
REPRESENTATIONS OF SL2 AND sl2

1. Introduction

Let F be an algebraically closed field, and let G be a connected algebraic group over F
with Lie algebra g. Recall, [2, Section 1.4], that G is called simple if it has no proper infinite
normal algebraic subgroups and is noncommutative. The latter condition is similar in spirit
to excluding Z/pZ in the case of finite groups.
Now we explain what “simple” means for Lie algebras. Let g be a Lie algebra. We say

that a subspace h ⊂ g is an ideal, if [x, y] ∈ h for all x ∈ g, y ∈ h. These are exactly the
kernels of Lie algebra homomorphisms from g. We say that g is simple if it has no proper
(=different from {0} and g) ideals and is not abelian.
If H ⊂ G is an algebraic subgroup, then its Lie algebra h is a subalgebra of g, the Lie

algebra of G, see (2) of [2, Theorem 2.18]. If H is normal in G, then h is an Ad(G)-stable
subspace. Since the adjoint g-action is obtained by differentiating the adjoint G-action, [2,
Lemma 2.28], h is an ideal. Thus, if g is simple, then G is simple. The converse holds in
characteristic zero but may fail in positive characteristic. For the implication in characteristic
0 the reader is referred to [OV, §4.1.3]. The idea is as follows: once we have a proper ideal
h ⊂ g which may fail to be the Lie algebra of an algebraic subgroup of G there is still a
proper ideal, say h′, that corresponds to an algebraic subgroup, H ′. Every ideal is stable
under the adjoint action of G, thanks to the exponential map, see [2, Sec. 2.7]. Hence H ′

has to be normal.
In positive characteristic it may happen that the Lie algebra is not simple, while the

algebraic group is, as the following exercise illustrates.

Exercise 1.1. Check that sl2(F) is simple if charF ̸= 2. Further, check that SL2(F) is
always simple.

The algebraic group SL2(F) and its Lie algebra sl2(F) are the easiest examples of a simple
algebraic group and Lie algebra, for instance, they have the smallest possible dimension. In
this lecture we will study the following topics.

(1) The representation theory of SL2(F) and sl2(F) when charF = 0; the latter is essen-
tially part of the former.

(2) The representation theory of sl2(F) for charF > 2.
(3) The representation theory of SL2(F) for charF > 2 (the case charF = 2 is essentially

the same).

These cases already illustrate the essential features of the representation theory of (semi)simple
algebraic groups and their Lie algebras, but have none of the complexity of the general case.
Representations of SL2(F) and sl2(F) are also used to understand the general case.

2. Representations of sl2(F) for charF = 0

2.1. Universal enveloping algebra. For now, we place no restrictions on the base field F.
Let g = sl2(F). This Lie algebra has a basis e, f, h, and the brackets of the basis elements
are as follows:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.
1
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It follows that the universal enveloping algebra U(g) of g is generated by e, f, h with the
relations

he− eh = 2e, hf − fh = −2f, ef − fe = h.

The PBW (Poincare-Birkhoff-Witt) theorem, [2, Thm. 3.4], implies that the monomials
fahbec for a, b, c ⩾ 0 form a basis in U(g).

Lemma 2.1. In U(g), we have the following identities (where P is any polynomial in one
variable and k,m are any nonnegative integers):

P (h)em = emP (h+ 2m),(1)

P (h)fk = fkP (h− 2k),(2)

emfk =

min(m,k)∑
j=0

(
j−1∏
i=0

(m− i)(k − i)

i+ 1

)
fk−j

(
j−1∏
i=0

(h−m− k + 2j − i)

)
em−j.(3)

Note that in the case of m = 1 (3) reads:

(4) efk = fke+ kfk−1(h+ 1− k).

Proof of Lemma 2.1. For (1), use induction on k to show that hek = ek(h+2k); the general
case follows. The proof of (2) is similar. For (3), use induction on k to handle (4), then the
induction on m to handle the general case. The details are left as an exercise. □

Note that if charF = 0, then (3) implies

(5)
en

n!

fn

n!
− 1

n!

n−1∏
j=0

(h− j) ∈ U(g)e.

2.2. The main result. Consider the representation of SL2(F) in the space of homogeneous
degree n two variable polynomials

M(n) = Span{xiyn−i | 0 ≤ i ≤ n}, g.f(x, y) := f((x, y)g),

where in the definition of the action we view (x, y) as a row vector so that we can multiply
it by a matrix from the right. It is clear that M(n) is a rational representation.

Exercise 2.2. The representation of sl2(F) obtained by differentiating the representation of
SL2(F) in M(n), see [2, Sec. 2.6], is given by

e 7→ x
∂

∂y
, f 7→ y

∂

∂x
, h 7→ x

∂

∂x
− y

∂

∂y
.

Example 2.3. For n = 2, the representation of sl2(F) is as follows:

e.x2 = 0, e.xy = x2, e.y2 = 2xy,

f.x2 = 2xy, f.xy = y2, f.y2 = 0,

h.x2 = 2x2, h.xy = 0, h.y2 = −2y2.

Here is the main theorem of this part.

Theorem 2.4. Suppose that F is an algebraically closed field of characteristic 0. Then
for the rational representations of SL2(F) and for the finite-dimensional representations of
sl2(F), the following claims hold:
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(1) The map n 7→M(n) gives a bijection between Z⩾0 and the set of isomorphism classes
of irreducible representations.

(2) All representations in the classes mentioned above are completely reducible.

We will treat the case of sl2 and deduce the SL2 case from there.
Here is an important consequence of the classification that is going to be used in the

subsequent lectures.

Corollary 2.5. Let F be an algebraically closed field of characteristic 0 and let V be a finite
dimensional representation of sl2(F). Then the following claims hold:

(1) V splits as the direct sum
⊕

i∈Z Vi, where h acts on Vi by the multiplication by i.
(2) ker e ⊂

⊕
i⩾0 Vi and ker f ⊂

⊕
i⩽0 Vi.

(3) For each i ⩾ 0, the element ei gives an isomorphism V−i → Vi, while f
i gives an

isomorphism Vi
∼−→ V−i.

Proof. Theorem 2.4 reduces the proof to the case when V =M(n). Here (1)-(3) follow from
a direct check using Exercise 2.2, details of this check are also left as an exercise. □

2.3. Weight decomposition. At this point, F is still an arbitrary field. Set g = sl2(F).
Let V be a finite-dimensional representation of g.

Definition 2.6. Let λ ∈ F. The λ-weight space in V is the generalized eigenspace for h in
V with eigenvalue λ:

Vλ = {v ∈ V | (h− λ id)mv = 0 for some m ⩾ 1}.

We say λ is a weight of V if Vλ ̸= 0, and a weight vector refers to a nonzero element of Vλ
for some λ.

Example 2.7. Consider V =M(n). Then we have

h.xiyn−i = (n− 2i)xiyn−i,

so the weights are n, n− 2, . . . ,−n ∈ F. Since

M(n) =
n⊕
i=0

Fxiyn−i,

we see that M(n) is the direct sum of its weight spaces.

Lemma 2.8. Suppose F is algebraically closed. Let V be a finite dimensional representation
of g. Then the following claims hold:

(1) We have V =
⊕

λ∈F Vλ.
(2) We have eVλ ⊂ Vλ+2 and fVλ ⊂ Vλ−2.

Proof. (1) is standard. To prove (2), pick v ∈ Vλ. It follows that there is ℓ > 0 with
(h − λ)ℓv = 0. By (1), e(h − λ)ℓ = (h − λ − 2)ℓe. So (h − λ − 2)ℓev = 0, hence ev ∈ Vλ+2.
Similarly, thanks to (2), we have fVλ ⊂ Vλ−2. □

2.4. Highest weight. Until the end of Section 2.6, assume that charF = 0 and F is alge-
braically closed. Define a partial order on F by λ ⩽ µ if µ− λ ∈ 2Z⩾0. This gives an order
on weights because charF = 0 implies that the natural map Z → F is an embedding.

Let V be a finite dimensional representation of g := sl2(F).
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Definition 2.9. A weight λ of V is called a highest weight if λ is maximal with respect to
this order. Any nonzero element in the corresponding subspace Vλ is called a highest weight
vector.

Note that since dimV < ∞, the set of weights of V is finite, so there exists a highest
weight.

Example 2.10. By Example 2.7, n is the unique highest weight of Mn.

Proposition 2.11. Let λ be a highest weight of V , and let v ∈ Vλ be a nonzero vector.
Then:

(1) ev = 0,
(2) λ ∈ Z⩾0 and hv = λv.

Proof. By Lemma 2.8, eVλ ⊂ Vλ+2. Since λ is the highest weight, there is no weight µ with
µ > λ, so ev = 0. This proves (1).

To prove (2) observe that there is n > 0 such that λ− 2n is not a weight of V . Applying
Lemma 2.8 again, we see that fnv = 0. Combining the equalities fnv = 0, ev = 0 with (5),
we see that [

∏n−1
i=0 (h− i)]v = 0. We conclude that λ ∈ {0, . . . , n− 1} and hv = λv. □

2.5. Verma modules. Proposition 1.4 implies that in every V there is a nonzero vector v
such that ev = 0 and hv = λv, where λ is a highest weight. We want to construct a universal
module with such a vector, which, however, is not going to be finite dimensional.

Definition 2.12. Let λ ∈ F. The Verma module ∆(λ) is defined as the quotient

∆(λ) = U(g)/I,

where I = U(g)(h− λ, e) is the left ideal generated by the elements h− λ and e.

The following proposition describes some properties of ∆(λ). Let 1̄ denote the image of 1
in ∆(λ).

Proposition 2.13. The following claims hold.

(1) (Universal property) For any g-module V and any vector v ∈ V with ev = 0 and
hv = λv, there exists a unique homomorphism φ : ∆(λ) → V such that φ(1̄) = v.

(2) (Basis) If λ ∈ F is arbitrary, then the vectors f i1̄ (for i ⩾ 0) form a basis in ∆(λ).
(3) (Submodules) ∆(λ) is simple if λ ̸∈ Z⩾0. If λ ∈ Z⩾0, then ∆(λ) has a unique proper

submodule. This submodule is the span of fn1̄ with n > λ.

Proof. (1): the homomorphism is φv : ∆(λ) → V, x + I 7→ xv. To prove its existence and
uniqueness is left as an exercise.

(2): by the PBW theorem, the elements f ihjek with i, j, k ∈ Z⩾0 form a basis in U(g).
The left ideal I is spanned by elements of the form u(h − λ) and ue, so the elements f i1̄
form a basis in ∆(λ). This proves (2).
For (3), note that the elements f i1̄ ∈ ∆(λ) form an eigenbasis for h with pairwise distinct

eigenvalues λ− 2i (with i ∈ Z⩾0). So any submodule N ⊂ ∆(λ) is the span of some of these
vectors, by an argument involving a Vandermonde determinant and left as an exercise. If
f j 1̄ ∈ N , then N ⊃ Span{f i1̄|i > j}. Now take the minimal element j such that f j 1̄ ∈ N .
Since ef j 1̄ is proportional to f j−11̄, we see that ef j 1̄. By (4), ef j = f je+ jf j−1(h− (j−1)),
so ef j 1̄ = j(λ+ 1− j)f j−11̄. In particular, we see that if λ ̸∈ Z⩾0, then ∆(λ) is irreducible.
To show that SpanF(f

n1̄|n > λ) is the unique proper submodule of ∆(λ) is left as an exercise.
□
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Thanks to (3), ∆(λ) has the unique irreducible quotient to be denoted by L(λ). It coincides
with ∆(λ) if λ ̸∈ Z⩾0 and has dimension λ + 1 else. The proof of the following corollary is
left as an exercise.

Corollary 2.14. Let λ ∈ F, V be a finite dimensional representation of g, and φ : ∆(λ) → V
be a nonzero homomorphism. Then λ ∈ Z⩾0, and φ factors as the composition of the
projection ∆(λ) ↠ L(λ) and the inclusion L(λ) ↪→ V .

2.6. Completion of the classification of irreducibles.

Proof of (1) of Theorem 2.4. First, we deal with the representations of g = sl2(F). The
modules L(n) introduced after the proof of Proposition 2.13 are pairwise non-isomorphic
because dimL(n) = n+1. To show that every irreducible sl2-representation V is isomorphic
to one of the modules L(n) is an easy consequence of Corollary 2.14.

It remains to establish an isomorphism M(n) ∼= L(n) for n ∈ Z⩾0. This is because
xn ∈ M(n) is a highest weight vector that generates M(n) as a U(g)-module, the latter
follows from Exercise 2.2.

Now we proceed to proving (1) for the rational representations of G := SL2(F). By the
previous paragraph, every irreducible representation of g is of the formM(n) for some n ⩾ 0,
hence comes from a rational representation of SL2(F). Hence there is an g-linear embedding
M(n) → V for some n. By [2, Theorem 2.35], this embedding is also G-linear, showing that
V ∼= M(n) and finishing the proof. □

Let us record a corollary of the proof.

Corollary 2.15. We have an isomorphism L(n) ∼= M(n) of representations of g.

Remark 2.16. (1) of Theorem 2.4 implies that the eigenvalues of h in any finite dimensional
representation of g (over an algebraically closed characteristic 0 field) are integers. Now
consider the case when F is not necessarily algebraically closed but still has characteristic 0.
It follows that any finite dimensional representation of sl2(F) splits as the direct sum of its
weight spaces with integral eigenvalues. We can repeat the constructions in the proof of (1)
of Theorem 2.4 and see that the direct analog of (1) holds over F.

2.7. Casimir element. Our next task is to show that all finite dimensional representations
of g := sl2(F) and all rational representations of G := SL2(F) are completely reducible
provided F is an algebraically closed field of characteristic 0 (in fact, similarly to Remark
2.16 the assumption that F is algebraically closed can be omitted). A new ingredient is a
certain element in the center of U(g).

Here is a fundamental observation:

Proposition 2.17. Suppose that F is a field of characteristic different from 2. Then the
element C := 2fe+ 1

2
h2 + h (known as the Casimir element) is central.

Proof. U(g) is generated by e, h, f , so it’s enough to check that [C, e] = 0, [C, h] = 0, [C, f ] =
0. This is left as an exercise. □

In fact, one can understand this element more conceptually. We will do this in a later
lecture. In the subsequent sections we will use C to prove the complete reducibility.
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2.8. Generalized eigenspaces. From now on and until the further notice we assume that
F is algebraically closed of characteristic 0. Let V be a finite-dimensional representation of
g. For z ∈ F, let V z be the generalized eigenspace for C with eigenvalue z, i.e., V z consists
of all v ∈ V such that (C − z)nv = 0 for some n. Then we have V =

⊕
z V

z. The following
proposition describes some properties of this decomposition.

Proposition 2.18. (1) All V z are U(g)-submodules.
(2) If V z ̸= {0}, then z = 1

2
n2+n for some n ∈ Z. Moreover, M(n) is the only irreducible

constituent of V z for such z.

Proof. (1) holds because C is central. Details are left as an exercise.
We proceed to proving (2). Recall that the finite dimensional irreducible representations

of g are exactly the representations M(n), (1) of Theorem 2.4. For a highest weight vector
v ∈ M(n) we have ev = 0, hv = nv. It follows that Cv = (1

2
n2 + n)v. On the other hand,

by the Schur lemma, any central element of U(g) acts by a scalar on any irreducible finite
dimensional module. It follows that C acts by the scalar 1

2
n2 + n on M(n).

Now suppose V z ̸= {0}. Let U1 ⊂ U2 be two g-subrepresentations such that U2/U1
∼= M(n)

for some n. Then CUi ⊂ Ui for both i = 1, 2. It follows that C acts onM(n) with generalized
eigenvalue z. Hence z = 1

2
n2 + n. And if M(m) is another composition factor of V z, then

1
2
n2 + n = 1

2
m2 +m. From here we easily deduce that m = n. □

2.9. Complete Reducibility.

Proof of (2) of Theorem 2.4. Consider the setting of the representations of g first. Thanks
to the decomposition V =

⊕
z V

z and Proposition 2.18, we reduce to proving that V z ∼=
M(n)⊕m for some m if z = 1

2
n2 + n. To simplify the notation we fix n and assume V = V z

for z = 1
2
n2 + n.

By (2) of Proposition 2.18, the g-module V admits a module filtration

0 = V (0) ⊆ V (1) ⊆ · · · ⊆ V (m) = V,

where V (i+1)/V (i) ∼= M(n) for all i.

Thanks to this filtration we see that n is the unique highest weight of V . If Vn = V
(m−1)
n ,

then the weights in V/V (m−1) are all less than n, a contradiction with V/V (m−1) ∼= M(n).

So pick a vector v ∈ Vn \ V (m−1)
n . By Proposition 2.11, we have ev = 0, hv = nv. Consider

the unique homomorphism φv : ∆(λ) → V with φv(1̄) = v, see (1) of Proposition 2.13.
By Corollary 2.14, the image of φv is isomorphic to L(n) (that is isomorphic to M(n) by
Corollary 2.15). Since V/V (m−1) ∼= M(n) and imφv ̸⊂ V (m−1), we conclude that V =
V (m−1) ⊕M(n). Now we can apply the descending induction on m to finish the proof of
V ∼= M(n)⊕m.

Now we consider the setting of the rational representations of G. Let V be a rational
representation. We can view V as a representation of g. By what we proved already, we
get a g-linear isomorphism V ∼= M(n)⊕m for some m. But the right-hand side is a also
rational representation of G. Using [2, Theorem 2.35] we see that the g-linear isomorphism
V ∼= M(n)⊕m is, in fact, G-linear. This finishes the proof. □

Exercise 2.19. Prove a direct analog of (2) of Theorem 2.4 for finite dimensional represen-
tations of sl2 over an arbitrary characteristic 0 field.

Remark 2.20. Informally speaking, the two main techniques going into the proof of Theo-
rem 2.4 are studying highest weights of representations and the decomposition into a direct
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sum coming from a central element of U(g). In subsequent lectures we will see that these
techniques are used to study various kinds of representations of semisimple algebraic group
and their Lie algebras.

3. Representations of sl2 in characteristic p

In this entire section we assume that F is an algebraically closed field of characteristic
p > 2. Set g = sl2(F). Our goal in this section is to classify the irreducible finite dimensional
representations of g. We would like to emphasize that much of what we did in Section 2 no
longer works. Most notably the notion of the order we used in Section 2.4 no longer makes
sense because the natural homomorphism Z → F is not injective. As a consequence, we can
no longer talk about highest weights.

3.1. More central elements. On the other hand, the element C = 2fe+ 1
2
h2 + h ∈ U(g)

still makes sense and is central. It turns out that there are many more central elements in
U(g).

Lemma 3.1. The elements ep, fp, hp − h ∈ U(g) are central.

Proof. We need to show that these elements commute with the generators e, h, f of U(g).
This follows from the formulas in Lemma 2.1. For example, fp manifestly commutes with
f , commutes with h by by (2), and commutes with e by (4). The rest of the check is left as
an exercise. □

Definition 3.2. The central subalgebra of U(g) generated by the elements ep, fp and hp−h
is called the p-center of U(g). We denote it by Zp.

Here is an important property of the p-center. For the discussion below we assume that
the PBW theorem, [2, Theorem 3.4], holds (we only proved it in the case of characteristic 0
fields).

Proposition 3.3. The following claims hold:

(1) The algebra Zp is the polynomial algebra with free generators fp, hp − h, ep.
(2) The algebra U(g) is a free rank p3 module over Zp. Moreover, the elements fahbec

with 0 ⩽ a, b, c ⩽ p− 1 form a basis of this module.

Proof. We prove (2) leaving (1) as an exercise. By the PBW theorem, [2, Theorem 3.4], the
elements f ihjek with i, j, k ∈ Z⩾0 form a basis of U(g) over F. It follows that the elements
of the form fa(fp)i

′
hb(hp−h)j

′
ec(ep)k

′
with 0 ⩽ a, b, c ⩽ p− 1 and i′, j′, k′ ∈ Z⩾0 also form a

basis. From this, and an observation that ep, hp−h, fp are central, we arrive at the statement
of the lemma. □

Consider an element χ := (χf , χh, χe) ∈ F3. We can form the quotient

(6) Uχ(g) := U(g)/U(g)(fp − χf , h
p − h− χh, e

p − χe)

of U(g). Since the elements ep, hp − h, fp are central, Uχ(g) is an algebra, usually called a
p-central reduction of U(g). We have the following corollary of Proposition 3.3.

Corollary 3.4. We have dimUχ(g) = p3 for all χ ∈ F3. In particular, for all χ =
(χf , χh, χe) there is a finite dimensional irreducible representation of g, where fp acts by
χf , h

p − h acts by χh, and e
p acts by χe.

Proof. The first claim is an immediate corollary of Lemma 3.3. The second claim follows by
considering an irreducible constituent of the nonzero g-module Uχ(g). □
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In particular, we see that we cannot parameterize the finite dimensional irreducible rep-
resentations of sl2 in characteristic p by a discrete collection of parameters, a stark contrast
with (1) of Theorem 2.4. However, in another aspect the representation theory in character-
istic p is easier than in characteristic 0, as the following corollary of Proposition 3.3 shows.
Recall that over a characteristic 0 field there are plenty of infinite dimensional irreducible
representations of sl2, e.g., the modules ∆(λ) with λ ̸∈ Z⩾0 are irreducible, see Proposition
2.13.

Corollary 3.5. Every irreducible U(g)-module is finite dimensional.

Proof. Let M be an irreducible U(g)-module. It is generated by any of its nonzero elements,
m. Then the elements fahbecm with a, b, c ∈ {0, . . . , p−1} generateM as a Zp-module. The
F-algebra Zp is a finitely generated domain by (1) of Proposition 3.3. From Commutative
algebra (e.g., the Krull intersection theorem, [E, Corollary 5.4]) we know that there is a
maximal ideal m ⊂ Zp such that mM ̸= M . This maximal ideal must be of the form
(fp−χf , h

p− h−χh, e
p−χe) for some χ ∈ F3. Since Zp is contained in the center, mM is a

U(g)-submodule. Since M is irreducible, mM = {0}. It follows that the elements fahbecm
span M as an F-vector space. This finishes the proof. □

3.2. Classification of some irreducibles. By the Schur lemma the central elements of
U(g) act by scalars on every irreducible (finite dimensional) U(g)-module M . In particular,
to M we can assign its p-character, the triple (χ(f), χ(h), χ(e)) ∈ F3 by which the elements
fp, hp − h, ep act. The irreducible representations with a given p-character χ are the same
thing as the irreducible representations of the algebra Uχ(g) defined by (6). So, it is enough
to classify the irreducible representations of Uχ(g) for each χ. In this section we will handle
three special cases (two individual triples and one family). In the subsequent sections we will
reduce the classification to these special cases by analyzing the p-center in a more detailed
and conceptual fashion.

The cases we consider are:

• χ = 0,
• χ := χ0 given by χ0(e) = χ0(h) = 0, χ0(f) = 1,
• χ := χα given χα(e) = χα(f) = 0, χα(h) := α ∈ F \ {0}.

Case 1: χ = 0. We begin with an exercise that is an easy consequence of Exercise 2.2.

Exercise 3.6. The elements ep, fp, hp − h act by 0 on all representations M(n).

Lemma 3.7. The irreducible U0(g)-modules are exactly M(m) for m = 0, . . . , p− 1.

Proof. The proof is in several steps. Let V be a finite dimensional U0(g)-module.
Step 1. hp − h acts by 0 on V . Note the equality xp − x =

∏p−1
i=0 (x − i) in Fp[x]. So

V =
⊕

λ∈Fp
Vλ, where Vλ is the eigenspace for h with eigenvalue λ. Since ep = 0, we have

ker e ̸= 0. And since eVλ ⊆ Vλ+2, we have ker e =
⊕p−1

i=0 (Vλ ∩ ker e). It follows that there is
a nonzero element v ∈ V with hv = λv, ev = 0 for some λ ∈ Fp.
Step 2. The Verma module ∆(λ) := U(g)/U(g)(h−λ, e) still makes in this setting. It has

the same properties as in characteristic 0, Proposition 2.13, the proof carries to characteristic
p verbatim. In particular, we have a unique homomorphism φ : ∆(λ) → V with 1̄ 7→ v.
Since fp is central, the subspace fp∆(λ) ⊂ ∆(λ) is a submodule. Since fp acts on V by 0,
the homomorphism φ factors through the quotient ∆0(λ) := ∆(λ)/fp∆(λ) (known as the
baby Verma module).
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Step 3. Let vλ be the image of 1̄ in ∆0(λ). Then the elements

f jvλ, 0 ⩽ j < p,

form a basis of ∆0(λ). From here, we can analyze the submodules of ∆0(λ) similarly to the
proof of Proposition 2.13. We find that ∆0(p−1) is irreducible, while for i ∈ {0, 1, . . . , p−2},
the only proper submodule of ∆0(i) is SpanF(f

λ+1vλ, . . . , f
p−1vλ). The proof from now on

essentially repeats the argument in Section 2.6. □

Remark 3.8. The module ∆0(λ) for λ ̸= p− 1 is not completely reducible.

Case 2: χ = χ0.

Lemma 3.9. The algebra Uχ(g) has exactly (p + 1)/2 pairwise nonisomorphic irreducible
representations, all of dimension p.

Proof. As in the proof of Lemma 3.7, for any finite dimensional Uχ(g)-module V we can find
a nonzero vector v with ev = 0, hv = λv for some λ ∈ Fp. Set ∆χ(λ) = ∆(λ)/(fp − 1)∆(λ)
and let vλ denote the image of 1̄ ∈ ∆(λ). Unlike in the case of χ = 0, this module is
irreducible for all λ (hint: look at the weight decomposition and use that fp acts by 1). Any
irreducible Uχ(g)-module must be isomorphic to one of ∆χ(λ).
Moreover, for λ ̸= p− 1, the kernel of e in ∆χ(λ) also contains the nonzero vector fλ+1vλ

of weight −2− λ. This yields an isomorphism ∆χ(λ) ∼= ∆χ(−2− λ).
Finally, suppose that we have an isomorphism ∆χ(λ) ∼= ∆χ(λ′) for λ, λ′ ∈ Fp. The Casimir

element C acts on ∆χ(λ) by the scalar λ2

2
+λ. From here we deduce that λ′ = λ or λ′ = −2−λ

finishing the proof. □

Case 3: χ = χα for α ̸= 0. Here we can still form the baby Verma modules ∆χ(λ) =
∆(λ)/fp∆(λ), where λ is a solution of xp−x = α (there are p different solutions). They are
modules over Uχ(g). The following claim can be checked similarly to the proof of Lemma
3.7.

Exercise 3.10. There are p pairwise non-isomorphic Uχ(g)-modules and these are exactly
the modules ∆χ(λ), where λ runs over the set of solutions of xp − x = α.

3.3. p-center, revisited. In this section we will obtain a more conceptual description of the
p-center of U(sl2). We will work more generally with an algebraic subgroup G ⊂ GLn(F). In
particular, we can view g as a Lie subalgebra of gln(F). For a matrix ξ ∈ gln(F) we write ξ[p]
for its pth power (as a matrix; we will explain why this fancy notation is necessary below).
The following result is analogous to the first part of [2, Theorem 2.18], we will prove this
as well as an analog of part (2) of that theorem in Section 3.5, where some constructions of
this section will be analyzed more conceptually.

Proposition 3.11. We have ξ[p] ∈ g for all ξ ∈ g.

Exercise 3.12. Check this explicitly for the subalgebras sln(F), son(F) and spn(F) (the
latter is for even n).

The map ξ 7→ ξ[p] : g → g is called the restricted pth power map. We use the square
brackets to distinguish this map from taking the pth power in the universal enveloping
algebra U(g).

Define the map ι : g → U(g) by

(7) ι(x) := xp − x[p].

The following example connects ι to the p-center of U(sl2(F)).
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Example 3.13. For g = sl2(F), we have ι(e) = ep, ι(f) = fp, ι(h) = hp − h.

Below in this section we establish some properties of ι that will be used to complete the
classification of the irreducible representations of sl2(F).

Lemma 3.14. Let G be as in the beginning of the section. Then the element ι(x) ∈ U(g) is
central for all x ∈ g.

Proof. The proof is in two steps.
Step 1. Let A be an associative algebra over F and let a ∈ A. We can consider the linear

map ada : A→ A, b 7→ ab− ba. We claim that

(8) (ada)
p = adap .

Indeed, let La, Ra : A→ A be the operators of the left and right multiplication by a so that
La(b) := ab,Ra(b) := ba. Then ada = La − Ra. The operators La, Ra ∈ EndF(A) commute.
It follows that

(La −Ra)
p =

p∑
i=0

(−1)i
(
p

i

)
LiaR

p−i
a = [

(
p

i

)
= 0,∀i = 1, . . . , p− 1] = Lpa −Rp

a = adap .

This shows (8).
Step 2. Applying (8) to A = U(g) we get [xp, y] = adpx(y) for all x, y ∈ g, note that the right

hand side is an element of g. Similarly, applying (8) to A = Matn(F), we get [x[p], y] = adpx y.
We conclude that [ι(x), y] = 0 for all x, y ∈ g, hence ι(x) is indeed central. □

It is not obvious that in the case of g = sl2(F) the elements ι(x) lie in the p-center for an
arbitrary x. This actually follows from the next lemma.

Lemma 3.15. Let a ∈ F, x, y ∈ g. Then the following claims hold:

(1) ι(ax) = apι(x),
(2) and ι(x+ y) = ι(x) + ι(y).

Proof. (1) is straightforward and is left as an exercise. The proof of (2) is in several steps.
Set z := ι(x+ y)− ι(x)− ι(y).
Step 1. Recall the PBW filtration U(g)⩽i, i ∈ Z⩾0, on U(g), see the discussion after

Example 3.14 in [2, Sec. 3.3]. We write x̄, ȳ for the images of x, y ∈ U(g)⩽1 in grU(g).
Notice that grU(g) is a quotient of S(g), hence commutative. The element z belongs to
U(g)⩽p by the construction. Note however that its image in U(g)⩽p/U(g)⩽p−1 equals to
(x̄+ ȳ)p − x̄p − ȳp. The latter element is 0 because grU(g) is commutative. It follows that

(9) z ∈ U(g)⩽p−1.

Step 2. Recall, [2, Example 4.5], that U(g) has the unique Hopf algebra structure with
∆(x) = x⊗ 1 + 1⊗ x for all x ∈ g. Note that

∆(xp) = ∆(x)p = (x⊗ 1 + 1⊗ x)p = xp ⊗ 1 + 1⊗ xp,

the last equality holds because the elements x⊗ 1, 1⊗ x ∈ U(g)⊗U(g) commute. It follows
that ∆(ι(x)) = ι(x)⊗ 1 + 1⊗ ι(x) for any x ∈ g. Hence

(10) ∆(z) = z ⊗ 1 + 1⊗ z.

Step 3. Combining (9) and (10) with [2, Exercise 4.14], we see that z ∈ g. Note that
since z lies in the center of U(g), it must lie in the center of g (the subspace of all elements
that commute with every other element). If the center is {0}, then we are done. Otherwise,
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we can argue as follows. First, consider the embedding Φ : G ↪→ SLm(F), where m > n
is coprime to p, given by g 7→ diag(g, det(g)−1, 1, . . . , 1) (a block diagonal matrix, where
we consider G as a subgroup in GLn(F)). Let φ : g → slm(F) denote the corresponding
embedding of Lie algebras. It is easy to show that

(a) the center of slm(F) is {0},
(b) and φ(x[p]) = φ(x)[p] for all x ∈ g.

These claims are left as exercises. Using the embedding φ we reduce the problem of showing
z = 0 to the case when the center is {0}, which finishes the proof. □

Remark 3.16. Here is a stronger statement. Let fl2 denote the free Lie algebra in two
generators x, y. A direct analog of [2, Execise 4.14] holds for fl2, for example, this follows
from the PBW theorem. The universal enveloping algebra U(fl2) is identified with the free
associative algebra F⟨x, y⟩ because they satisfy the same universal property. We see that
(x+y)p−xp−yp ∈ F⟨x, y⟩ actually lies in fl2. Denote this element by Lp(x, y). We conclude
that (a+ b)p−ap− bp = Lp(a, b) for every associative F-algebra A and any elements a, b ∈ A.
This gives a somewhat alternative proof of Lemma 3.15.

Finally, we need equivariance properties of the map ι. Recall the representation Ad of G
in g, [2, Lemma 2.28]. Note that Adg : g → g is a Lie algebra automorphism for any g ∈ G.
Indeed, by the construction, Adg is given by x 7→ gxg−1 when we view g as a subalgebra of
gln(F). This map is a Lie automorphism of gln(F), hence of g as well. Therefore, the adjoint
action of G lifts to an action on U(g) by automorphisms because G acts on T (g) by algebra
automorphisms and preserves the ideal (x⊗ y − y ⊗ x− [x, y]|x, y ∈ g).

Exercise 3.17. The map ι : g → U(g) intertwines the G-actions: ι(Adg x) = Adg ι(x).

3.4. Completion of classification. Let V be a (finite dimensional) irreducible representa-
tion of U(g). Combining Lemma 3.14 with the Schur lemma, we see that ι(x) acts by a scalar,
to be denoted by χ(x), for any x ∈ g. For x = e, h, f we recover the scalars χ(e), χ(h), χ(f)
from Section 3.2. By Lemma 3.15, x 7→ χ(x) is a semi-linear function g → F, where “semi”
refers to the identity χ(ax) = apχ(x) for all a ∈ F, x ∈ g. Thanks to the semilinearity, χ is
uniquely recovered from the triple (χ(f), χ(h), χ(e)), so we can view the p-character of V as
a semilinear function g → F. Denote the space of such functions by g∗(1). Note that g∗(1) is
naturally an F-vector space.

In Section 3.2 we have classified the irreducible representations of Uχ(g) for χ = 0, χ0 and
χa for a ̸= 0. Below we will see that there is a representation of G in g∗(1) such that the
algebras Uχ(g) and U gχ(g) are isomorphic. We will compute the representation of G in g∗(1)

explicitly and see that every G-orbit contains 0, χ0 or χa with a ̸= 0. This will complete the
classification of irreducible U(g)-modules.

To begin with, we observe that (x, y) := tr(xy) : g× g → F is a nondegenerate symmetric
bilinear form. It is invariant for the adjoint action of G and so gives rise to an isomorphism
g

∼−→ g∗ of representations of G. Next, note that we have a natural nondegenerate sesquilinear
pairing g∗(1) × g → F, ⟨φ, x⟩ = φ(x). There is a unique representation of G in g∗(1) making
the pairing invariant. This representation can be computed as follows. Consider the map
Fr : g → g is defined by (

a b
c d

)
7→
(
ap bp

cp dp

)
,
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cf. [2, Example 1.10]. This is a semilinear isomorphism g → g. We can identify g∗(1) with g
by sending x ∈ g to the semilinear function y 7→ tr(xFr(y)). Under this identification, the
action of g∗(1) introduced above becomes g 7→ AdFr(g).

Next we establish a compatibility result between the G-actions on g∗(1) and on U(g).

Lemma 3.18. For any g ∈ G, the automorphism Adg of U(g) sends SpanF(ι(x)−⟨χ, x⟩|x ∈
g) to SpanF(ι(x)− ⟨gχ, x⟩|x ∈ g).

Proof. For example, let us show that g(ι(e) − ⟨χ, e⟩) lies in SpanF(ι(x) − ⟨gχ, x⟩|x ∈ g).
By Exercise 3.17, gι(e) = ι(ge). We can write ge as ae + bh + cf for a, b, c ∈ F. Then
ι(ge) = apι(e) + bpι(h) + cpι(f). Similar computations for h, f imply the matrix of Ad(g)
in the basis ι(e), ι(h), ι(f) of ι(g) is obtained by applying Fr to the matrix of Ad(g) in the
basis e, h, f of g. The result of the lemma follows from this observation and the descriptions
of the G-actions on g∗ and g∗(1) given before the lemma. □

Thanks Lemma 3.18, the automorphism Adg of U(g) sends ker[U(g) → Uχ(g)] to ker[U(g) →
U gχ(g)] and hence gives rise to an isomorphism of quotients of U(g):

Adg : U
χ(g)

∼−→ U gχ(g).

To complete the classification, we need to show that any element of g∗(1) is conjugate
under G to 0 or χα for α ∈ F. Since the G-action is linear we only need to treat the case of
nonzero elements χ. Under the identification of g∗(1) with g, the element χ0 corresponds to

the matrix

(
0 1
0 0

)
, while χα becomes

(
α/2 0
0 −α/2

)
. The action of G is by g 7→ AdFr(g).

Since Fr is an automorphism of F, the orbits for this action are the matrix conjugacy classes.
And our claim in the beginning of the paragraph is a consequence of the Jordan normal form
theorem.

3.5. Restricted pth power map, conceptually. The definition of the restricted pth power
map given in Section 3.3 has several disadvantages. First, we have not proved Proposition
3.11, so it is not clear whether x[p] makes sense for a general algebraic group G. Second, even
if x[p] makes sense, it is unclear whether it is independent of the embedding G ↪→ GLn(F).
The following theorem, that should be compared to [2, Theorem 2.18], fixes the issues.

Theorem 3.19. Let G be an algebraic group.

(1) The claim of Proposition 3.11 holds, i.e., for any embedding ι : G → GLn(F) (and
the induced embedding ι : g → gln(F)) we have ι(x)p ∈ ι(g).

(2) Let Φ : G → H be an algebraic group homomorphism and let φ := d1Φ : g → h.
Define the restricted pth power maps for g and h using some embeddings. Then
φ(x[p]) = φ(x)[p].

Proof. The proof will be given by using the F[ϵ]/(ϵk)-points approach outlined in [2, Sec.
2.4]. Let Gk denote the group of F[ϵ]/(ϵk)-points of G.

Step 1. An important fact we have not mentioned so far is that the natural mapGk+1 → Gk

is surjective. This follows from two observations. First, G is smooth, see [2, Exercise 2.10].
The second observation is the infinitesimal lifting property, see Exercise 8.6 in [H, Chapter
2]. The details on how the required statement follows are left as an exercise. Alternatively,
the readers are encouraged to check the surjectivity claim for the classical groups.

Step 2. Take an element g of the form 1 +
∑p

i=1 xiϵ
i in GLn(F)p+1(= GLn (F[ϵ]/(ϵp+1))),

where xi ∈ gln(F). Then gp = 1 + xp1ϵ
p.
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Step 3. Now pick ξ ∈ g and set x1 = ι(ξ). By Step 1, we can find x2, . . . , xp ∈ gln(F) such
that gp = 1 +

∑p
i=1 xiϵ

p ∈ ι(Gp+1). Since gp ∈ ι(Gp+1) and the kernel of ι(Gp+1) ↠ ι(Gp)
coincides with ι(g), cf. [2, Sec. 2.4], we deduce part (1) of the theorem.
Step 4. Part (2) is proved similarly, this is left as an exercise (cf. Step 5 in the proof of

Theorem 2.18 in [2, Sec. 2.3]). □

4. Representations of SL2(F) with charF > 2

Our task in this section is to classify the irreducible rational representations of G :=
SL2(F), where F is an algebraically closed field of characteristic p > 2.

4.1. Construction of irreducibles. The representations M(λ) from Section 2.2, i.e., the
space of homogeneous polynomials in x, y of degree λ with λ ∈ Z⩾0, still make sense but
generally are no longer irreducible.

Example 4.1. The representation M(λ) is irreducible over the Lie algebra g when λ =
0, 1, . . . , p−1, see Lemma 3.7. And since everyG-subrepresentation is also a g-subrepresentation,
M(λ) is irreducible over G. However, the G-representation M(p) is not irreducible, indeed
Span(xp, yp) ⊂M(p) is is a G-subrepresentation. In fact, the representationsM(n) for n ⩾ p
are not completely reducible.

To produce more irreducible objects, we introduce the construction called the “Frobenius
twist”.

Definition 4.2. Let V be a rational representation of G, and let ρ : G → GL(V ) be the
corresponding homomorphism. The Frobenius twist V (1) is the representation corresponding
to the homomorphism ρ(1) : G → GL(V ) given by ρ(1) := ρ ◦ Fr, where Fr : G → G is the

Frobenius homomorphism

(
a b
c d

)
7→
(
ap bp

cp dp

)
.

Exercise 4.3. The subrepresentation Span(xp, yp) ⊂M(p) is isomorphic to M(1)(1).

Notice that since Fr is an abstract group isomorphism, we have

(*) V (1) is irreducible if and only if V is.

In fact, we can construct a lot of irreducible representations of G using the Frobenius
twists and tensor products. The following proposition generalizing (*) provides an inductive
tool to do this.

Proposition 4.4. If V is an irreducible rational representation of G, then M(λ) ⊗ V (1) is
irreducible for all λ = 0, 1, . . . , p− 1.

Proof. If U is a nonzeroG-subrepresentation ofM(λ)⊗V (1), then it is also a g-subrepresentation.
Recall, Lemma 3.7, thatM(λ) is an irreducible representation of g. By [1, Proposition 2.17],
U =M(λ)⊗U0, where U0 ⊂ V (1) is a subspace. In order for U to be a G-subrepresentation,
U0 must be a G-subrepresentation. But V (1) is irreducible, so we must have U0 = V (1)

proving the claim. □

The proposition gives a way to produce irreducible representations. Namely, for a ratio-
nal representation V of G we define representations V (k) for k > 1 inductively by V (k) =
(V (k−1))(1).
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Corollary 4.5. Let λ0, . . . , λk ∈ {0, 1, 2, . . . , p− 1}. Then the representation

(11)
k⊗
i=0

M(λi)
(i)

is irreducible.

Here is the main result of Section 4.

Theorem 4.6. Let F be an algebraically closed field of characteristic p > 2. Every irreducible
rational representation of SL2(F) is isomorphic to an irreducible representation of the form
(11) for uniquely determined k, λ0, . . . , λk.

The proof will be given below in this section after some preparation.

4.2. Weight decomposition. Our first step in proving Theorem 4.6 is to establish an
analog of of the weight decomposition, see Section 2.3.

Inside G := SL2(F) consider the subgroup T of all diagonal matrices, i.e.,

T = {diag(z, z−1)|z ∈ F×}.

Projecting to the first entry gives rise to an isomorphism T
∼−→ Gm.

Lemma 4.7. The following claims hold:

(1) Any rational representation V of T splits into the direct sum of (automatically ratio-
nal) one dimensional representations of T .

(2) Any 1-dimensional rational representation of T is isomorphic to the representation
in F given by z 7→ zm for a unique integer m.

Proof. We prove (1). From Linear Algebra, we know that any two commuting diagonalizable
operators are simultaneously diagonalizable. In fact, this is true for any collection (even
infinite) of diagonalizable operators, this is left as an exercise. The collection we take consists
of all elements of F× that are of finite order coprime to p hence diagonalizable, denote it by
C. So the elements from C are simultaneously diagonalizable.
Take the corresponding basis and consider the matrix coefficients of the representation in

this basis. The non-diagonal matrix coefficients vanish on C and so are zero. Notice that C
is Zariski dense in Gm, so the nondiagonal matrix coefficients are zero. This proves (1).

Now we prove (2). To give a 1-dimensional rational representation of T amounts to giving
an element f ∈ F[Gm] = F[z±1] such that f(z1z2) = f(z1)f(z2), an equality of elements in
F[z±1

1 , z±1
2 ]. From here it is easy to deduce that f(z) = zm for some m ∈ Z. □

We get back to the situation when V is a finite dimensional rational representation of G.
Thanks to Lemma 4.7, we can decompose V into the direct sum

V =
⊕
n∈Z

Vn, where Vn := {v ∈ V |
(
z 0
0 z−1

)
v = znv,∀z ∈ Gm}

Definition 4.8. By a highest (resp., lowest) weight of V we mean the maximal (resp.,
minimal) n such that Vn ̸= {0}.

Example 4.9. The weights of M(n) are n, n − 2, n − 4, . . . ,−n. In particular, the highest
weight is n and the lowest weight is −n.
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Exercise 4.10. Show that the action of the element

(
0 1
−1 0

)
∈ G restricts to an isomor-

phism Vn
∼−→ V−n for all n ∈ Z. In particular, the highest and the lowest weights of V are

opposite, and the highest weight is a nonnegative integer.

We are going to deduce Theorem 4.6 from the following proposition that will be proved
in a subsequent section. The result is similar in spirit to the proof of Theorem 2.4 given in
Section 2.6.

Proposition 4.11. An irreducible rational representation of G is uniquely determined by its
highest weight.

Proof of Theorem 4.6 modulo Proposition 4.11. Theorem boils down to showing that the
highest weight of (11) is

∑k
i=0 λip

i (indeed, every positive integer admits the unique p-adic
expression). This claim in turn boils down to the following two easy observations that are
left as exercises.

• For a rational finite dimensional representation V of G, we have V
(1)
n = {0} if n is

not divisible by p and V
(1)
n = Vn/p else.

• For rational finite dimensional representations U and V of G, we have (U ⊗ V )n =⊕
m∈Z Um ⊗ Vn−m.

□

4.3. Induced Modules. The main ingredient in proving Proposition 4.11 is the claim that
every irreducible representation V with lowest weight −λ embeds into M(λ) (this is morally
similar to the claim that any finite dimensional representation of sl2 in characteristic 0 is
a quotient of the Verma module ∆(λ), the fact established in Section 2.6; we will further
comment on this analogy in Remark 4.15). For this, we need to realize M(λ) as an induced
representation. Recall that the induced representations in the context of finite groups were
introduced in [1, Section 3.5].

Now let H ⊂ G be algebraic groups, and U be a rational finite dimensional representation
of H. Note that both G and U are algebraic varieties so we can consider morphisms G→ U .

Definition 4.12. The algebraic induced representation is

(12) IndGHU = {morphisms f : G→ U | f(hg) = hf(g)∀h ∈ H, g ∈ G},

where the structure of an F-vector space is by pointwise operations (say, [f1 + f2](g) =
f1(g) + f2(g)) and G acts on IndGHU by [g.f ](g′) = f(g′g) for f ∈ IndGHU and g, g′ ∈ G.

In general, IndGHU is infinite dimensional (the easiest example is when H = {1} and G is
infinite), but one can still show that it is equal to the sum of its finite dimensional rational
subrepresentations. We are not going to do this.

The following claim is an algebraic group analog of the second isomorphism in [1, Corollary
3.13]. We would like to point out, however, that the first isomorphism there does not hold
in the algebraic context.

Lemma 4.13. The Frobenius reciprocity holds: for any finite dimensional rational repre-
sentations V of G and U of H we have a natural isomorphism

HomG(V, Ind
G
HU)

∼= HomH(V, U).
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Proof. Let v 7→ φv be an element of HomG(V, Ind
G
HU). For any v ∈ V , we have that φv is

a morphism G → U , so that we can evaluate it at 1 ∈ G. Now v 7→ φv(1) is a linear map
V → U .

Let us show that v 7→ φv(1) is H-equivariant. By the H-equivariance condition in (12)
applied to g = 1, we have φv(h) = h(φv(1)). On the other hand, by the definition of
the G-action on IndGHU , we have φv(h) = [hφv](1). Since φ is G- (and, in particular, H-)
equivariant, we have [hφv] = φhv. Combining the equations in this paragraph, we arrive at

h(φv(1)) = φv(h) = [hφv](1) = φhv(1),

showing that the map v 7→ φv(1) is indeed H-equivariant. This gives rise to a linear map

HomG(V, Ind
G
HU) → HomH(V, U).

Now take ψ ∈ HomH(V, U). We want to construct a linear map Φψ : V → IndGHU .
Take v ∈ V and let Φψ(v) denote the following map: g 7→ ψ(gv). It is easy to see that
Φψ(v) : G → U is a morphism (because the action map G × V → V is a morphism). Also
Φψ(v) ∈ IndGH U : this is because [Φψ(v)](hg) = ψ(hgv) = hψ(gv) = [h(Φψ(v))](g). Similarly,
one checks that Φψ is G-equivariant. This gives rise to a linear map

HomH(V, U) → HomG(V, Ind
G
HU).

To show that the maps in the two previous paragraphs are mutually inverse is left as an
exercise. □

Now we explain how to construct M(λ) as an induced representation. Consider the sub-

group B ⊂ G consisting of all upper triangular matrices, i.e., B = {
(
t z
0 t−1

)
}. For m ∈ Z,

we write Fm for the 1-dimensional representation, where

(
t z
0 t−1

)
acts by tm.

Proposition 4.14. We have an isomorphism of G-representations

M(λ) ∼= IndGBF−λ.

Proof. Note that the right hand side is nothing else but the space of all polynomial functions
f on G satisfying

(13) f(

(
t z
0 t−1

)
g) = t−λf(g),∀t ∈ F×, z ∈ F, g ∈ G.

A polynomial function on G can be thought of as a polynomial in the matrix entries:

f(

(
a b
c d

)
), two polynomials give the same function if their difference is divisible by ad −

bc− 1.

Let U denote the subgroup of all elements of the form

(
1 z
0 1

)
. We claim that any f ∈ F[G]

satisfying

(14) f(ug) = f(g),∀u ∈ U, g ∈ G

is uniquely written as a polynomial in the matrix entries c and d (an easy exercise in matrix
multiplication shows that a polynomial in c, d indeed defines a function satisfying (14)).

Consider the principal open subset Gd (defined by d ̸= 0). Since G is irreducible as a
variety, the restriction map F[G] → F[Gd](= F[G][d−1]) is an inclusion. Also note that Gd is
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preserved by the left action of U . We leave it as an exercise to show that the multiplication
map

U × {
(
d−1 0
c d

)
} → Gd

is an isomorphism.
Thanks to this isomorphism, we can identify F[Gd] with F[z, c, d±1] so that (14) becomes

the condition of being independent of z. It follows that the algebra of invariants F[Gd]
U is

F[c, d±1]. It is left as an exercise to show that the intersection of F[c, d±1] and F[G] in F[Gd]
is F[c, d]. This finishes the proof of the claim above.
Now it is easy to observe that

• The subspace in F[c, d] = F[G]U of functions satisfying (13) is exactly the subspace
of homogeneous polynomials in c, d of degree λ.

• And the action of G (via [gf ](g′) = f(gg′)) identifies this space with M(λ), finishing
the proof.

□

4.4. Completion of Classification.

Proof of Proposition 4.11. Our key claim is the following: LetM be a rational representation
of G such that Mµ = {0} for all µ < −λ. We claim that

(15) M∗
−λ

∼= HomG(M,M(λ)),

a vector space isomorphism.
Let us first explain how (15) implies the proposition. Let V 1, V 2 be two non-isomorphic

irreducible representations with highest weight λ, equivalently, lowest weight −λ. They both
admit nonzero homomorphisms to M(λ) by (15). It follows that V 1 ⊕ V 2 ↪→ M(λ), hence
V 1
λ ⊕ V 2

λ ↪→ M(λ)λ. The source space is at least two-dimensional, while the target space is
one-dimensional.

Now we prove (15). By the Frobenius reciprocity, Lemma 4.13 combined with Proposition
4.14 we get

(16) HomG(M,M(λ))
∼−→ HomB(M,F−λ).

We notice that

(17) HomB(M,F−λ) ↪→ HomT (M,F−λ)

The target is identified with M∗
−λ. It remains to show that (17) is an isomorphism.

Let M+ :=
⊕

µ>−λMµ. To prove the claim in the end of the previous paragraph we will
check that M+ is B-stable. It is clear that M+ is T -stable. Since B = T ⋉ U , it remains to
show that M+ is U -stable. For this, we need to show that for any m ∈ Mµ for µ > −λ and

any u we have um ∈M+. The element u is of the form as

(
1 z
0 1

)
, we write u(z) to indicate

the dependence on z. We can write u(z)m as
∑

ν∈Zmν(z), where mν is a polynomial map
A1 →Mν . Our task is to show that m−λ = 0 as a polynomial map.

We have the following for all t ∈ F×, z ∈ F:

(18)

(
t 0
0 t−1

)(
1 z
0 1

)
=

(
1 t2z
0 1

)(
t 0
0 t−1

)
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Apply both sides of (18) to m. For the right hand side we have tµ
∑

νmν(t
2z). For the

left hand side we get
∑

ν t
νmν(z). We conclude that tµm−λ(t

2z) = t−λm−λ(z), equivalently,

(19) µ−λ(t
2z) = t−µ−λµ−λ(z).

Since µ > −λ, the power of t in the right hand side of (19) is negative. An easy exercise
is to show that the only polynomial map satisfying (19) is zero. This finishes the proof. □

Remark 4.15. The representationM(λ) is usually referred to as the dual Weyl module with
highest weight λ. It dual, W (λ), is the so called Weyl module. Dualizing (16) we see that

HomG(W (λ),M)
∼−→ HomB(Fλ,M).

This is an analog of (1) of Proposition 2.13 for Weyl modules, so the Weyl modules may be
viewed as analogs of Verma modules for rational G-representations.
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