Quantized symplectic singularities & applications to Lie theory, Lec 4.

- 1) Quantizations of C[O]
- 2) Harish-Chandra bimodules.
- 3) Complements.

1.0) Kecap.

Let G be a semisimple algebraic group, of its Lie algebra, O a nilpotent orbit in of & O a G-equivariant cover of O. Let A:= C[O], X= Spec A. In Section 3 of Lec 2, we have stated that the filtered quantizations are classified by the points of bx/Wx, where bx is a finite dimensional vector space and Wx is a crystallographic reflection group. We have explained how to compute b_x : $b_x = H^2(Y^{reg}, C)$, where Y is a Q-factorial terminalization of X, Section 1.2 of Lec 3. According to Sec 2 of Lec 3, Y has the following form. Pick a Levi subgroup LCG, and an L-equivariant cover Q of a nilpotent orbit in L* Suppose X:= Spec C[O] is Q-factorial terminal.

Let P be a parabolic subgroup of G w. Levi L. Consider the Hamiltonian action of P on T*G x X2, p(q, d, x) = (gp, pd, px). The moment map is $\mu: T^*C \times X_2 \longrightarrow \beta^*$, $(g, \chi, \chi) \mapsto -\lambda |_{\mathcal{K}} + \mu_{\mathcal{L}}(\chi)$. Then Y= m-1(0)/P = G×P(X, x (of/b)*). This is a Q-factorial terminalization of X = Spec CIOI, where OCY is the open G-orbit. (depending only on L, \widetilde{Q}_L). We have $\int_X = H^2(Y^{reg}C) = (L/L(L)^*$

An important remark is in order. As was discussed in Sec 1 of Lec 2, $\mathbb{C}^n \times_{\mathbb{C}} X_2$ rescaling the Poisson bracket by $t \mapsto t^{-d}$ for some $d \in \mathbb{Z}_{70}$. Consider the action of \mathbb{C}^{\times} on $T^*G \times X_2$ by $t \cdot (g, \chi, \chi) =$ = (q, t-d, t.x). It descends to Y=y-1(0)/P & rescales {:, 3 on Oy by t > t-d

1.1) Quantization of Y.

Let $p: Y = G \times^P (X_p \times (g/p)^*) \longrightarrow G/P$ denote the projection, it's C'-invariant. So p Oy becomes the sheat of (positively) graded Poisson algebras on GIP. We can talk about its filtered quantizations: quasicoherent sheaves D of Ogip-modules equipped w.

· an associative C-algebra structure,

• a filtration $\mathcal{D} = \bigcup_{i,j} \mathcal{D}_{si}$ by $\mathcal{O}_{\zeta/p}$ -submodules satisfying [Dsi, Dsj] - Dsi+j-d ~ {; } on gr D

· and an OGIP-linear isomorphism gr D ~> p O, of graded Poisson algebras.

Goal: for $\lambda \in (l/ll, l])^*$ produce a filtered quantization \mathcal{D}_{λ} of 1 Octp

For this we "quantize" the construction of Y.

As was mentioned in Sec 2 of Lec 3, H²(X_i^{kg}, C) = 603.

So by Theorem in Sec 3 of Lec 1, C[X, I admits a unique filtered quantization, to be denoted by A. A quantum

counterpart of $C[T^*G] \otimes C[X_i]$ is $D(C) \otimes A_i$.

· We have the classical component map $\varphi: \beta \longrightarrow \mathbb{C}[T^*G] \otimes \mathbb{C}[X_{\ell}]$

 $\varphi(\xi) = -\xi_r \otimes 1 + 1 \otimes \varphi_L(\xi)$, where ξ_r is the left-invariant vector field on G corresponding to & land viewed as a fiber-wise linear function on T^*G , and $\varphi_i : \beta \to \mathbb{C}[X_i]$ is the comment map dual to $\chi \to L^* \hookrightarrow \beta^*$ Note that $\varphi(\xi)$ is a homogeneous deg d element.

We need a guantum counterpart of q.

Definition: Let I be an associative algebra w. a rational action of an algebraic group R by algebra automorphisms. By a quantum comoment map for this action we mean an R-equivariant linear map P: K -> St s.t. [9(3), ·]= F. + FEK.

Example: $\xi \mapsto -\xi_r$ (resp. $\xi \mapsto \xi_\ell$): $g \to \mathcal{D}(G)$ is a quantum comoment map for GAD(G) induced by GAG from the right (resp. left).

Exercise 1: Assume Q is an arbitrary L-equivariant cover of a nilpotent L-orbit. Show that $\varphi_{:} l \to C[X_{2}]_{d}$ lifts to a Lie algebra homomorphism 9: [-> St, sd (meaning that P, mod St, sd-1=q). Moreover, 3! lift that vanishes on 3(1). Finally, Lasts on At by filtered __algebra homomorphisms so that Pz is a quantum comoment map.

Taxe this lift and inflate it to $P_{2}: \beta \to f_{2}$.

Now we are ready to define $P_{3}: \beta \to D(G) \otimes f_{2}$, for $\lambda \in (\ell/[\ell,\ell])^{*}$. Let $\rho_{G/p}$ denote $\frac{1}{2}$ (the character of ℓ in $\Lambda^{top}(g/\beta)$).

We can view λ , $\rho_{G/p}$ as characters of β via $\beta \to \ell$. Set $P_{2}(\xi) = -\xi_{7} \otimes 1 + 1 \otimes P_{\ell}(\xi) - (\lambda - \rho_{G/p}, \xi)$.

This a quantum comoment map.

· To get a quantization of Y we perform the quantum Hamiltonian reduction.

Exercise 2: Let R, \mathcal{A} , \mathcal{P} have the same meaning as in the definition above. Show that $\left[\mathcal{A}/\mathcal{P}\mathcal{P}(r)\right]^R$ has a unique associative algebra structure s.t.

 $(a+\mathcal{F}P(r))\cdot(b+\mathcal{F}P(r))=ab+\mathcal{F}P(r)$

This algebra is known as the quantum Hamiltonian reduction.

Remark: Note that if \mathcal{A} is filtered w. $\deg[\cdot,\cdot] \leq -d$ ([$\mathcal{A}_{\leq i},\mathcal{A}_{\leq j}$] $\subset \mathcal{A}_{\leq i+j-d}$ $\forall i,j$) & im $\mathcal{P} \subset \mathcal{A}_{\leq d}$, then $[\mathcal{A}/\mathcal{A}\mathcal{P}(r)]^{R}$ inherits a filtration from \mathcal{A} & $\deg[\cdot,\cdot] \leq -d$.

Apply this to our situation. Let $\mathcal{A} = \mathcal{D}(G) \otimes \mathcal{A}_{\mathcal{L}}$, we can view it as a P-equivariant guasicoherent sheaf on G. So is $\mathcal{A}/\mathcal{AP}_{\mathcal{L}}(\beta)$. Recall the projection $\omega \colon G \to G/P$ and set

 $\mathcal{D}_{\lambda} := \left[\omega_{*} \left(\mathcal{A} / \mathcal{A} \mathcal{P}_{\lambda}(\beta) \right) \right]^{p}$

Using the important exercise we equip D (sheaf of) algebra structure. It's filtered by Remark after the exercise. We will elaborate on this and a proof of the fact below in the complement section.

Fact: Dy is a filtered quantization of 2,0,

Example: Let X=N, Y=T*(G/B) (so L=T, P=B, X,={0}). In this case $\rho_{C/B}$ is the usual ρ and $D_{\lambda} = D_{C/B}^{\lambda-\rho}$, the sheaf of $(\lambda-\rho)$ -twisted differential operators. More generally, we get twisted diff operators in the case when Y=T*(G/P).

Remarks: . In fact, all filtered quantitetions of you, are of the form \mathcal{D}_{λ} , and $\mathcal{D}_{\lambda} \neq \mathcal{D}_{\lambda'}$ for $\lambda \neq \lambda'$. We'll comment on this in the complement section.

· One could (and should) ask what It, looks like. To an extent, this is addressed in the next section.

1.2) Quantizations of C[X]

Proposition: $\mathcal{A}_{\lambda} := \Gamma(\mathcal{D}_{\lambda})$ is a filtered quantization of C[X].

Sketch of proof: this is a formal consequence of

(1) gr Dy = 1 Oy

(2) $\Gamma(C/P, p_*O_Y)(=C(Y)) \leftarrow C(X)$

 $\frac{(3) H^{1}(G/P, p_{*}O_{\gamma})(=H^{1}(Y, O_{y})) = 0.}{5}$

(1) is Fact in Sec 1.1; (2) & (3) follows from the following algebrogeometric fact: if X is singular symplectic, Y is normal & Poisson w. a proper birational morphism $SY: Y \to X$, then $T_*Q_* \rightleftharpoons Q_*$ & $R^iT_*Q_*=0$ $\forall i \neq 0$ (the latter follows from symplectic singularities being "rational"—shown by Beauville). Using this vanishing one checks that $gr\Gamma(D_X) \stackrel{\sim}{\longrightarrow} \Gamma(grD_X)$, which then implie $\Gamma(D_X)$ is a filtered quantization of $\Gamma(Y) = \Gamma(X)$.

Let's explain how $gr \Gamma(D_{\lambda}) \xrightarrow{\sim} \Gamma(gr D_{\lambda})$ follows: $gr D_{\lambda} = p_{\lambda} Q_{\lambda}$ $gives SES's: O \rightarrow D_{\lambda, \leq i-1} \rightarrow D_{\lambda, \leq i} \rightarrow (p_{\lambda} Q_{\lambda})_{i} \rightarrow 0$, $\forall i \geq 0$. We know $H'(G/P, (p_{\lambda} Q_{\lambda})_{i}) = 0 \quad \forall i \geq 0$. By induction, $H'(G/P, D_{\lambda, \leq i-1}) = 0$ $\forall i \sim SES \quad O \rightarrow \Gamma(D_{\lambda, \leq i-1}) \rightarrow \Gamma(D_{\lambda, \leq i}) \rightarrow \Gamma((p_{\lambda} Q_{\lambda})_{i}) \rightarrow 0$ $\Leftrightarrow gr \Gamma(D_{\lambda}) \xrightarrow{\sim} \Gamma(gr D_{\lambda})$.

Example: For X=N, $Y=T^*(G/B)$, it's classically known that $\Gamma(\mathcal{D}_{G/B}^{\lambda-p})=U_{\lambda}(=U(\sigma)/U(\sigma)m_{\lambda})$ from Sec 3 of Lec 2.

Remarks:

I) D_{χ} 's are pairwise distinct as quantitations, but A_{χ} 's aren't. First, one can determine when $A_{\chi} \simeq A_{\chi}$, a G-equivariant filted algebra isomorphism.

Consider $N_{C}(L) \subset C$. This group acts on L and hence on L-equivariant covers of nilpotent orbits (by twisting the L-action—and hence the moment map). So it makes sense to speak about the stabilizer of \widetilde{O}_{L} under this action (if $\widetilde{O}_{L} \subset \mathcal{L}^{*}$,

then this is just all elements of $N_{\zeta}(L)$ that preserve \widetilde{Q}_{ζ} as a subset). Denote this subgroup of $N_{\zeta}(L)$ by $N_{\zeta}(L,\widetilde{Q}_{\zeta})$. We have $L \triangle N_{\zeta}(L,\widetilde{Q}_{\zeta}) \& N_{\zeta}(L,\widetilde{Q}_{\zeta})/L \triangle (L/[L,L])^*$.

Claim (basically, I.L. 16): $\mathcal{A}_{\lambda} \simeq \mathcal{A}_{\lambda}$, as filtered algebras \iff λ, λ' are in the same $N_{\zeta}(\ell, \widetilde{\mathcal{O}}_{\ell})$ -orbit.

Comment: Y depends on the choice of P & so does D_{λ} but one con show that \mathcal{A}_{λ} doesn't. Let use P as a superscript to indicate the dependence on $P: Y^{\rho} \mathcal{D}_{\lambda}^{\rho}$. Then n gives rise to $Y^{\rho} \xrightarrow{\sim} Y^{n\rho}$, $\mathcal{D}_{\lambda}^{\rho} \xrightarrow{\sim} \mathcal{D}_{n\lambda}^{n\rho} \longrightarrow \mathcal{A}_{\lambda} = \Gamma(\mathcal{D}_{\lambda}^{\rho}) \xrightarrow{\sim} \Gamma(\mathcal{D}_{n\lambda}^{n\rho}) = \mathcal{A}_{n\lambda}$. This proves \Leftarrow in the proposition

One can use the claim & the comment to describe W_{χ} and hence to answer when $\mathcal{A}_{\chi} \xrightarrow{\sim} \mathcal{A}_{\chi}$, as quantizations. Note that a filtered algebra isomorphism $\mathcal{A}_{\chi} \xrightarrow{\sim} \mathcal{A}_{\chi}$, gives a Poisson graded algebra automorphism of $\mathbb{C}[\chi]$. These automorphisms form a group that can be shown to coincide w. the group $\mathrm{Aut}_{\mathcal{C}}(\widetilde{O})$ of \mathcal{C} -equivariant symplectomorphisms of \widetilde{O} , it's finite. So we get a group homomorphism $N_{\zeta}(\mathcal{L},\widetilde{O},) \longrightarrow \mathrm{Aut}_{\mathcal{C}}(\widetilde{O})$.

Fact 2 (I.L., Namikawa) We have SES

$$1 \longrightarrow W_{\chi} \longrightarrow N_{\zeta}(\zeta, \widetilde{Q}_{\zeta})/L \longrightarrow Aut_{\zeta}(\widetilde{Q}) \longrightarrow 1.$$
For example when $\widetilde{Q} \stackrel{\sim}{\to} Q \stackrel{c}{\circ} q^*$, then $Aut_{\zeta}(Q) = 1$.

I) Using this description (and some more) we can produce an algebraic version of Orbit method, essentially as conjectured by Vogan in the 90's.

Thm (LMBM'21): There's a natural bijection between:

- 1) Filtered quantizations of C[O] for all equivariant covers O of <u>nilpotent</u> orbits, up to filtered algebra iso.
- 2) All equivariant covers of all (co)adjoint C-orbits.

 Under this correspondence, the cover \widetilde{O} of a nilpotent orbit (in 2)) goes to the quantization \mathcal{A} of $C[\widetilde{O}]$, the canonical quantization.

II) Can we describe \mathcal{A}_{λ} "explicitly"? We can e.g. when $\lambda = 0$ & $\widetilde{O} \subset g$. By Exercise 1 (also can be seen by the construction), we have the unique quentum comoment map $P_{\zeta}: U(g) \longrightarrow \mathcal{A}_{\delta}$. The following result requires quite a lot of work (and describes \mathcal{A}_{δ} as an algebra w/o filtration).

Thm (LMBM & MBM): • It is a simple algebra

- Ker \mathcal{P}_{ζ} is a maximal ideal (that we can recover starting from $\widehat{\mathcal{O}}$)
- If $\widetilde{O} \xrightarrow{\sim} \mathcal{O}(c\sigma^*)$, then im $\mathcal{P} = \mathcal{A}$ (more generally, if $\widetilde{\mathcal{O}}/\mathrm{Aut}_{\varsigma}(\widetilde{O}) \xrightarrow{\sim} \widetilde{\mathcal{O}}$, then im $\mathcal{P} = \mathcal{A}^{\mathrm{Aut}_{\varsigma}(\widetilde{O})}$.

2) Harish-Chandre bimodules.

Definition (classical): A HC U(og)-6 imadule is a finitely generated U(og)-6 imodule B that is "ad(og)-locally finite": 4 6 \(B \) \(\) fin. dim'l ad(og)-stable subspace B \(B \) w. 6 \(B \).

Example: · U(og) is HC bimodule

• Every sub-& quotient bimodule of a HC bimodule is HC Exercise: • Let V be a finite dimensional of-repin. Show that $V \otimes U(\sigma)$ is a HC bimodule w.r.t. $(v \otimes a)_{\overline{z}:=v \otimes a\overline{z}}$, $\overline{z}(v \otimes a):=\overline{z}v \otimes a+v \otimes \overline{z}a$, $v \in V$, $u \in U(\sigma)$, $u \in V$.

· Moreover, every HC bimodule is a quotient of some V&U(og).

Let's explain why Herish-Chandra cared: he wanted to have algebraic counterparts of unitary rep's. For simplicity, assume G is simply connected. Let H be a unitary G-representation (some Kind of L^2 -space). Inside, there's the "C"-part", $C^{\infty}(H)$, it now carries a of-action, by skew-Hermitian operators.

Let $K \subset G$ be a maxil compact subgroup. Consider the "K-finite part" $C^{\infty}(H)_{K-fin}$ consisting of all vectors lying in K-stable fin. d_{im} is subspaces. This is a complex vector space w. σ_{i} -action. If a <u>real</u> Lie algebra (resp. algebraic group) acts on a <u>complex</u> vector space, then the action extends to the complexification. So $(\sigma_{i} \otimes_{R} C, K_{C})$ act on $C^{\infty}(H)_{K-fin}$ act (compatibly). Of course, $\sigma_{i} \otimes_{R} C \simeq \sigma_{i} \otimes_{G} C$ $Lie(K_{C}) = \sigma_{i}$ embedded into $\sigma_{i} \otimes_{G} \sigma_{i}$ diagonally.

A $g \oplus g$ -module is the same thing as a U(g)-module. The action of the diagonal copy of g becomes the adjoint action. So $C^{\infty}(H)_{K-fin}$ becomes a U(g)-bimodule w. locally finite ad(g)-action.

Thm (Harish-Chandra): $\mathcal{H} \mapsto C^{\infty}(\mathcal{H})_{K\text{-fin}}$ defines a bijection between:

· Unitary irreps H of G

• Irreducible HC bimodules that are "unitarizable": have a positive definite Hermitian form w. certain invariance property (saying that $\sigma \subset \sigma \otimes_{\mathbb{R}} \mathbb{C} \simeq \sigma \oplus \sigma$ acts by skew-Hermitian operators).

While this "algebrizes" the problem of classifying unitary G-irreps, the unitarizability condition is still very hard to check. Experimental evidence suggests that the class of unitarizable HC Ulog)-modules has "big intersection" with HC bimodules over quantizations of C[O]'s. We will discuss those in the final lecture.

3) Complements

3.1) Comments on the classification of quantizations of $p_*\mathcal{O}_Y$.

• Why D_{λ} is a filtered quantization of $p_*\mathcal{O}_Y$. In general, $\varphi = \mathcal{P} + \mathcal{S}l_{\leq d}$, gives an iso of graded quasi-coherent sheaves on \mathcal{G}/\mathcal{P} : $\mathcal{O}_{p^{-1}(o)} \longrightarrow gr[(D(G) \otimes f_{\ell})/(D(G) \otimes f_{\ell}) \text{ im } \mathcal{P}_{\lambda}]$ (1)

This epimorphism is an iso. A basic reason for this is thet P acts on $p^{-1}(o)$ freely (no stabilizers). From here one deduces that,

for a basis Fin, In of B,

(*) the elements φ(ξ₁),..., φ(ξ_n) form a regular sequence
this can be also seen directly: codim_{T*ζ*X_ν} μ⁻¹(o) = dim β
Using (*) and some Commutative algebra (regular ⇒
the 1st Kostul homology group vanishes) one can show that
(1) is an isomorphism. Passing to the P-invariants is still an isomorphism – also follows from the freeness.

· Why $\mathcal{D}_{\chi} \cong \mathcal{D}_{\chi'} \Rightarrow \lambda \cong \lambda'$ and $\mathcal{D}_{\chi'}$'s exhaust all quantizations of $p_*\mathcal{O}_{\chi'}$.

Easy case: Y=T*(G/P). Here we recover the classification of sheaves of twisted differential operators.

The general case: $Y = C \times^{p} ((g/p)^{*} \times X_{L})$ is very mildly singular. It follows from the work of Bezrukavnikov-Kaledin & I.L. that the filtered quantizations of $\chi_{*}O_{\gamma}$ are classified by $H^{2}(Y^{reg}, \mathbb{C}) (= (\mathbb{L}/\mathbb{L},\mathbb{L})^{*})$ by means of the so called period map. One can prove that the period of \mathfrak{D}_{χ} is $\lambda_{*}(I.L. 2010)$.

3.2) Barbasch-Vogan Constr'n & glimpses of symplectic duality

Here we are concerned with understanding the Kernels of

the quantum comment maps $U(\sigma) \rightarrow F_{\sigma}$, where F_{σ} is the

canonical (parameter 0) quantization of some $C[\tilde{G}]$. It

turns out that at least some of them have "meaning" & have appeared before.

In the study of unitary representations of real Lie groups there's an important - yet still conjectural - class of representations called unipotent. Under the (non-existing) Orbit method correspondence those are unitary irreps that correspond to nilpotent orbits. A formal definition for HC bimodules will be suggested in the next lecture.

In 85, Barbasch & Vogan proposed a partial definition: special unipotent representations. The first step is to define a family of ideals in Ulg). To describe their construction we need to describe the maximal (w.r.t. <) 2-sided ideals. Recall that we write I for the center of Ulog). Recall the identification Z ~> C[5*]W

Proposition: For every maximal ideal $I \subset \mathcal{U}(\sigma)$, we have codim $I \cap Z = 1$, so I defines a point in f^*/W . The resulting map $\{ \max. 2 \text{-sided ideals in } \mathcal{U}(\sigma) \} \xrightarrow{\sim} f^*/W$ is a bijection.

Notation: For $\lambda \in \mathcal{L}^*/W$, let $I_{max}(\lambda)$ denote the maximal ideal in $\mathcal{U}(\sigma)$ corresponding to λ under the bijection from the proposition.

Verme w. h.wt. -p Example: $I_{\text{max}}(\rho) = g U(\sigma)$, $I_{\text{max}}(o) = Ann_{U(\sigma)}(\Delta(-\rho))$.

Now we can introduce to Barbasch-Vogan ideals. We write g^{\vee} for the Langlands dual Lie algebra (e.g. for $g=So_{ann}$ we get $g^{\vee}=Sp_{2n}$). Let D^{\vee} be a nilpotent orbit in g^{\vee} . Pick $e^{\vee}\in D^{\vee}$ and include it into an S_{Σ}^{\vee} -triple (e,h,f^{\vee}) . Conjugating we can assume that $h^{\vee}\in L^{\vee}(=L^{*})$. The element h^{\vee} is defined up to conjugacy in W.

Definition: The special unipotent ideal $I_{ov} := I_{max}(\frac{1}{2}h^{\nu})$

Theorem (LMBM'21) I_{OV} is the Kernel of $U(g) \longrightarrow \mathcal{S}_{OV}$ for a cover \widetilde{O} recovered from O', we'll write $\widetilde{O}(O')$ for $\widetilde{O}(O')$

To construct \mathcal{J} we need the following observation. Note that every 2-sided ideal I < $U(o_J)$ defines a $G \times \mathbb{C}^*$ -stable subvariety in o_J^* (where \mathbb{C}^* acts by dilations) - the variety of \mathcal{D} 's of $gr\ I$, where gr is taken for the PBW filtration. Denote this subvariety by V(I). If $codim_Z Z \cap I < \infty$, then $V(I) \subset \mathcal{N}$ and if I is maximal (more generally, "primitive"), then V(I) is irreducible.

Definition: The BV dual orbit $d(O^{\nu})$ is the unique open orbit in $V(I_{O^{\nu}})$.

Examples: 1) $\sigma = 3l_n = \sigma^{\nu}$ If O corresponds to a partition prof

n, then $d(O^{\nu})$ corresponds to jut

Construction of $\widetilde{\mathcal{A}}(\mathcal{O}^{\vee})$:

Case 1: e^v is "distinguished" (not contained in a proper Levi). Then $\mathcal{J}(O^v)$ is the universal $\mathrm{Ad}(g)$ -equivariant cover of $\mathrm{d}(O)$. It turns that $\mathrm{Spec}\ \mathbb{C}[\mathcal{J}(O^v)]$ is \mathbb{Q} -factorial & terminal.

Case 2: general. Let L^{ν} be a minimal Levi subalgebra of σ^{ν} containing e^{ν} Let L be a corresponding Levi subalgebra of σ & $\beta = L \times h$ be a parabolic. Let $X_{z} = \operatorname{Spec} \mathbb{C}[\widetilde{\mathcal{A}}(Q_{z})]$, where $\widetilde{\mathcal{A}}(Q_{z})$ is constructed as in Case 1. Then $\widetilde{\mathcal{A}}(Q)$ is the open orbit in $G \times P(X_{z} \times (\sigma/\beta)^{*})$.

Examples: For $g = 3l_n$, we have $\widetilde{d}(0) = d(0)$.

For $g = 3l_4$, \widetilde{d} sends the orbit (2,1,1) to the orbit (2,2) & (2,2) to the double cover of (2,2).

An inspiration for defining I comes from Symplectic duality
predicted by Braden-Licata-Proudfoot-Webster and since then
rigorously defined in some settings but not in ours. In the
first approximation, this is a duality between conical singular
symplectic varieties X, X (w. some "decorations") that swaps certain
invariants. The pair of varieties in our case is as follows:
• X = Spec C[d(O')])
X^{v} = the intersection of the "Slodowy slice", $e^{v}+z_{gg^{v}}(f^{v})$, we the nilpotent cone $N^{v}c_{gg^{v}}$. The Slodowy slice is a transverse
w. the nilpotent cone N'coj. The Slodowy slice is a transverse
shu to O' in g.

