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1 Ohfactorial terminalizations
Below X is a conical symplectic singularity ie X is

singularsymplectic A X isgraded so that A EAi w Aee
2 Leg 3 d etc In Section 3 of Lec2 we havestated
that filteredquantizations of A areparameterizedbypts
of a certain vectorspacebymodule a finitegroupaction We
have stated that if Y is a symplectic resolution of X
then be 1147,0 In this lecture well explain what happens
in thegeneral case and in a bonus section explain howto
recoverby fromX

If X doesn'thave a symplectic resolution thestory is more
complicated Anarbitrary resolution won'thelpleg H s dependon

theresolution Instead we shouldbe looking at a maximalpartial
Poisson resolution T Y T X where

Y is a Poisson variety possiblysingular

p
M is a birationalpropermap that is Poisson meaningthat



forf.ge fly f Cgi Kfg
Maximalmeans that if Y isanotherPoisson variety

T Y Y anotherproper birational Poissonmorphism then

I is an isomorphism For example this implies Y is normal
otherwise for t Y Y take the normalization morphism One
can show that 3 extends fromOy to dy making M a

Poisson morphism and it's birational proper

Exercise Y is singularsymplectic
Hint consider a resolution I Y Y that is so over Y
Fest Y X is a resolution of singularities for X so I whey

extends to Y From it being Poisson deduce that stares extends
to a symplectic form on yr

Remark In particular the exercise implies that a symplectic
resolution has the maximalityproperty if it exists

It turns out that a maximalpartial Poisson resolutionalways
exists nontrivial Moreover it admits a transparent algebra
geometric characterization it's Ohfactorial terminal

Todefine theformer recall that to a scheme E we can

assign its Picardgroup Pic Zl whose elements are isomorphism
classes of line bundles on Z
I



Definition Let I be an irreduciblenormalvarietyWe say
Z is A factorial if the cokernel of therestrictionmap
Pic Z Pic Zed is torsion

ExampleP Let's investigatewhen X SpecCLE is A factorial
First of all a version of theNakayamalemmeshowsthat PicX
e there we use that X is conical
Second EG X w complement ofcodim 2 This shows that

Pic Nes A PicOil One can computePic El as follows Assume
G is simply connected Let O GH Then Pic d is
identified w the charactergroup I H Hom H E So X is
A factorial iff ItH isfinite Let Acogbethe orbit covered
by O feed Then H Qu U where Q is a finite index
subgroup in Zaleh f Using our knowlenge ofZalehifi inExercisesheet t we see that

if G SLn then X is A factorial all parts in
thepartition of O are equal

if G Stan or Span and O O then X is A factorial
If G Sem 20 0 then X is A factorial formost 0

Now we explainwhat terminal means in our setting

Definitionproposition NamiKanal Wesay that asingular

gsymplet variety Z
is terminal if codimz 2 87,4



Example 3 Let g be a classical lie algebra so that the
nilpotentorbits are classifietylertainpartitions Let O'cog
be a nilpotentorbit X Spec do It turns out that X is
terminal coding 810 4 is easy notquite One

can analyzethe letter condition combinaterially The result is
that X is terminal thepartition Is ftp hu correspondingto
satisfies hisXi t t t i w I so for ine by convention Two

ingredients the dimension formulafororbits a description ofthe
orderby orbit closures

We have thefollowing result a consequenceof a moregeneral
result of Birkar Casciniflacon McKernan on MMP

Theorem Amaximalpartial Poisson resolution YofXexists is

Q factorial terminal Conversely any Oh factorial terminal

partial Poisson resolution is maximal

It turns out that manyquestionsabout X can beanswered

by studying Y The computation ofb isjust one of them

Fact Wehave 5 H'lyrese

Note that thisgeneralizes the description ofby inthe case when
admits e symplectic resolution



21 A factorial terminalizations fornilpotentcovers
Here we aregoing to explain how to construct the Afactorialterminalization Y for X SpecELE For this we needa

suitable version of the so called Lustig Spaltensteininduction
a version ofparabolic induction in this setting
Pick a Levi subgroup L G and include it into aparabolic

subgroup P LAU Take an L equivariant cover E of a nilpotent
orbit in 11 1 7 Set XESpeeECE From thepair PXd
we will produce an induced singularsymplectic variety Y w
Hamiltonian Gaction For XiLo we recover T Glp GxpCoyly
Recall that Lie U h

Constructionof Y Forthis we will use thegeneralconstruction
known as Hamiltonian reduction

Consider the cotangent bundle T G Theaction xGAG lifts
to a Hamiltonian GG action on T G Themomentmapfor the
latter can be described as fellows We identify 7 9 A Gxof
using the left invariant vectorfields on G so that theGaction
becomes gag g 2 giggi g 2 Themoment mapjur

resp jul for the Gaction on theright resp onthe left is lg2 to 2
resp g 44 g 2 Theaction of L on X is also Hamiltonian
the momentmap jy XpC't is finite it's the composition
A g 4 We can inflate the Laction on X to a Paction

and view g es e moment map for the Pactionby composing



it w C as tents p
Consider thePoisson variety T Gx I w diagonalactionof P
It's Hamiltonian w momentmapgu g d x to diptych
Consider ji lo g h x alpsupk The locus 12x Hp ki

is identified w Xplogp we send KN to lx aguk For a
suitable Paction on Xplog f theidentification

ji lo I GxXplogp
is P equivariant technicaldetails are left as an exercise

The actionPaju letadmits aquotientvariety to bedenoted
by j lo P It's the homogeneous

bundle over Glpw fiberXplogp
henceanothernotation GxpHeiglpt
A typicalpoint in GPXplolpt will bedenotedby Cg433

this is bydefinition the Porbit of giggleGxXxlogpH

Poissonstructure on Y momentmapfor GAY
The bracket on O'y is alsoproducedbyHamiltonianreduction

Important exercise Let A be a Poissonalgebraequippedw a
rationalaction of an algebraicgroup Gby PoissonalgebraautomorphismsAssumefurther that there is a commentmapg g A
i e a f equivariantlinearmap w 4131 3 thederivation ofA
coming fromthe Gaction Then I Poissonbracketon AAytoast
at Aploy GAploy a63 Agig t atAglg 6 Apig e AAploy

ThePoissonalgebra AApig is calledtheHamiltonianreductionofA
GT



Toapplythis construction in our setting let w G GIP

2 ji'd P Gx xpglp
t Glp denotetheprojectionmaps

Exercise For an openaffinesubvariety UcGIP thealgebra1424413
coincides w theHamiltonianreductionfor Pa ELT coaxXp

Thisandtheimportantexerciseshowthat wehave a welldefinedPoisson
bracket onOygluedfrom s on fly u obtainedby reduction

Now we proceed to themomentmapfor GAY Notethatjuice
is Gstableunderthe left Gaction on T Gxx andso Gacts
on ji lo P g g x p gg xp There is a Pinvariant Gequiv't
map j j o of g xp 4 g salep It descends to a

Gequivariantmap ji lo p g'talso to bedenotedby j
Exercise ogu isproper
gu is a momentmap for GAY

imy is theclosure of a singlenilpotentorbit

A factorial terminalization
Wehave thefollowing result

Theorem There is a bijection between

i Gequivariant covers é ofnilpotent orbits in of
Iii Pairs L E where L is a Levisubgroup in G E is

an L equivariant cover of a nilpotent orbit in 1 CA note



that 1,13 is again a ssimple lie algebra s t XL is Oh

factorialterminal Thepairs LE are viewedup to suitably
defined Gconjugacy

ii to i wepick aparabolic P W Levi L andconsiderYgu o P Then O is theuniqueopen Gorbit in Y
onlydepending onL Y X SpecCLE is a d factorial
terminalization Finally be H Y's E 1114,137

In the next lecture we'll explainhow to construct a
quantization of ACE startingfrom aparameter help
We'll usequantumHamiltonian reduction

Remarks Let's comment on variousparts oftheproofofThm
a If Xi is A factorial terminal then so is Y exercise
61 H Y E a 114,13 1 comesfromthespectral

sequence forthe cohomology of thefiberbundle
yreg GI Kesx gpt CIP

thx to HillisE Hilda e he for is1,2 The in caseholds

always i 2 case holds ble X is A factorial

c Theclaim that Yhas an open Gorbit that is a cover
of a nilpotent orbit is classicalgoingback to Lustig
Spattenstein 1079 Theproof uses a certain Poissondefer

qmation of Y it is sketched in
the complementsection



d To prove the bijection claim one thenneeds to construct
a map from i to ii This is based on looking at a Poisson
deformation of X essentially done by I L in 2016

3 Complements

3 1 Sketch ofproofof c
Weneed to establish thefollowing
Lemma dim ji lo P Limimy i e j isgenerically finite

Sketch ofproof Theproof is based on an idea fundamental
for this subject deformation Set z 1 1 Wehavenatural
embeddings z les p'tof for theembedding intog'ttakethe
unique L equivariant embedding whose composition w therestriction

map of is the identity The naturalmorphism ji z z
is Pinvariant so descends to

ji z P z a

We can identify ji z P GxPlzx Xplogpt and it becomes
g E L x ts z In particular all fibers of 1 havethesamedimension
We still have the Gequivariant map ji ji z P g't

Fact 1 For a Zariskigeneric zez we have an isomorphism

GxP z Xxlogp I 6 412347 andthe morphism

Yu Gxp z xXxglp
t
of is finiteO



Now consider j ji ez P of Wehave
dim ji ez P dim Yt 1

By Fact 1 the image ofgu ez IP ing't hasdimension
equal to dimjus ez P It remains to show that y y is
a divisor in ju ji Az P Forthis

considerthe composition
of ju w the quotientmorphism sqof 911G ForanyZ'ez
the image of y z P underHaeju is Na z w Z viewed

as an element of g Wehave stale o Ese So

Haogu jus Ez P is a curve andjuicy is thepreimage
of apoint in the curve under sq j Gu ez P 0 116
So codinggutcamp juicy s t which finishes theproof a

32 Construction ofGxW from thegeometry ofX
Above wehave explainedhow to recover the spacebx from
Y X a A factorial terminalization Now we'll explain how
to recoverBxk W from Il itselfessentiallydue to Namikawa
We start w an important example

Example Let Ic Shee be afinite subgroup Thesesubgroups
type DDE diagrams To recoverthediagramfrom a sub

group one
considers theminimal symplectic resolution Y E

X 645 Thefiber ever O istheunion of P s Two

components eitherdon't intersect or intersecttransversally

It
a singlepoint So we can encodethis as agraph the



vertices are the componentsand we have a nonorientededge
between two vertices if the components intersect Theresulting
graph is an ADE Dynkin diagram andthis classifies fupto

conjugacy
The space H YG has basis labelledby the components

of the zero fiber Let5 denote the Cartan subalgebra inthe

simple lie algebra of the same ADE type as T We identify
H YG b mapping thebasiselement inthe lhs to the simple
caveat in the rhs

Let'sproceed to thegeneral case Hereby is thedirectsum
of severalpieces one corresponds to X's equal to H Nega and
the others are contributions of codim 2 symplectic leaves in X

Definition Let X be a Poisson variety By a symplectic leaf we
mean an irreducible local closedsubvariety L X st

L is smooth
L is a Poisson subvarietymeaning that itis ideal isclosed

undertakingthe bracket w Ox
Wvt the inducedPoisson structure onQ L issymplectic

Example LetO'cgbe a nilpotentorbit Then thesymplectic leaves
in O are exactly the Gorbits

A



Assume until theendof thesection that X is singular
symplectic

Fact Kaledin X hasfinitelymanysymplectic leavesand is
moreovertheir disjointunion

Let L L be the codim2 leaves of X so that X'sLl IfLi
is the open subvariety in X whose complementhascedim 4
To each of them we will associate a vectorspacebi and a
reflectiongroup Wi actingonbi so thatbeÉbinWeiWi
Bi ti yes e w trivial action

We can consider the formal transversalslice Ei to Li It
has dimension 2 so must be the formalneighborhoodof 0 in
El fi fer uniquely determined fi cSh Q there are noother
2 dimensional symplectic singularities Thisgives the Cartan

spaceBs andtheWeylgroup W of the same ADE type
It turns out that thefundamentalgroup 9 Ili actsonBri
We in a compatibleway and5 51 Wi wit
Let'sexplain how a Li acts Theaction comesfrompermuting

thesimple caveats inBg Consider a Oh factorial terminalization
Y X Its base change te Ei has to be a symplecticresolutionEi So thefiber of Y X over eachpoint in
Li is the efiber of Ni Eli When apointtravels
around a loop the components of thefibermaygetpermuted
Thisgives an action of it hi on the Dynkin diagram assai
I



ated to f Thisgives theactions onBriWe that weneed

Example Let g be a simple Lie algebra and X N Wehave

be 03 There is one codim 2 leaf f orbit known as thesub
regular orbit For classical lie algebras they correspond tothe

followingpartitions
3h n o o

Gant 2h PM

span 2n2,2
Blan 2h 3 3

If g is simply laced then theslice to the subregular orbit
is of the same type as g andthe monodromy action is trivial
The types of slices for non simply laced Lie algebras
together w J L are in thefollowingtable

g E

cByam f
g

74272

Dna 74272

Es 7427L

Thegroup it 14 acts by diagram feedings

g

G Dr S

In all cases we recover the description of5 asy't see
Example in Section P


