Quantized symplectic singularities & applications to Lie theory, Lecture 2.

- 1) Equivariant covers of nilpotent orbits.
- 2) Singular symplectic varieties,
- 3) Classification of filtered quantizations.
- 1) Let $O \subset O_1$ be a nilpotent orbit. Then $O \simeq G/H$ w. $H = Z_G(e)$. A Gequivariant cover of O has the form G/H' w. $H' \subset H$, a finite index
 subgroup. In other words, covers are parameterized by subgroups of H/H° ,
 where H° is the connected component of 1 in H. In what follows we will
 often call $\widetilde{O} := G/H'$ a nilpotent cover. We'd like to understand
 the group H/H° . This is done using SL-triples.

Exeruse: Show that $Z_{c}(e) \cong Z_{c}(e,h,f) \times \text{unipotent group.}$ $Deduce \ Z_{c}(e)/Z_{c}(e)^{\circ} \xrightarrow{\sim} Z_{c}(e,h,f)/Z_{c}(e,h,f)^{\circ}$

The component group $Z_G(e)/Z_G(e)^o$ is known in all cases. For classical Lie algebras it's easy to determine $Z_G(c,h,f)$. This is done in the exercise sheet for Lecture 1 for BCD types

Proposition: Let $G = SL_n(C)$, $O_n(C)$ or $Sp_n(C)$. Let O be a niplotent orbit corresponding to a partition $(n_i, ..., n_k^{d_k})$ $(d_i > 0)$ is the multiplicity $g \in O$.

1) Let $G = SL_n(C)$. Then $Z_G(e,h,f) \simeq \{(g_1,...,g_k) \in \bigcap GL(d_i) \mid \bigcap det(g_i)^{h_i} = 1\}$ and $Z(G) (\simeq 7L/n/L) \longrightarrow Z_G(e)/Z_G(e)^o \simeq 7L/GCD(n_1,...,n_k)/L$.

2) Let $G = O_n(C)$ or $Sp_n(C)$. Then $Z_G(e,h,f) \cong \bigcap_{i=1}^n G_i$, where $G_i \cong O_{d_i}$ if n_i is odd & Sp_{d_i} if n_i is even (for O_n ; vice versa for Sp_n). Therefore, $Z_G(e)/Z_G(e)^o \cong (\pi/2\pi)^o$, where Q = # of odd (for O_n)/even (for Sp_n) n_i 's (= # of O factors in $Z_G(e,h,f)$)

Example: $G = Sp_{2n}(C)$, O corresponds to (2,1...,1). We have $Z_G(e)/Z_G(e) \cong \mathbb{Z}/2\mathbb{Z}$. We claim that the 2-fold cover $G/Z_G(e)^o$ is $C^{2n}\setminus\{0\}$. Namely, consider the natural C-action on C^{2n} . This action is Hamiltonian W. moment map $M: C^{2n} \to g^*: \langle g(v), \overline{z} \rangle = \frac{1}{2} \omega(\overline{z}v, v)$, where ω is the form used to define G.

Exercise: 1) Check this.

- 2) Show that im m = 0
- 3) Show that over O the morphism M is a 2-fold cover. So, we get the conclusion of this example.

In the end of Sec 3 of Lec 1 we have shown that the algebra C[O] is finitely generated for all nilpotent orbits O. This generalizes to all nilpotent covers.

Theorem: Let \widetilde{O} be an equivariant cover of a nilpotent orbit O. Then $C[\widetilde{O}]$ is a finitely generated graded Poisson algebra.

Sketch of proof: • \widetilde{O} is symplectic: discussed in Sec 1 of Lec 1. • $C[\widetilde{O}]$ is fin. gen'd: consider the "Stein decomposition" for $\widetilde{O} \longrightarrow \widetilde{O}$: it factorizes as the composition $\widetilde{O} \to X \longrightarrow \overline{O}$, where X = Spec of the integral closure of $\mathbb{C}[\overline{O}]$ in the field of rational functions on \widetilde{O} , and $\widetilde{O} \to X$ is an open embedding. From $\operatorname{codim}_{\overline{O}} \overline{O} \setminus O$ 7.2, we deduce $\operatorname{codim}_X X \mid \widetilde{O}$ 7.2 and by $\operatorname{Fact} 2$ in $\operatorname{Sec} 3$ of $\operatorname{Lec} 1$, we get $\operatorname{C}[\widetilde{O}] = \mathbb{C}[X]$.

· Grading ~ C x O lifted from C x O by Z. 3= 2d for suitable d>0. 1

Defin: the affinization of \widetilde{O} is $X:=Spec\ C[\widetilde{O}]$

2) Singular symplectic varieties. 2.1) Definition:

We can talk about symplectic smooth varieties: these are smooth algebraic varieties equipped with an algebraic symplectic form: a symplectic vector space is the most basic example.

Every symplectic smooth variety X is Poisson meaning that \mathcal{O}_X comes w a Poisson bracket.

Beauville (2000) generalized the notion of "symplectic" to singular Poisson varieties.

Definition: Let X be a Poisson variety. We say X is symplectic (a. k.a. singular symplectic, a. k.a. has symplectic singularities) if i) X is normal (and, for simplicity of exposition, irreducible), ii) the restriction of the Poisson structure to the smooth locus $X^{reg} \subset X$ is non-degenerate. Let $\omega^{reg} \in \mathcal{F}^2(X^{reg})$ be the corresponding

symplectic form, &

iii) there's a resolution of singularities $\mathfrak{I}': Y \longrightarrow X$ (meaning that Y is smooth and \mathfrak{I}' is birational & proper) s.t. $\mathfrak{I}'^*(\omega^{reg})$ extends from $\mathfrak{I}'^{-1}(X^{reg})$ to a regular 2-form on Y.

Remarks: 1) if we have iii) for one resolution, it's true for any resolution, as proved already by Beauville.

2) The extension of $\mathfrak{N}^*(\omega^{reg})$ to Y is closed but may fail to be non-degenerate. If it's nondegenerate (\Leftrightarrow symplectic) we say that $\mathfrak{N}^: Y \longrightarrow X$ is a symplectic resolution.

2.2) Examples: symplectic quotient singularities.

Let V be a finite dimensional symplectic vector space w form w and $\Gamma \subset Sp(V)$ be a finite subgroup. Set $X = V/\Gamma$ (= $Spec S(V)^\Gamma$). It's a Poisson variety $b/c S(V)^\Gamma \subset S(V)$ is closed under $\{:, :\}$. Beauville proved that it's singular symplectic. Namely, the claim that X is normal is standard. If $p: V \to V/\Gamma$ is the quotient morphism, then $(V/\Gamma)^{reg}$ is symplectic: the symplectic form descends from the restriction of w to $p^{-1}((V/\Gamma)^{reg}) \subset V$ b/c p is unramified over $(V/\Gamma)^{reg}$. The claim that V/Γ satisfies (iii) was checked by Beauville.

Sometimes V/T has a symplectic resolution (and it's mostly known when). Notable examples:

- dim V=2 so that $\Gamma \subset SL_2(C)$. The symplectic resolution of C^2/Γ is the unique <u>minimal</u> resolution. This case is very important for the general theory 6/c "locally" every singular symplectic variety of dim 2 is C^2/Γ for suitable Γ .
- This case isn't relevant for this course but too important to ignore: $V = (\mathbb{C}^2)^{\oplus n}$, $\Gamma = S_n$ acting on V by permuting the copies of \mathbb{C}^2 . Then X is the symmetric power $(\mathbb{C}^2)^{\oplus n}/S_n$ (parameterizes unordered n-tuples of points in \mathbb{C}^2), while for Y we can take Hilbn (\mathbb{C}^2) (parameterizing length n subschemes of \mathbb{C}^2). It's symplectic.

2.3) Examples: Spec CLOI Let G be a semisimple algebraic group, Q be a nilpotent cover.

Thm: \widetilde{X} := Spec $\mathbb{C}[\widetilde{O}]$ is (singular) symplectic.

The case of $\widetilde{O} \hookrightarrow o_{\overline{J}}$ follows from the work of Panyushev & Hinitch: one can produce Y using the theory of SL-triples, this is done in Exercise sheet. The general case can be deduced from here using some results from Algebraic geometry.

Sometimes X admits a symplectic resolution. Turns out, most of such resolutions are of the form $T^*(G/P)$, where $P \subset G$ is parabolic.

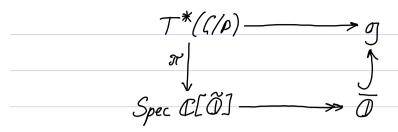
Namely, a parabolic subgroup of G is an (automatically G)

connected) algebraic subgroup P containing a Borel subgroup <=> G/P is projective. We have a decomposition P = ∠1U, where L is connected reductive (Levi subgroup) & U is unipotent. For example, for C=SLn, and a composition N=N,+.+Nx we can consider the subgroup P of block upper triengular matrices w. block sizes n,...n, It's parabolic w. Levi L of all block-diagonal matrices & U being the kernel of the natural projection P -> L. Let h:= Lie (U).

Consider the cotangent bundle T*(G/P). It's smooth & symplectic. It can be thought of as the homogeneous vector bundle GxP(og/B)* (the quotient of Gx (og/B)* by the P-action given by p. $(g, \alpha) = (gp^{-1}, Ad^*(p)\alpha)$). We write $[g, \alpha]$ for the P-orbit of (g, α) , this is a point in G×P(g/B). Note that B= h w.r.t. Killing form giving a P-equivariant isomorphism $(g/\beta)^* \xrightarrow{\sim} h$. The C-action on $T^*(G/P)$ is Hamiltonian w. moment map given by M([g, 2]) = Ad(g)a.

Exercise: M is proper.

Every element in h is nilpotent, so im m consists of nilpotent elements. Since the number of nilpotent orbits is finite (Fact 1 in Sec 1 of Lec 3) & imp is irreducible (b/c T*(G/P) is), it follows that I orbit $O_p \subset N$ s.t. im $y = O_p$. In the next lecture, we'll sketch the argument that dim Op = dim T*(G/P). It follows that T*(G/P) contains a unique open orbit, Op, which is a 4-equivariant cover of Op. By the Stein factorization we have the following commutative diagram:



Exercise: It is a symplectic resolution of singularities.

Examples: 1) Let P=B. Then im p=N. According to Kostant, N is normal. So we get a symplectic resolution $T^*(G/B) \rightarrow N$, the Springer resolution. This is one of the most important morphisms in the geometric Representation theory — see the Chriss-Cinzburg boox.

2) Let $g = Sl_n$. Take the nilpotent orbit $O = O_{\lambda}$ for $\lambda \vdash n$. Let λ^t denote the transposed partition (i.e. the partition corresponding to the transposed Young diagram). Pick the composition consisting of parts of λ in some order and take the corresponding parabolic, P. One can show that im $\mu = \overline{O}$ & μ is generically injective. Moreover, Kraft and Process checked that \overline{O} is normal. It follows that $\pi: T^*(G/P) \longrightarrow \overline{O}$ is a symplectic resolution.

3) Let $G = Sp_4$ and O correspond to the partition (2,2). The group $Z_G(e)/Z_G(e)^\circ$ is $\mathbb{Z}/2\mathbb{Z}$ by Proposition in Sec 1.2. So we have a 2-fold cover \widetilde{O} of O. On the other hand, we have 2 semisimple vx 1 parabolics, P_1 , P_2 , corresponding to long & short roots.

Exercise: Show that T*(4/P,) and T*(4/P,) are symplectic resolutions of Spec C[O] & Spec C[O] - and figure out what resolves what.

3) Classification of filtered quantizations.

Setting: A: finitely generated graded commutative C-algebra w. Poisson bracket of degree -d ($d \in \mathbb{Z}_{70}$). We assume that

(say: X is a conical symplectic

X:= Spec(A) is singular symplectic

singularity.

Theorem (I.L. 2016): There are a finite dimensional C-vector space \mathcal{S}_{X} & a finite crystallographic reflection group $W_{X} \subset GL(\mathcal{S}_{X})$ s.t. there's a natural identification:

Equantizations of A3/iso ~> \$x/Wx.

Example: Let of be a s/simple Lie algebre and Noog be the nilpotent cone, by Sec 23, N is singular symplectic. Let b, W be a Cartan subalgebra & Weyl group of og. Then In = 5, W = W. The quantization corresponding to W\∈ f*/W is constructed as follows.

Let U(og) be the universal enveloping algebra of og & Z < U(og) be its center. We have the Harish-Chandra isomorphism $\mathcal{Z} \xrightarrow{\sim} \mathbb{C}[Y^*]^W$ (where, by convention, WAL^* is the <u>usual</u> linear action). So to $\lambda \in L^*$ we can assign the maximal ideal $m_{\chi} \in CLJ^*J^w \simeq Z$ consisting of all functions vanishing at λ , of course, $M_{\lambda} = M_{W\lambda} + W \in W$.

Then the quantization of C[N] corresponding to $W\lambda$ is the "central reduction" U_{λ} : = $U(\sigma)/U(\sigma) M_{\lambda}$. A proof why it's indeed a quantization is sketched in Exercise sheet.

Then we have the following two questions:

- 1) How to construct &?
- 2) For $\lambda \in J_X$, how to construct the corresponding quantization?

We'll start by answering 1) in a special case, the general case will be handled in Lec 3. Question 2) will be addressed in Lec 4.

The simplest case of question 1) is when X admits a symplectic resolution, say Y. Then

 $\int_X := H^2(Y, \mathbb{C}).$

Example: Let X = N, we can take $Y = T^*(G/B)$. We have $H^2(T^*(G/B), \mathbb{C}) = H^2(G/B, \mathbb{C}) = [for simply connected Lie group <math>G.8.$ Lie subgroup F, have $H^2(G/F, \mathbb{C}) = H^1(F, \mathbb{C})^{F/F}] = H^1(B, \mathbb{C}) = f.*$

We'll see that in the general case we need to modify Y.