of semisimple algebras.

Let A be a finite dimensional algebra. We say that a 2-sided ideal I C A is nilpotent if
I" = {0} for some n > 0. An easy exercise is to show that if 7, J C A are nilpotent ideals,
then I + J is nilpotent as well (if I™ = J" = {0}, then (I + J)** = {0}). It follows that

there is the unique maximal nilpotent ideal.

Definition 2.27. The maximal nilpotent ideal of A is called the radical of A and is denoted
by rad(A).

The following theorem provides equivalent characterizations of semisimple algebras.

Theorem 2.28. Suppose F is algebraically closed. Let A be a finite dimensional associative
algebra over F. The following conditions are equivalent:

(a) A is semisimple,

(b) all finite dimensional representations of A are completely reducible,

(c) rad(A) = {0}.

Proof. (a)=-(b) is Theorem 2.24.

(b)=-(c): Let I := rad(A). We have I" := {0} for some n > 0. Let N be a finite
dimensional A-module. Then I*N is an A-submodule for all £ = 0,...,n. Then for all ¢
we can find an A-submodule N, with I*N = N, @ I**'N. Since IN, C I**'N, we see that
IN, = {0}. But N =Ny@& N, & ... D N,_y. It follows that IN = {0}. Applying this to
N := A, the regular module, we see that I = {0}, which is (c).

(c)=(a): Let Ny,..., Ny be all pairwise non-isomorphic irreducible A-modules, see Corol-
lary 2.19. So we have an algebra epimorphism A — @le Endp(X;), Theorem 2.18. Let I be
the kernel. We claim that it is a nilpotent ideal. Note that, by the construction, I acts by 0
on every irreducible A-module. Consider the regular A-module A. As any finite dimensional
A-module it admits a filtration A = Ay D A; D Ay D ... D A, = {0} such that A;/A;; is
irreducible for all 1. Since I acts by 0 on every irreducible A-module, we see that TA; C A; 41
for all 4. It follows that I™ = {0}. Since rad(A) = {0}, we see that I = {0}. O

In the case when char F = 0, there is yet another equivalent characterization of semisimple
algebras. For an A-module U we can consider the following bilinear form on A: (a,b)y :=
try(ab). This form is symmetric. In particular, we can take U := A.

Theorem 2.29. Assume that charF = 0. Let A be a finite dimensional F-algebra. Then A

is semisimple if and only if the form (-,-)a is non-degenerate.

Proof. Suppose A is semisimple, i.e., A = EBf:l Endg(U;). The restriction of (+,-)4 to the
direct summand Endg(U;) coincides with the form (-, -)gnaz(v;)- S0 we need to show that the
latter is nondegenerate. Let E;, denote the (7, ¢) matrix unit in Endg(U;). Then we have

(Eje, Ejror )ndey) = 0057 tTindg(u,) (Ejer) = 6¢,500p ; dim U;.
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Since char[F = 0, we see that the basis Ej, has a dual basis with respect to the form
(,)Endg(s), this is (dim U;)"'Ey;. Note that the different summands of A are orthogonal
with respect to (-, ). It follows that (-, -)4 is the direct sum of non-degenerate forms, hence
is non-degenerate.

Now suppose (-, -) 4 is nondegenerate. If I is a nilpotent ideal, then a™ = 0, hence try(a) =
0 for all @ € I. It follows that I lies in the kernel of the form (-,-)4. So I = {0}, and A i
semisimple by the equivalence (a)<>(c) of Theorem 2.28. O

Finally, we record the following important property known as the double centralizer the-
orem.

Theorem 2.30. Let V' be a finite dimensional F-vector space and A C Endp(V) be a
semisimple subalgebra. Set B := Enda(V). Then we have A = Endp(V), the equality
of subalgebras in Endp(V).

Proof. We have A = @F_, Endg(U;). The space V is a faithful A-module. By Theorem 2.28,
V' is completely reducible, so we have an A-linear isomorphism V =2 @le U; ® M;. The way
A embeds into Endg(V) in terms of this decomposition is (@1, ..., 9x) = Sor, @ @ idag,,
where the 7th summand acts on U; ® M; only. The multiplicity spaces M; are all nonzero
because V is faithful. By Remark 2.15, B = @ Endg(M;). It is embedded into Endg (V)
via (Y1, ..., k) — Zle idy, ®1;. If we view V' as a B-module, the spaces U; now play the
role of multiplicity spaces. So, by symmetry, Endg (V) = A. O

2.6. The case of non-closed fields. Suppose now that F is an arbitrary field and A is
an associative F-algebra. Let U be an irreducible A-module. By Theorem 2.8, End4(U) is
a skew-field. We denote its opposite skew-field by H or Hy when we need to indicate the
dependence on U, so that U becomes a right vector space over H. Of course, U is endo-trivial
if and only if Hy = F. Note that we have U = U @y M for M := H", where we view M
as a left vector space over H. Arguing as in the proof of Proposition 2.17, one can show that
every A-submodule of U®™ has the form U ®y M’ for a uniquely determined left subspace
M’ C M. This claim generalizes to the case of direct sum of several irreducible modules in
a straightforward fashion. Using this we arrive at the generalization of the density theorem,
Theorem 2.18:

k
A — P Endg,, (V).
i=1
Using this we see that all finite dimensional simple F-algebras are of the form Endg(U),
where H is a finite dimensional skew-field over F and U is a right vector space over H.
We have straightforward analogs of Theorems 2.22, 2.24, 2.28, 2.29. Theorem 2.30 holds
verbatim. We leave the details to the readers.

3. REPRESENTATIONS OF FINITE GROUPS

Throughout the section G denotes a group. For a field F we can consider the group algebra
FG. Recall that a representation of G over F is the same thing as a representation of the
associative algebra FG, Example 1.16.
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3.1. Tensor product, dual and Hom representations. Let U,V be two representations
of G. We can equip U ® V(= U ®p V') with a unique representation of G satisfying

gu®v)=(gu) ® (gv),Yg € G,u € U,v € V.
This is the so called tensor product representation.

We can also equip U* with the structure of a representation of G: there is a unique
representation of G in U* such that

(ga,u) = (o, g 'u),Vg € G,a € U*,u € U.
More generally, we can equip Homg(U, V') with the structure of a G-representation:

9] (u) = glp(g~"u)].

For V =T, the trivial representation, we recover the dual representation of G.
The following exercise records some properties of these representations.

Exercise 3.1. The following claims hold.

(1) The tensor product of representations has the usual properties: it is associative,
distributive and commutative.

(2) The natural map U* ® V' — Hom(U, V') is a homomorphism of representations.

(3) The subspace Homg (U, V) C Hom(U, V') of homomorphisms of representations coin-
cides with the subspace of G-invariant elements.

3.2. Complete reducibility. In this section G is a finite group. Until the further notice
we assume that F is an algebraically closed field of characteristic 0. The following result is
of fundamental importance.

Theorem 3.2. The algebra FG is semisimple.

Proof. Thanks to Theorem 2.29, we need to show that the symmetric bilinear form (-, )pg
defined before that theorem is non-degenerate. For g, ¢ € G, we have

(3.1) (9,9")rc = trec(g9’)-

On the basis elements h € G, the element gg’ acts by h — gg’h. So the right hand side of
(3.1) is 049 1|G|. Since charF = 0, the form is non-degenerate: the dual basis of (¢)seq is
|G|7 (g7 ")yec- This completes the proof. O

Corollary 3.3. Recall that T is algebraically closed of characteristic 0. The following claims
are true.

(1) Every finite dimensional representation of G is completely reducible.

(2) The number of isomorphism classes of irreducible representations is equal to the num-
ber of conjugacy classes in G3.

(3) If Uy, ..., Uy are all pairwise non-isomorphic irreducible representationsm then |G| =

Zle(dim Ui)?.

Proof. (1): this follows by combining Theorem 3.2 with the equivalence (a)<>(b) of Theorem
2.28.

(2): thanks to Corollary 2.26, we need to show that dim Z(FG) equals to the number of
conjugacy classes in G. This will follow if we check that

(3.2) Z(FG) = {Z agglay is constant on conjugacy classes}.
geG
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Indeed an element z € FG is central if and only if hz = zh for all h € G because the elements
h form a basis in FG. The equation hz = zh is equivalent to z = hzh™!. If 2 = Zg g9,
then hzh™' =37 aghgh™ =37 ap-14n9. (3.2) follows.

(3): this equality follows from two different ways to compute the dimension of the semisim-
ple algebra FG (the details are left as an exercise). O

Example 3.4. Consider the group S; with 24 elements. As in any symmetric group, the
conjugacy classes are parameterized by partitions, in this case, of 4. The number of such
partitions is equal to 5. So we have 5 irreducible representations. The sum of their di-
mensions squared equals 24. Now we construct these representations. We have the trivial
and sign representations, to be denoted by trivy,sgn,. They are 1-dimensional. Next, Sy
acts on C* by permuting the elements of the natural basis (the permutation representa-
tion). This representation has the trivial subrepresentation, {(x,z,z,z)|z € C}. It has a
unique complement, {(xy, za, 3, x4)|T1 + 22 + 23 + x4 = 0}. This is the so called reflection
representation of S; to be denoted by refl;, the dimension is 3. There is another three di-
mensional irreducible representation, sgns @ refls — clearly tensoring with a one-dimensional
representation sends every irreducible representation to an irreducible one. The resulting
3-dimensional irreducible representation is not isomorphic to refl3: indeed, for a reflection
(1j) € Sy, its determinant in refls is —1, while the determinant in sgn, ®@ refls is 1. So far, we
have constructed four pairwise non-isomorphic irreducible representations of S;. We have
exactly one more and it must have dimension 2. To construct this representation recall that
we have an epimorphism 7 : .S, — S5 with kernel whose nontrivial elements with cycle type
(2,2). The element 7 is defined on the generators as follows:

(1,2) = (1,2),(2,3) — (2,3), (3,4) — (1,2).

The reflection representation refls pulls back under 7 to a representation of S;. Denote the
resulting representation by V5. It is irreducible because 7 is surjective and has dimension 2.
So we have obtained a complete classification of irreducible representations of Sj.

Exercise 3.5. Let GG be finite and abelian. Then all irreducible representations are one-
dimensional (and hence there are |G| of them).

Remark 3.6. This remark is important for what follows later in the course. It would be
tempting to interpret (2) of Corollary 3.3 as the claim that the irreducible representations of
G are classified up to isomorphism by the conjugacy classes. Unfortunately, this is not so —
there is no natural way to assign a representation to a conjugacy class, in general. So (2) of
Corollary 3.3 is a counting, not a classification result. For example, consider the case when
G is abelian. Let GV denote the set of isomorphism classes of irreducible representations of
G. The tensor product of representations equips GV with an associative product, where the
trivial representation is the unit. In fact, GV is a group, the inverse corresponds to taking the
dual representation. It is not difficult to show that GV is isomorphic to G. However, there is
no natural isomorphism. For example, when G is cyclic, G = Z/nZ, then an identification
of G and G amounts to choosing a primitive nth root of 1. And when G = F}", then
an identification of G and GV is the same thing as a non-degenerate bilinear form on the
[F,-vector space G. There are no natural choices in either of these cases.

3.3. Characters.
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Definition 3.7. Let G be a group and U be a finite dimensional representation of G. By
the character of U we mean the function xy : G — F given by

xu(g) = tru(g).
Exercise 3.8. Show that

(1) xuv is constant on the conjugacy classes,
(2) xvev = xu ® xv (with respect to the pointwise addition),
(3) xvev = xuxv (with respect to the pointwise multiplication).

Until the end of the section we assume that G is finite and F = C. In particular, every
representation of G is completely reducible, Corollary 3.3. We write C[G| for the algebra
of complex valued functions on G (with pointwise multiplication) and C[G]“ for the subal-
gebra of all functions that are constant on conjugacy classes (equivalently, invariant under
the conjugation action of G' on itself). Note that yy € C[G]¢ for all finite dimensional
representations U.

We introduce a hermitian scalar product on C[G] by the following formula

(3.3) (1, x2) = G xa(9)%a(9),

geG

where ® in the right hand side is the complex conjugation.
We have the following interpretation of the scalar product of characters.

Proposition 3.9. Let U,V be finite dimensional representations of G. Then
(xv, xv) = dim Homg (V, U).

Proof. First, note that xy« = Xp. Using (3) of Exercise 3.8 combined with the natural
(hence G-equivariant) isomorphism V' ® U* = Hom(U, V'), we see that Xuomv.) = XvXu-
Consider the averaging element € := |G|7' > sec 9 € CG. Its image in an arbitrary G-
representation W is the subspace of invariants W&. Moreover, it is a projector to W¢
meaning, additionally, that €|yy¢ = idye. It follows that tryy () = dim W&, We apply this
to W = Hom(U, V). Using that Homg (U, V) = Hom(U, V)¢ (see (3) of Exercise 3.1), we get

dim Home(U, V) = trgomw,vy(€) = |G|~ ZXHom(U,V)(g) = |G ZXV(Q)YU(Q) =

geG geqG
= (XV? XU)-
O

Corollary 3.10. The characters of irreducible representations form an orthonormal basis
of the hermitian vector space C[G]°.

Proof. The number of (isomorphism classes of ) irreducible representations coincides with the
number of conjugacy classes by (2) of Corollary 3.3. The latter is the same as dim C[G].
The claim that the characters of irreducible representations form an orthonormal collection
follows from the Schur lemma, Theorem 2.8, combined with Proposition 3.9. 0]

3.4. Positive characteristic case. In the case when [ has positive characteristic, say p,
results of Section 3.2 may fail. They are still true when |G| is coprime to p but this case is
boring.
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Example 3.11. Let charF = 3. Consider the group S3;. In characteristic 0 (and in
characteristic bigger than 3) it has three irreducible representations, the one-dimensional
representations trivs,sgns; and the two-dimensional representation refls. It turns out that
over F there are only two irreducible representations, trivs and sgns, while refl; has a
subrepresentation isomorphic to trivs with quotient isomorphic to sgn,. This is because
{(z,z, )|z € F} C {(z1,x2,x3)|x1 + 22 + 23 = 0}.

In general, the representation theory of finite groups in positive characteristic is much
more complicated than in characteristic 0. This is a subject of great current interest.

3.5. Induction for representations of groups. Finally, let us discuss the induction for
representations of finite groups (i.e., for their group algebras). Let H C G be finite groups
and k be a commutative ring.

We can view kG as a kG-kH-bimodule for the action of G' on the left and the action of
H on the right. So, for a kH-module V', we have the induced G-module:

kG ®@xg U.

Similarly, we can view kG as a kH-kG-bimodule for the action of H on the left and the
action of G on the right. This gives rise to the kG-module Homyy (kG, U).

Proposition 3.12. We have a natural isomorphism kG Qyxgy U = Homyy (kG,U).

Proof. Consider the k-module Homyy (kG, kH), where we consider the left H-action on kG.
Explicitly, it consists of all maps ¢ : kG — kH such that p(hg) = hp(g) forallh € H, g € G.
This k-module upgrades to an kG-kH-bimodule by

l9el(d') = e(g'g),  [phl(g) = e(hg).

Note that kG is a free left k H-module (with basis labelled by the orbits of the left action of
H on G). We leave it as an exercise to check that the homomorphism Homyy (kG, kH) ®ypy
U = Homy g (kG, U) given by a @ u +— [x — «a(z)u] is an isomorphism of bimodules.

So to prove the proposition it is enough to established an isomorphism

kG = Homyy(kG,kH)

of kG-kH-bimodules, where on the left we have the bimodule used to define kG Qi o. We
send g € G to ¢, € Homyy (kG,kH) defined on a basis element ¢’ € G by

(3.4) pe(g) = {

and extend it to kG by the k-linearity. We need to show that this map is G-equivariant,
H-equivariant, and is an isomorphism of k-modules.
H-equivariance: @gn(g') and ¢,4(g')h are zero unless ¢'g € H. And if ¢'g € H, then
AN ) _ / _ /
Pan(9') = g'gh = ©4(g")h = [pgh](g')-

G-equivariance. For g; € G we compute p,,,(¢9') and [g1p4](¢"). We have ¢4, ,(¢") = ¢’ g19
if ¢'g19 € H and zero else. Next, we have [g1p,](¢9") = ¢4(9'91) = ¢'g1g if this is an element
of H and zero else. This establishes the G-equivariance.

Isomorphism of k-modules. The map is k-linear by construction. To show it is an isomor-
phism we need to check that the maps ¢, defined by (3.4) form a basis in Homyy (kG,kH).
Pick representatives g1, ..., g of the left H-orbits in G. We can identify Homyy (kG,kH)
with (kH)®* via ¢ + (p(g;))¥_;. For each g € G there is a unique index i € {1,...,k} and
a unique element h € H such that hg; = g~'. Then a direct check shows that under the

d'g,if g'g € H,
0, else,
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isomorphism Homyy (kG,kH) = (kH)®* the element ¢, is sent to h in the ith summand.
The claim about an isomorphism follows. ([l

The G-module kG @y U = Homyy (kG, U) is called induced from U and is denoted by
Ind% U. Applying special cases of the Tensor-Hom adjunction, (1.1) and (1.2), Section 1.6,
we get the following claim known as the Frobenius reciprocity.

Corollary 3.13. For representations U of H and V' of G we have the following natural
1somorphisms:

Homeg (Ind$(U), V) = Homg (U, V), Homg(V,Ind$(U)) = Homp(V, U).

To finish this section we want to outline another, more classical, realization of Indg U,
closely related to the coinduction realizations. Namely, consider the set of all maps G — U,
denote it by Fun(G,U). The k-module structure on U induces a k-module structure on
Fun(G,U). The action of G on itself from the right gives rise to an action of G on Fun(G,U)
turning the latter to a kG-module. Define the subset Funy(G,U) C Fun(G,U) consisting
of all maps f satisfying f(hg) = hf(g), i.e., equivariant for the action of H on G from the
left. Note that Fung(G,U) is a kG-submodule in Fun(G,U). It is naturally identified with
HOIIlkH (kG, U)



